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1 GRADIENT BACK-PROPAGATION FROM BSDFNET
TO METANET

In this section, we provide the detailed analysis for gradient back-
propagation from BSDFNet to MetaNet.
Let 𝜹𝑖+1 be the input of the 𝑖 + 1-th layer. Then, we have

𝜹+𝑖+1 = W+
𝑖 (v

∗
𝑖 ⊕ v+𝑖 ⊕ v≀𝑖 ) + b+𝑖 (1)

𝜹 ≀𝑖+1 = W∗
𝑖 (v

+
𝑖 ⊕ v≀𝑖 ) + b∗𝑖 (2)

and

v+𝑖+1 = 𝑎(𝜹+𝑖+1) (3)
v≀𝑖+1 = 𝑎(𝜹 ≀𝑖+1) (4)

where 𝑎 is the activation function. We further rephrase 𝜹+𝑖+1 and
𝜹 ≀𝑖+1 as

𝜹+𝑖+1 = W+∗
𝑖 v∗𝑖 +W++

𝑖 v+𝑖 +W+≀
𝑖 v≀𝑖 + b+𝑖 (5)

𝜹 ≀𝑖+1 = W∗+
𝑖 v+𝑖 +W∗≀

𝑖 v
≀
𝑖 + b∗𝑖 (6)

via splittingmatrixW+
𝑖 into three submatrices:W+∗

𝑖 ,W++
𝑖 andW+≀

𝑖 ;
splittingmatrixW≀

𝑖+1 into two submatrices:W∗+
𝑖 andW∗≀

𝑖 .The split-
ting is performed along the row of each matrix and ensures that all
matrix-vector multiplications in the above equations are valid.
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Suppose we calculate the L2 loss between the prediction v𝐿1 and
the ground truth y, i.e.,

L =
1
2
(v𝐿 − y)2 = 1

2

(
𝑎(𝜹 ≀𝐿) − y

)2 (7)

where 𝐿 denotes the last layer of BSDFNet. Then, the gradients of
L w.r.t. the input of the final layer are

𝜕L
𝜕𝜹 ≀𝐿

= 𝑎′ (𝜹 ≀𝐿)(𝑎(𝜹
≀
𝐿) − y) and 𝜕L

𝜕𝜹+𝐿
= 0. (8)

For the gradients of L w.r.t. the input of the 𝑖-th layer, we have the
following two recursive formulas:

𝜕L
𝜕𝜹 ≀𝑖

=

(
𝜕𝜹 ≀𝑖+1
𝜕𝜹 ≀𝑖

)⊤
𝜕L
𝜕𝜹 ≀𝑖+1

+
(
𝜕𝜹+𝑖+1
𝜕𝜹 ≀𝑖

)⊤
𝜕L
𝜕𝜹+𝑖+1

=
[
W∗≀

𝑖 diag(𝑎
′ (𝜹 ≀𝑖 ))

]⊤ 𝜕L
𝜕𝜹 ≀𝑖+1

+
[
W+≀

𝑖 diag(𝑎′ (𝜹 ≀𝑖 ))
]⊤ 𝜕L

𝜕𝜹+𝑖+1
(9)

and

𝜕L
𝜕𝜹+𝑖

=

(
𝜕𝜹 ≀𝑖+1
𝜕𝜹+𝑖

)⊤
𝜕L
𝜕𝜹 ≀𝑖+1

+
(
𝜕𝜹+𝑖+1
𝜕𝜹+𝑖

)⊤
𝜕L
𝜕𝜹+𝑖+1[

W∗+
𝑖 diag(𝑎′ (𝜹+𝑖 ))

]⊤ 𝜕L
𝜕𝜹 ≀𝑖+1

+
[
W++

𝑖 diag(𝑎′ (𝜹+𝑖 ))
]⊤ 𝜕L

𝜕𝜹+𝑖+1
.

(10)

With Eqs. 8-10, we can get the gradients of L w.r.t. the input of
any layer in BSDFNet. These gradients are expected to be back-
propagated to MetaNet.

1v𝐿 is a scalar (a single channel reflectance) in our implementation.
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Now, let us derive the gradient of L w.r.t. the parameters of
MetaNet Θ𝑀 . Since𝑀 (Γ,Θ𝑀 ) = {v∗,W∗, b∗}, we have

𝜕L
𝜕Θ𝑀

=
∑
𝑖

((
𝜕v∗𝑖
𝜕Θ𝑀

)⊤
𝜕L
𝜕v∗𝑖

+
(
𝜕vecW∗

𝑖

𝜕Θ𝑀

)⊤
𝜕L

𝜕vecW∗
𝑖

+
(
𝜕b∗𝑖
𝜕Θ𝑀

)⊤
𝜕L
𝜕b∗𝑖

)
=

∑
𝑖

( (
𝜕v∗𝑖
𝜕Θ𝑀

)⊤
𝜕L
𝜕v∗𝑖

+
(
𝜕vecW∗+

𝑖

𝜕Θ𝑀

)⊤
𝜕L

𝜕vecW∗+
𝑖

+
(
𝜕vecW∗≀

𝑖

𝜕Θ𝑀

)⊤
𝜕L

𝜕vecW∗≀
𝑖

+
(
𝜕b∗𝑖
𝜕Θ𝑀

)⊤
𝜕L
𝜕b∗𝑖

)
=

∑
𝑖

( (
𝜕v∗𝑖
𝜕Θ𝑀

)⊤ (
W+∗

𝑖

)⊤ 𝜕L
𝜕𝜹+𝑖︸︷︷︸
△

+
(
𝜕vecW∗+

𝑖

𝜕Θ𝑀

)⊤
vec

(
𝜕L
𝜕𝜹+𝑖+1︸︷︷︸

△

(𝑎(𝜹𝑖 )+)⊤
)

+
(
𝜕vecW∗≀

𝑖

𝜕Θ𝑀

)⊤
vec

(
𝜕L
𝜕𝜹 ≀𝑖+1︸︷︷︸

△

(𝑎(𝜹𝑖 )≀)⊤
)
+

(
𝜕b∗𝑖
𝜕Θ𝑀

)⊤
𝜕L
𝜕𝜹 ≀𝑖+1︸︷︷︸

△

)
.

(11)

Note that the terms marked by △ in the above equation are gra-
dients back-propagated from BSDFNet to MetaNet. We also note
that activation functions appear in the above equation which may
approach zero (i.e., 𝑎(𝜹𝑖 )+) = 0 and 𝑎(𝜹𝑖 )≀) = 0) when ReLU is
adopted. In this case, the impact of loss will be lowered, leading
to slow convergence for MetaNet since 𝜕L/𝜕Θ𝑀 may approach ze-
ro. With the directly predicted neurons v∗𝑖 (in the first term of the
above equation’s right-hand side), the value of 𝜕L/𝜕Θ𝑀 can be sig-
nificantly improved, enabling fast and stable convergence.

2 MORE VALIDATION OF MATERIAL EDITING
To validate the ability of material editing, we conduct a comprehen-
sive analysis of our model’s performance on the full set of parame-
terized materials (including layered materials beyond the scope of
the training set). To generate a new layeredmaterial, we directly ed-
it the material’s physical parameters, including the surface proper-
ties of two interfaces (the surface roughness: 𝛼1 and 𝛼2, the relative
index of refraction (IOR): 𝜂1 and 𝜂2) and the scattering properties of
the internal medium (the extinction coefficient: 𝜎𝑡 and the single-
scattering albedo: 𝜌). Pairwise comparisons of our results and the
corresponding reference images generated by Guo et al.’s method
[Guo et al. 2018] are provided in Figs. 1 to 10.

3 MORE COMPARISONS TO PRIOR WORK
In Fig. 11, we provide more comparisons against NBRDF [Sztraj-
man et al. 2021] and an extended version of NBRDF (NBRDF+). For
a fair comparison, NBRDF+ has the same number of trainable pa-
rameters as our BSDFNet. The error maps are generated by evaluat-
ing the per-pixel errors with respect to the reference images which
are generated by Guo et al.’s bidirectional method [Guo et al. 2018].

4 MORE COMPARISONS OF DIFFERENT POSITIONAL
ENCODING METHODS

In Fig. 12, we provide more rendering results from different posi-
tional encoding methods. We compare two different groups of coor-
dinates: (𝝎𝑖 ,𝝎𝑜 ) and (𝝎ℎ ,𝝎𝑑 ). Comparedwith no encoding and tra-
ditional sinusoidal encoding, our Rusinkiewicz spherical harmon-
ics encoding shows obvious advantage in preserving high-frequency
angular details.

REFERENCES
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tion for Arbitrary Layered BSDFs. ACM Trans. Graph. 37, 6, Article 279 (dec 2018),
14 pages.
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Fig. 1. Editing the surface roughness: 𝛼1 and 𝛼2. The IOR of the bottom conductive surface is set by the value of silver (Ag).
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Fig. 2. Editing the surface roughness: 𝛼1 and 𝛼2. The IOR of the bottom conductive surface is set by the value of gold (Au).
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Fig. 3. Editing the extinction coefficient: 𝜎𝑡 and the single-scattering albedo: 𝜌 . The IOR of the bottom conductive surface is set by the value of silver (Ag)
and 𝛼1 is set as 0.01.

𝜌 = (0.0, 0.5, 0.8) 𝜌 = (0.2, 0.5, 0.8) 𝜌 = (0.4, 0.5, 0.8) 𝜌 = (0.6, 0.5, 0.8)

𝜎
𝑡
=
0

𝜎
𝑡
=
1

𝜎
𝑡
=
2

𝜎
𝑡
=
8

Ours Reference Ours Reference Ours Reference Ours Reference

Fig. 4. Editing the extinction coefficient: 𝜎𝑡 and the single-scattering albedo: 𝜌 . The IOR of the bottom conductive surface is set by the value of silver (Ag)
and 𝛼1 is set as 0.3.
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Fig. 5. Editing the extinction coefficient: 𝜎𝑡 and the single-scattering albedo: 𝜌 . The IOR of the bottom conductive surface is set by the value of copper (Cu)
and 𝛼1 is set as 0.01.
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Fig. 6. Editing the extinction coefficient: 𝜎𝑡 and the single-scattering albedo: 𝜌 . The IOR of the bottom conductive surface is set by the value of copper (Cu)
and 𝛼1 is set as 0.3.
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Fig. 7. Editing the roughness 𝛼2 and IOR 𝜂1. The IOR of the bottom conductive surface is set by the value of silver (Ag) and 𝜎𝑡 = 0, 𝛼1 = 0.1.
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Fig. 8. Editing the roughness 𝛼2 and IOR 𝜂1. The IOR of the bottom conductive surface is set by the value of silver (Ag) and 𝜎𝑡 = 1, 𝛼1 = 0.1.
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Fig. 9. Editing the roughness 𝛼2 and IOR 𝜂1. The IOR of the bottom conductive surface is set by the value of copper (Cu) and 𝜎𝑡 = 0, 𝛼1 = 0.05.
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Fig. 10. Editing the roughness 𝛼2 and IOR 𝜂1. The IOR of the bottom conductive surface is set by the value of copper (Cu) and 𝜎𝑡 = 1, 𝛼1 = 0.05.
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NBRDF NBRDF (Error×4) NBRDF+ NBRDF+ (Error×4) Ours Ours (Error×4) Reference

RMSE=0.114 RMSE=0.113 RMSE=0.112

RMSE=0.360 RMSE=0.319 RMSE=0.195

RMSE=4.640 RMSE=4.640 RMSE=3.981

RMSE=0.748 RMSE=0.260 RMSE=0.247

RMSE=0.434 RMSE=0.387 RMSE=0.239

RMSE=0.349 RMSE=0.213 RMSE=0.210

RMSE=0.155 RMSE=0.038 RMSE=0.032

RMSE=0.846 RMSE=0.195 RMSE=0.126

Fig. 11. Comparison against NBRDF [Sztrajman et al. 2021] and an extended version of NBRDF (NBRDF+). RMSEs (root mean square errors) are provided
for each method in comparison.
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RMSE=0.011 RMSE=0.010 RMSE=0.012 RMSE=0.010 RMSE=0.011 RMSE=0.010

RMSE=1.748 RMSE=1.752 RMSE=1.724 RMSE=1.750 RMSE=1.601 RMSE=0.940

RMSE=0.052 RMSE=0.171 RMSE=0.070 RMSE=0.180 RMSE=0.052 RMSE=0.051

RMSE=0.009 RMSE=0.009 RMSE=0.008 RMSE=0.008 RMSE=0.010 RMSE=0.007

RMSE=0.223 RMSE=0.255 RMSE=0.238 RMSE=0.188 RMSE=0.256 RMSE=0.159

RMSE=3.206 RMSE=3.223 RMSE=3.208 RMSE=3.195 RMSE=3.223 RMSE=3.080

RMSE=6.416 RMSE=7.983 RMSE=6.561 RMSE=7.403 RMSE=5.799 RMSE=4.161

RMSE=4.280 RMSE=4.383 RMSE=4.246 RMSE=4.365 RMSE=3.812 RMSE=2.373

Fig. 12. Comparison of different positional encoding methods. No=no encoding, Sin=sinusoidal encoding, and SH = spherical harmonics encoding.
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