Introduction to Computer Graphics

GAMES101, Lingqi Yan, UC Santa Barbara

Lecture 9: Shading 3 (Texture Mapping cont.)

http://www.cs.ucsb.edu/~lingqi/teaching/games101.html

Announcements

- About homework
- Homework 1 is being graded
- Homework 2
- 271 submissions so far
- Homework 3 will be released soon

Last Lectures

- Shading 1 \& 2
- Blinn-Phong reflectance model
- Shading models / frequencies
- Graphics Pipeline
- Texture mapping

Today

- Shading 3
- Barycentric coordinates
- Texture queries
- Applications of textures
- Shadow mapping

Interpolation Across Triangles： Barycentric Coordinates
 （重心坐标）

Interpolation Across Triangles

Why do we want to interpolate?

- Specify values at vertices
- Obtain smoothly varying values across triangles

What do we want to interpolate?

- Texture coordinates, colors, normal vectors, ...

How do we interpolate?

- Barycentric coordinates

Barycentric Coordinates

A coordinate system for triangles (α, β, γ)

Barycentric Coordinates

What's the barycentric coordinate of A?

Barycentric Coordinates

Geometric viewpoint - proportional areas

$$
\begin{aligned}
\alpha & =\frac{A_{A}}{A_{A}+A_{B}+A_{C}} \\
\beta & =\frac{A_{B}}{A_{A}+A_{B}+A_{C}} \\
\gamma & =\frac{A_{C}}{A_{A}+A_{B}+A_{C}}
\end{aligned}
$$

Barycentric Coordinates

What's the barycentric coordinate of the centroid?

Barycentric Coordinates: Formulas

$$
\begin{aligned}
& \alpha=\frac{-\left(x-x_{B}\right)\left(y_{C}-y_{B}\right)+\left(y-y_{B}\right)\left(x_{C}-x_{B}\right)}{-\left(x_{A}-x_{B}\right)\left(y_{C}-y_{B}\right)+\left(y_{A}-y_{B}\right)\left(x_{C}-x_{B}\right)} \\
& \beta=\frac{-\left(x-x_{C}\right)\left(y_{A}-y_{C}\right)+\left(y-y_{C}\right)\left(x_{A}-x_{C}\right)}{-\left(x_{B}-x_{C}\right)\left(y_{A}-y_{C}\right)+\left(y_{B}-y_{C}\right)\left(x_{A}-x_{C}\right)} \\
& \gamma=1-\alpha-\beta
\end{aligned}
$$

Using Barycentric Coordinates

Linearly interpolate values at vertices

However, barycentric coordinates are not invariant under projection!

Applying Textures

Simple Texture Mapping: Diffuse Color

Usually a pixel's center

for each rasterized screen sample (x, y):
$(u, v)=$ evaluate texture coordinate at (x, y)
texcolor = texture.sample(u,v);
set sample's color to texcolor;

Using barycentric coordinates!

Usually the diffuse albedo Kd (recall the Blinn-Phong reflectance model)

Texture Magnification (What if the texture is too small?)

Texture Magnification－Easy Case

Generally don＇t want this－insufficient texture resolution A pixel on a texture－a texel（纹理元素，纹素）

Nearest

Bilinear

Bicubic

Bilinear Interpolation

Want to sample texture value $f(x, y)$ at red point
 Black points indicate texture sample locations

Bilinear Interpolation

> Take 4 nearest sample locations, with texture values as labeled.

Bilinear Interpolation

And fractional offsets, (s, t) as shown

Bilinear Interpolation

Linear interpolation (1D)

$$
\operatorname{lerp}\left(x, v_{0}, v_{1}\right)=v_{0}+x\left(v_{1}-v_{0}\right)
$$

Bilinear Interpolation

Linear interpolation (1D)

$$
\operatorname{lerp}\left(x, v_{0}, v_{1}\right)=v_{0}+x\left(v_{1}-v_{0}\right)
$$

Two helper lerps (horizontal)

$$
\begin{aligned}
& u_{0}=\operatorname{lerp}\left(s, u_{00}, u_{10}\right) \\
& u_{1}=\operatorname{lerp}\left(s, u_{01}, u_{11}\right)
\end{aligned}
$$

Bilinear Interpolation

Linear interpolation (1D)

$$
\operatorname{lerp}\left(x, v_{0}, v_{1}\right)=v_{0}+x\left(v_{1}-v_{0}\right)
$$

Two helper lerps

$$
\begin{aligned}
& u_{0}=\operatorname{lerp}\left(s, u_{00}, u_{10}\right) \\
& u_{1}=\operatorname{lerp}\left(s, u_{01}, u_{11}\right)
\end{aligned}
$$

Final vertical lerp, to get result:
$f(x, y)=\operatorname{lerp}\left(t, u_{0}, u_{1}\right)$

Texture Magnification - Easy Case

Bilinear interpolation usually gives pretty good results at reasonable costs

Nearest

Bilinear

Bicubic

Texture Magnification (hard case) (What if the texture is too large?)

Point Sampling Textures — Problem

Reference

Point sampled

Screen Pixel "Footprint" in Texture

-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-			-
-	-	\bullet	-	-		-	-				-	1	-		
-	0	-	\bigcirc	-											
-	-					。					7		-		-
-	-	-	-	-	\bullet	-	-	-		-					\bullet
-	-	-	-	-	-	-	-	-	-	\bullet	-	-	-	\bullet	\bullet
-	-	-	-	-	-	\bullet	-	-	-	-	\bullet	\bullet	-	\bullet	-

Upsampling (Magnification)

Downsampling (Minification)

Will Supersampling Do Antialiasing?

512x supersampling

Antialiasing - Supersampling?

Will supersampling work?

- Yes, high quality, but costly
- When highly minified, many texels in pixel footprint
- Signal frequency too large in a pixel
- Need even higher sampling frequency

Let's understand this problem in another way

- What if we don't sample?
- Just need to get the average value within a range!

Point Query vs. (Avg.) Range Query

\bullet	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
\bullet	\bullet	\bullet	\bullet	-	-	-	\bullet	-	-	-	-			\bullet	-
-	-	\bullet	-	\bullet			-				\bullet		-		
\bullet	$\stackrel{\circ}{0}$	-	5	-										-	
\bullet	-												-		-
-	-	-	-	\bullet	-	\bullet	-	-		-					\bullet
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\bullet
-	-	\bullet	-	\bullet	-	-	\bullet	-	-	-	\bullet	\bullet	-	\bullet	-

Different Pixels -> Different-Sized Footprints

Mipmap

Allowing (fast, approx., square) range queries

Mipmap (L. Williams 83)

"Mip" comes from the Latin "multum in parvo", meaning a multitude in a small space

Level $0=128 \times 128$

Level $4=8 \times 8$

Level $1=64 \times 64$

Level $5=4 \times 4$

Level $2=32 \times 32$

Level $6=2 \times 2$

Level 3 = 16×16

Level 7 = 1x1

Mipmap (L. Williams 83)

What is the storage overhead of a mipmap?

Computing Mipmap Level D

Screen space (x, y)

Texture space (u, v)

Estimate texture footprint using texture coordinates of neighboring screen samples

Computing Mipmap Level D

$$
D=\log _{2} L \quad L=\max \left(\sqrt{\left(\frac{d u}{d x}\right)^{2}+\left(\frac{d v}{d x}\right)^{2}}, \sqrt{\left(\frac{d u}{d y}\right)^{2}+\left(\frac{d v}{d y}\right)^{2}}\right)
$$

Computing Mipmap Level D

$$
D=\log _{2} L \quad L=\max \left(\sqrt{\left(\frac{d u}{d x}\right)^{2}+\left(\frac{d v}{d x}\right)^{2}}, \sqrt{\left(\frac{d u}{d y}\right)^{2}+\left(\frac{d v}{d y}\right)^{2}}\right)
$$

Visualization of Mipmap Level

D rounded to nearest integer level

Trilinear Interpolation

Mipmap Level D
Bilinear result

Mipmap Level D+1
Bilinear result

Linear interpolation based on continuous D value

Visualization of Mipmap Level

Trilinear filtering: visualization of continuous D

Mipmap Limitations

Mipmap Limitations

Mipmap Limitations

Overblur Why?

Mipmap trilinear sampling

Anisotropic Filtering

Better than Mipmap!

Irregular Pixel Footprint in Texture

Anisotropic Filtering

Ripmaps and summed area tables

- Can look up axis-aligned rectangular zones
- Diagonal footprints still a problem

Wikipedia

Anisotropic Filtering

Ripmaps and summed area tables

- Can look up axis-aligned rectangular zones
- Diagonal footprints still a problem

EWA filtering

- Use multiple lookups
- Weighted average
- Mipmap hierarchy still helps
- Can handle irregular footprints

Wikipedia

Greene \& Heckbert '86

Thank you!

(And thank Prof. Ravi Ramamoorthi and Prof. Ren Ng for many of the slides!)

