Introduction to Computer Graphics

GAMES101, Lingqi Yan, UC Santa Barbara

Lecture 9: Shading 3 (Texture Mapping cont.)

http://www.cs.ucsb.edu/~lingqi/teaching/games101.html

Announcements

• About homework

- Homework 1 is being graded
- Homework 2
 - 271 submissions so far
- Homework 3 will be released soon

Last Lectures

- Shading 1 & 2
 - Blinn-Phong reflectance model
 - Shading models / frequencies
 - Graphics Pipeline
 - Texture mapping

Today

• Shading 3

- Barycentric coordinates
- Texture queries
- Applications of textures
- Shadow mapping

Interpolation Across Triangles: Barycentric Coordinates (重心坐标)

Interpolation Across Triangles

Why do we want to interpolate?

- Specify values **at vertices**
- Obtain smoothly varying values **across triangles**

What do we want to interpolate?

• Texture coordinates, colors, normal vectors, ...

How do we interpolate?

• Barycentric coordinates

A coordinate system for triangles (α, β, γ)

What's the barycentric coordinate of A?

Geometric viewpoint — proportional areas

What's the barycentric coordinate of the centroid?

Barycentric Coordinates: Formulas

$$C$$

$$(x,y) = \alpha A + \beta B + \gamma C$$

$$\alpha + \beta + \gamma = 1$$

$$B$$

$$\alpha = \frac{-(x - x_B)(y_C - y_B) + (y - y_B)(x_C - x_B)}{-(x_A - x_B)(y_C - y_B) + (y_A - y_B)(x_C - x_B)}$$
$$\beta = \frac{-(x - x_C)(y_A - y_C) + (y - y_C)(x_A - x_C)}{-(x_B - x_C)(y_A - y_C) + (y_B - y_C)(x_A - x_C)}$$
$$\gamma = 1 - \alpha - \beta$$

GAMES101

Using Barycentric Coordinates

Linearly interpolate values at vertices

Applying Textures

Lingqi Yan, UC Santa Barbara

Simple Texture Mapping: Diffuse Color

Usually a pixel's center

for each rasterized screen sample (x,y):

```
(u,v) = evaluate texture coordinate at (x,y)
```

```
texcolor = texture.sample(u,v);
```

```
set sample's color to texcolor;
```

Usually the diffuse albedo Kd (recall the Blinn-Phong reflectance model)

Texture Magnification (What if the texture is too small?)

Texture Magnification - Easy Case

Generally don't want this — insufficient texture resolution A pixel on a texture — a **texel** (纹理元素、纹素)

Nearest

Bilinear

Bicubic

Want to sample texture value f(x,y) at red point

Black points indicate texture sample locations

Take 4 nearest sample locations, with texture values as labeled.

And fractional offsets, (s,t) as shown

Linear interpolation (1D)

$$\operatorname{lerp}(x, v_0, v_1) = v_0 + x(v_1 - v_0)$$

Linear interpolation (1D)

$$\operatorname{lerp}(x, v_0, v_1) = v_0 + x(v_1 - v_0)$$

Two helper lerps (horizontal) $u_0 = \operatorname{lerp}(s, u_{00}, u_{10})$ $u_1 = \operatorname{lerp}(s, u_{01}, u_{11})$

 u_0

 u_0

Linear interpolation (1D)

$$\operatorname{lerp}(x, v_0, v_1) = v_0 + x(v_1 - v_0)$$

Two helper lerps

$$u_0 = \operatorname{lerp}(s, u_{00}, u_{10})$$

 $u_1 = \operatorname{lerp}(s, u_{01}, u_{11})$

Final vertical lerp, to get result:

$$f(x,y) = \operatorname{lerp}(t,u_0,u_1)$$

GAMES101

Texture Magnification - Easy Case

Bilinear interpolation usually gives pretty good results at reasonable costs

Nearest

Bilinear

Bicubic

Texture Magnification (hard case) (What if the texture is too large?)

Point Sampling Textures — Problem

Reference

Point sampled

Screen Pixel "Footprint" in Texture

Will Supersampling Do Antialiasing?

512x supersampling

Antialiasing — Supersampling?

Will supersampling work?

- Yes, high quality, but costly
- When highly minified, many texels in pixel footprint
- Signal frequency too large in a pixel
- Need even higher sampling frequency

Let's understand this problem in another way

- What if we don't sample?
- Just need to get the average value within a range!

Point Query vs. (Avg.) Range Query

•	•	•	•	•	٠	•	•	•	•	•	•	٠	٠	٠	•
•	•	٠	•	•	•	•	•	•	٠	•	•	• /	•	•	•
•	•	•	•	•	• ~	٠	•	/	0		•		•	•	7
•		•		•		1	•	/•	•		•		•	•	-
•	•	•		•		/•		•	• /	•		•	•	1	•
•	•	•	•	•	•	•	•	•		•	•		•	/•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•
•	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•

Different Pixels -> Different-Sized Footprints

Mipmap Allowing (fast, approx., square) range queries

Mipmap (L. Williams 83)

"Mip" comes from the Latin "multum in parvo", meaning a multitude in a small space

Mipmap (L. Williams 83)

Computing Mipmap Level D

Screen space (x,y)

Texture space (u,v)

Estimate texture footprint using texture coordinates of neighboring screen samples

Computing Mipmap Level D

Computing Mipmap Level D

Visualization of Mipmap Level

D rounded to nearest integer level

Linear interpolation based on continuous D value

Visualization of Mipmap Level

Trilinear filtering: visualization of continuous D

Mipmap Limitations

Point sampling

Mipmap Limitations

Supersampling 512x (assume this is correct)

Mipmap Limitations

Overblur Why?

Mipmap trilinear sampling

Anisotropic Filtering

Better than Mipmap!

Irregular Pixel Footprint in Texture

Screen space

Texture space

Anisotropic Filtering

Ripmaps and summed area tables

- Can look up axis-aligned rectangular zones
- Diagonal footprints still a problem

Wikipedia

Anisotropic Filtering

Ripmaps and summed area tables

- Can look up axis-aligned rectangular zones
- Diagonal footprints still a problem

EWA filtering

- Use multiple lookups
- Weighted average
- Mipmap hierarchy still helps
- Can handle irregular footprints

Wikipedia

Greene & Heckbert '86

Thank you!

(And thank Prof. Ravi Ramamoorthi and Prof. Ren Ng for many of the slides!)