
Introduction to Computer Graphics
GAMES101, Lingqi Yan, UC Santa Barbara

Shading 3 (Texture Mapping cont.)
Lecture 9:

http://www.cs.ucsb.edu/~lingqi/teaching/games101.html

GAMES101 Lingqi Yan, UC Santa Barbara

Announcements
• About homework

- Homework 1 is being graded

- Homework 2

- 271 submissions so far

- Homework 3 will be released soon

 2

GAMES101 Lingqi Yan, UC Santa Barbara

Last Lectures

• Shading 1 & 2

- Blinn-Phong reflectance model

- Shading models / frequencies

- Graphics Pipeline

- Texture mapping

 3

GAMES101 Lingqi Yan, UC Santa Barbara

Today

 4

• Shading 3

- Barycentric coordinates

- Texture queries

- Applications of textures

• Shadow mapping

Interpolation Across Triangles:
Barycentric Coordinates

(重⼼坐标)

GAMES101 Lingqi Yan, UC Santa Barbara

Interpolation Across Triangles

Why do we want to interpolate?

• Specify values at vertices

• Obtain smoothly varying values across triangles

What do we want to interpolate?

• Texture coordinates, colors, normal vectors, …

How do we interpolate?

• Barycentric coordinates

 6

GAMES101 Lingqi Yan, UC Santa Barbara

Barycentric Coordinates

A coordinate system for triangles

 7

↵+ � + � = 1

A

B

C

(x, y) = ↵A+ �B + � C

(↵,�, �)

(x, y)
Inside the triangle if
all three coordinates

are non-negative

GAMES101 Lingqi Yan, UC Santa Barbara

Barycentric Coordinates

What’s the barycentric coordinate of A?

 8

A

B

C

(↵,�, �) = (1, 0, 0)

(x, y) = ↵A+ �B + � C

= A

(x, y)

GAMES101 Lingqi Yan, UC Santa Barbara

Barycentric Coordinates

Geometric viewpoint — proportional areas

 9

A

B

C

↵ =
AA

AA +AB +AC

� =
AB

AA +AB +AC

� =
AC

AA +AB +AC

AAAB

AC

GAMES101 Lingqi Yan, UC Santa Barbara

Barycentric Coordinates

What’s the barycentric coordinate of the centroid?

 10

A

B

C

(x, y)

(↵,�, �) =
�
1
3 ,

1
3 ,

1
3

�

(x, y) = 1
3 A+ 1

3 B + 1
3 C

GAMES101 Lingqi Yan, UC Santa Barbara

Barycentric Coordinates: Formulas

 11

↵ =
�(x� xB)(yC � yB) + (y � yB)(xC � xB)

�(xA � xB)(yC � yB) + (yA � yB)(xC � xB)

� =
�(x� xC)(yA � yC) + (y � yC)(xA � xC)

�(xB � xC)(yA � yC) + (yB � yC)(xA � xC)

� = 1� ↵� �

A

B

C

↵+ � + � = 1

(x, y) = ↵A+ �B + � C

(x, y) = ↵A+ �B + � C

GAMES101 Lingqi Yan, UC Santa Barbara

Using Barycentric Coordinates

Linearly interpolate values at vertices

 12

VA, VB, VC can be
positions, texture
coordinates, color,
normal, depth,
material attributes…

V = ↵VA + � VB + � VC

V

VA

VB

VC

However, barycentric coordinates are not invariant under projection!

Applying Textures

GAMES101 Lingqi Yan, UC Santa Barbara

Simple Texture Mapping: Diffuse Color

 14

for each rasterized screen sample (x,y):

 (u,v) = evaluate texture coordinate at (x,y)

 texcolor = texture.sample(u,v);

 set sample’s color to texcolor;

Usually a pixel’s center

Usually the diffuse albedo Kd

(recall the Blinn-Phong reflectance model)

Using barycentric
coordinates!

Texture Magnification
(What if the texture is too small?)

GAMES101 Lingqi Yan, UC Santa Barbara

Texture Magnification - Easy Case

Generally don’t want this — insufficient texture resolution

A pixel on a texture — a texel

 16

Nearest Bilinear Bicubic

(纹理元素、纹素)

GAMES101 Lingqi Yan, UC Santa Barbara

Bilinear Interpolation

 17

Want to sample
texture value f(x,y) at
red point

Black points indicate
texture sample
locations

GAMES101 Lingqi Yan, UC Santa Barbara

Bilinear Interpolation

 18

u00

u01 u11

u10

Take 4 nearest sample
locations, with texture
values as labeled.

GAMES101 Lingqi Yan, UC Santa Barbara

Bilinear Interpolation

 19

u00

u01 u11

u10

t

s

And fractional offsets,
(s,t) as shown

GAMES101 Lingqi Yan, UC Santa Barbara

Bilinear Interpolation

 20

u00

u01 u11

u10

t

s

lerp(x, v0, v1) = v0 + x(v1 � v0)

u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

u = lerp(t, u0, u1)

Linear interpolation (1D)

GAMES101 Lingqi Yan, UC Santa Barbara

Bilinear Interpolation

 21

u00

u01 u11

u10

t

s

lerp(x, v0, v1) = v0 + x(v1 � v0)

u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

u = lerp(t, u0, u1)

Linear interpolation (1D)

Two helper lerps (horizontal)

u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

f(x, y) = lerp(t, u0, u1)

u0

u1

GAMES101 Lingqi Yan, UC Santa Barbara

Bilinear Interpolation

 22

u00

u01 u11

u10

t

s

lerp(x, v0, v1) = v0 + x(v1 � v0)

u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

u = lerp(t, u0, u1)

Linear interpolation (1D)

Two helper lerps

u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

f(x, y) = lerp(t, u0, u1)

u0

u1

Final vertical lerp, to get result:

u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

f(x, y) = lerp(t, u0, u1)

GAMES101 Lingqi Yan, UC Santa Barbara

Texture Magnification - Easy Case

Bilinear interpolation usually gives pretty good results
at reasonable costs

 23

Nearest Bilinear Bicubic

Texture Magnification (hard case)
(What if the texture is too large?)

GAMES101 Lingqi Yan, UC Santa Barbara

Point Sampling Textures — Problem

 25

Jaggies

Moire

Point sampledReference

GAMES101 Lingqi Yan, UC Santa Barbara

Screen Pixel “Footprint” in Texture

 26

upsampling
magnification

downsampling
minification

Upsampling
(Magnification)

Downsampling
(Minification)

GAMES101 Lingqi Yan, UC Santa Barbara

Will Supersampling Do Antialiasing?

 27

512x supersampling

Yes! But costly!

GAMES101 Lingqi Yan, UC Santa Barbara

Antialiasing — Supersampling？

Will supersampling work?

• Yes, high quality, but costly

• When highly minified, many texels in pixel footprint

• Signal frequency too large in a pixel

• Need even higher sampling frequency

Let’s understand this problem in another way

• What if we don’t sample?

• Just need to get the average value within a range!

 28

GAMES101 Lingqi Yan, UC Santa Barbara

Point Query vs. (Avg.) Range Query

 29

upsampling
magnification

downsampling
minification

GAMES101 Lingqi Yan, UC Santa Barbara

Different Pixels -> Different-Sized Footprints

 30

Mipmap
Allowing (fast, approx., square) range queries

GAMES101 Lingqi Yan, UC Santa Barbara

Mipmap (L. Williams 83)

 32

Level 2 = 32x32 Level 3 = 16x16

Level 4 = 8x8 Level 5 = 4x4

Level 1 = 64x64Level 0 = 128x128

Level 6 = 2x2 Level 7 = 1x1

“Mip” comes from the Latin “multum in parvo", meaning a multitude in a small space

GAMES101 Lingqi Yan, UC Santa Barbara

Mipmap (L. Williams 83)

 33

“Mip hierarchy”
level = D

u

v

What is the storage overhead of a mipmap?

D

D = 0

D = 1

D = 2

GAMES101 Lingqi Yan, UC Santa Barbara

Computing Mipmap Level D

 34

u

v

Estimate texture footprint using texture coordinates of
neighboring screen samples

Screen space (x,y) Texture space (u,v)

GAMES101 Lingqi Yan, UC Santa Barbara

Computing Mipmap Level D

 35

L

u

v
du/dx

dv/dx

D = log2 L L = max

0

@
s✓

du

dx

◆2

+

✓
dv

dx

◆2

,

s✓
du

dy

◆2

+

✓
dv

dy

◆2
1

A

(u,v)00 (u,v)10

(u,v)01

GAMES101 Lingqi Yan, UC Santa Barbara

Computing Mipmap Level D

 36

L

u

v
du/dx

dv/dxL

D = log2 L L = max

0

@
s✓

du

dx

◆2

+

✓
dv

dx

◆2

,

s✓
du

dy

◆2

+

✓
dv

dy

◆2
1

A

(u,v)00 (u,v)10

(u,v)01

GAMES101 Lingqi Yan, UC Santa Barbara

Visualization of Mipmap Level

 37

D rounded to nearest integer level

GAMES101 Lingqi Yan, UC Santa Barbara

Trilinear Interpolation

 38

Mipmap Level D Mipmap Level D+1

Bilinear result Bilinear result

Linear interpolation based on continuous D value

GAMES101 Lingqi Yan, UC Santa Barbara

Visualization of Mipmap Level

 39

Trilinear filtering: visualization of continuous D

GAMES101 Lingqi Yan, UC Santa Barbara

Mipmap Limitations

 40

Point sampling

GAMES101 Lingqi Yan, UC Santa Barbara

Mipmap Limitations

 41

Supersampling 512x (assume this is correct)

GAMES101 Lingqi Yan, UC Santa Barbara

Mipmap Limitations

 42

Mipmap trilinear sampling

Overblur
Why?

GAMES101 Lingqi Yan, UC Santa Barbara

Anisotropic Filtering

 43

Better than Mipmap!

GAMES101 Lingqi Yan, UC Santa Barbara

Irregular Pixel Footprint in Texture

 44

image space texture space

Screen space Texture space

GAMES101 Lingqi Yan, UC Santa Barbara

Anisotropic Filtering

Ripmaps and summed area tables

• Can look up axis-aligned
rectangular zones

• Diagonal footprints still a problem

 45

Wikipedia

GAMES101 Lingqi Yan, UC Santa Barbara

Anisotropic Filtering

Ripmaps and summed area tables

• Can look up axis-aligned
rectangular zones

• Diagonal footprints still a problem

EWA filtering

• Use multiple lookups

• Weighted average

• Mipmap hierarchy still helps

• Can handle irregular footprints

 46

ellipse testing can be done with one function evaluation
(this is faster than point-in-quadrilateral testing, which
requires substitution into four line equations). The func-
tion for this test is a quadratic in the texture coordinates
u and v:

Q(u,v) = Au2 + Buv+ Cv2
where u = 0, v = 0 is the center of the ellipse. This
function is an elliptical paraboloid. Points inside the
ellipse satisfy Q (u,v) < Ffor some threshold F. In texture
space the contours of Q are concentric ellipses (Figure 8),
but when mapped to screen space, they are nearly circu-
lar. Since Q is parabolic it is proportional to r2, where r is
the distance from the center of a pixel in screen space.
This radius r is just the parameter needed when indexing
a kernel, so Q can serve two purposes: inclusion testing
and kernel indexing.
The kernel f(r) is stored in a weight lookup table,

WTAB. Rather than index WTAB by r, which would
necessitate the calculation of r =V at each pixel, we
define

WTAB[Q]=f(\fQ)
so that the array can be indexed directly by Q.
Warping a lookup table for computational efficiency is

a useful trick that has been applied by others3"7 A good
kernel to use is the Gaussian f(r) = e-ar, shown in Figure
9, for which WTAB[Q] = e-aQ. The Gaussian is preferred
to the theoretically optimal sinc kernel because it decays
much more quickly. By properly scaling A, B, C, and F, the
length of the WTAB array can be controlled to minimize
quantization artifacts (several thousand entries have
proven sufficient). The parameters F and a can be tuned
to adjust the filter cutoff radius and the degree of pixel
overlap.
To evaluate Q efficiently, we employ the method of

finite differences. Since Q is quadratic, two additions
suffice to update Q from one pixel to the next? The
following pseudocode implements the EWA filter for
monochrome pictures (it is easily modified for color).
Integer variables are lowercase; floating-point variables
are uppercase.

1* Let texture[v,uJ be a 2-dimensional array holding texture *1
< Compute texture space ellipse center (UO,VO)

from screen coordinates (x,y) >

. Compute (Ux,Vx) au av and (Uy,Vy) =
ai atax, ax J ay..]

/* Now find ellipse corresponding to a circular pixel: */
A - Vx*Vx+Vy*Vy
B - -2.*(Ux*Vx+Uy*Vy)
C - UX*UX+Uy*Uy
F - Ux*Vy-Uy*Vx
F - F*F
< scale A, B, C, and F equally so that F - WTAB length >

/* Ellipse is AU2+BUV+CV2=F, where U=u-UO, V=v-VO *1

EWA(UO,VO,A,B,C,F)

begin
< Find bounding box around ellipse: ul.u.u2, vl.v.v2 >
NUM = 0.
DEN - 0.
DDQ = 2.*A
U = ul-UO
1* scan the box */
for v-vl to v2 do begin
V = v-VO
DQ = A*(2.*U+l.)+B*V /* =Q(U+I,V)-Q(U,V) *1
Q = (C*V+B*U)*V+A*U*U
for u=ul to u2 do begin

1* ignore pixel if Q out of range *1
if Q<F then begin
WEIGHT = WTAB[floor(Q)]
1* read and weight texture pixel */
NUM - NUM+WEIGHT*texture[v,u]
/* DEN is denominator (for normalization) */
DEN = DEN+WEIGHT

end
Q = Q+DQ
DQ = DQ+DDQ

end
end
return(NUM/DEN)

end

This implementation can be optimized further by re-
moving redundant calculations from the v loop and, with
proper checking, by using integer variables throughout.
The EWA filter computes the weighted average of

elliptical areas incrementally, requiring one floating-point
multiply, four floating-point adds, one integerization, and
one table lookup per texture pixel. Blinn et al.'s method,
which is the most similar to EWA, appears to have

Figure 8. Contours of elliptical paraboloid Q and box
around Q = F. Dots are centers of texture space pixels.

June 1986 25

Greene & Heckbert ‘86

Wikipedia

Thank you!
(And thank Prof. Ravi Ramamoorthi and Prof. Ren Ng for many of the slides!)

