Introduction to Computer Graphics

GAMES101, Lingqi Yan, UC Santa Barbara

Lecture 17:
 Materials and Appearances

http://www.cs.ucsb.edu/~lingqi/teaching/games101.html

Announcements

- Homework 6: 82 submissions so far (note: 1.5 weeks for it)
- New assignment on path tracing has been worked out!
- Followed the pseudocode in the last lecture as much as possible
- Will be released this Friday
- Final project ideas: to be released soon
- From today: the lectures will be much easier!

The Appearance of Natural Materials

What is Material in Computer Graphics?

3D coffee mug model

Rendered

Rendered
[From TurboSquid, created by artist 3dror]

Material $==$ BRDF

What is this material?

Diffuse / Lambertian Material (BRDF)

[Mitsuba renderer, Wenzel Jakob, 2010]

Uniform colored diffuse BRDF

Textured diffuse BRDF

Diffuse / Lambertian Material

Light is equally reflected in each output direction

Suppose the incident lighting is uniform:

$$
\begin{aligned}
L_{o}\left(\omega_{o}\right) & =\int_{H^{2}} f_{r} L_{i}\left(\omega_{i}\right) \cos \theta_{i} \mathrm{~d} \omega_{i} \\
& =f_{r} L_{i} \int_{H^{2}}\left(\omega_{i}\right) \cos \theta_{i} \mathrm{~d} \omega_{i} \\
& =\pi f_{r} L_{i}
\end{aligned}
$$

$$
f_{r}=\frac{\rho}{\pi} \quad-\text { albedo (color) }
$$

What is this material?

Glossy material (BRDF)

[Mitsuba renderer, Wenzel Jakob, 2010]

Copper

Aluminum

What is this material?

Ideal reflective / refractive material (BSDF*)

[Mitsuba renderer, Wenzel Jakob, 2010]

Air <-> water interface

Air <-> glass interface (with absorption)

Perfect Specular Reflection

[Zátonyi Sándor]

Perfect Specular Reflection

$$
\omega_{o}+\omega_{i}=2 \cos \theta \overrightarrow{\mathrm{n}}=2\left(\omega_{i} \cdot \overrightarrow{\mathrm{n}}\right) \overrightarrow{\mathrm{n}}
$$

$$
\omega_{o}=-\omega_{i}+2\left(\omega_{i} \cdot \overrightarrow{\mathrm{n}}\right) \overrightarrow{\mathrm{n}}
$$

Perfect Specular Reflection BRDF

茄

Specular Refraction

In addition to reflecting off surface, light may be transmitted through surface.

Light refracts when it enters a new medium.

Snell's Law

Transmitted angle depends on
index of refraction (IOR) for incident ray
index of refraction (IOR) for exiting ray

$$
\varphi_{t}=\varphi_{i} \pm \pi
$$

Medium	η^{\star}
Vacuum	1.0
Air (sea level)	1.00029
Water $\left(20^{\circ} \mathrm{C}\right)$	1.333
Glass	$1.5-1.6$
Diamond	2.42

* index of refraction is wavelength dependent (these are averages)
$\eta_{i} \sin \theta_{i}=\eta_{t} \sin \theta_{t}$

Law of Refraction

$$
\eta_{i} \sin \theta_{i}=\eta_{t} \sin \theta_{t}
$$

$$
\begin{aligned}
\cos \theta_{t} & =\sqrt{1-\sin ^{2} \theta_{t}} \\
& =\sqrt{1-\left(\frac{\eta_{i}}{\eta_{t}}\right)^{2} \sin ^{2} \theta_{i}} \\
& =\sqrt{1-\left(\frac{\eta_{i}}{\eta_{t}}\right)^{2}\left(1-\cos ^{2} \theta_{i}\right)}
\end{aligned}
$$

Total internal reflection:

$$
1-\left(\frac{\eta_{i}}{\eta_{t}}\right)^{2}\left(1-\cos ^{2} \theta_{i}\right)<0
$$

When light is moving from a more optically dense medium to a less optically dense medium:

$$
\frac{\eta_{i}}{\eta_{t}}>1
$$

Light incident on boundary from large enough angle will not exit medium.

Snell's Window / Circle

Total internal reflection

[Livingston and Lynch]

Fresnel Reflection／Term

（菲涅耳项）

Reflectance depends on incident angle（and polarization of light）

This example：reflectance increases with grazing angle
［Lafortune et al．1997］

Fresnel Term (Dielectric, $\eta=1.5)$

Fresnel Term (Conductor)

Fresnel Term - Formulae

Accurate: need to consider polarization

$$
\begin{aligned}
& R_{s}=\left|\frac{n_{1} \cos \theta_{i}-n_{2} \cos \theta_{i}}{n_{1} \cos \theta_{i}+n_{2} \cos \theta_{t}}\right|^{2}=\left|\frac{n_{1} \cos \theta_{i}-n_{2} \sqrt{1-\left(\frac{n_{1}}{n_{1}} \sin \theta_{i}\right)^{2}}}{n_{1} \cos \theta_{i}+n_{2} \sqrt{1-\left(\frac{n_{1}}{n_{2}} \sin \theta_{i}\right)^{2}}}\right|^{2},
\end{aligned}
$$

$$
\begin{aligned}
& R_{\mathrm{eff}}=\frac{1}{2}\left(R_{\mathrm{s}}+R_{\mathrm{p}}\right) .
\end{aligned}
$$

Approximate: Schlick's approximation

$$
\begin{aligned}
R(\theta) & =R_{0}+\left(1-R_{0}\right)(1-\cos \theta)^{5} \\
R_{0} & =\left(\frac{n_{1}-n_{2}}{n_{1}+n_{2}}\right)^{2}
\end{aligned}
$$

Microfacet Material

Microfacet Material: Motivation

Microfacet Theory

Rough surface

- Macroscale: flat \& rough
- Microscale: bumpy \& specular

Individual elements of surface act like mirrors

- Known as Microfacets
- Each microfacet has its own normal

Material

Microfacet BRDF

- Key: the distribution of microfacets' normals
- Concentrated <==> glossy

- Spread <==> diffuse

Minn

Microfacet BRDF

- What kind of microfacets reflect wi to wo? (hint: microfacets are mirrors)

Microfacet BRDF: Examples

[Autodesk Fusion 360]

Isotropic / Anisotropic Materials (BRDFs)

Inside an elevator

Isotropic / Anisotropic Materials (BRDFs)

- Key: directionality of underlying surface

Anisotropic BRDFs

Reflection depends on azimuthal angle ϕ $f_{r}\left(\theta_{i}, \phi_{i} ; \theta_{r}, \phi_{r}\right) \neq f_{r}\left(\theta_{i}, \theta_{r}, \phi_{r}-\phi_{i}\right)$

Results from oriented microstructure of surface, e.g., brushed metal

Anisotropic BRDF: Brushed Metal

- How is the pan brushed?

Anisotropic BRDF: Nylon

[Westin et al. 1992]

Anisotropic BRDF: Velvet

[Westin et al. 1992]

Anisotropic BRDF: Velvet

Properties of BRDFs

- Non-negativity

$$
f_{r}\left(\omega_{i} \rightarrow \omega_{r}\right) \geq 0
$$

- Linearity

$$
L_{r}\left(\mathrm{p}, \omega_{r}\right)=\int_{H^{2}} f_{r}\left(\mathrm{p}, \omega_{i} \rightarrow \omega_{r}\right) L_{i}\left(\mathrm{p}, \omega_{i}\right) \cos \theta_{i} \mathrm{~d} \omega_{i}
$$

Properties of BRDFs

- Reciprocity principle

- Energy conservation

$$
\forall \omega_{r} \int_{H^{2}} f_{r}\left(\omega_{i} \rightarrow \omega_{r}\right) \cos \theta_{i} \mathrm{~d} \omega_{i} \leq 1
$$

Properties of BRDFs

- Isotropic vs. anisotropic
- If isotropic, $f_{r}\left(\theta_{i}, \phi_{i} ; \theta_{r}, \phi_{r}\right)=f_{r}\left(\theta_{i}, \theta_{r}, \phi_{r}-\phi_{i}\right)$
- Then, from reciprocity,

$$
f_{r}\left(\theta_{i}, \theta_{r}, \phi_{r}-\phi_{i}\right)=f_{r}\left(\theta_{r}, \theta_{i}, \phi_{i}-\phi_{r}\right)=f_{r}\left(\theta_{i}, \theta_{r},\left|\phi_{r}-\phi_{i}\right|\right)
$$

Measuring BRDFs

Measuring BRDFs: Motivation

Avoid need to develop / derive models

- Automatically includes all of the scattering effects present

Can accurately render with real-world materials

- Useful for product design, special effects, ...

Theory vs. practice:

Image-Based BRDF Measurement

Test sample

Camera positions

[Marschner et al. 1999]

Measuring BRDFs: gonioreflectometer

Spherical gantry at UCSD

Measuring BRDFs

General approach:

```
foreach outgoing direction wo
    move light to illuminate surface with a thin beam from wo
    for each incoming direction wi
        move sensor to be at direction wi from surface
        measure incident radiance
```

Improving efficiency:

- Isotropic surfaces reduce dimensionality from 4D to 3D
- Reciprocity reduces \# of measurements by half
- Clever optical systems...

Challenges in Measuring BRDFs

- Accurate measurements at grazing angles
- Important due to Fresnel effects
- Measuring with dense enough sampling to capture high frequency specularities
- Retro-reflection
- Spatially-varying reflectance, ...

Representing Measured BRDFs

Desirable qualities

- Compact representation
- Accurate representation of measured data
- Efficient evaluation for arbitrary pairs of directions
- Good distributions available for importance sampling

Tabular Representation

Store regularly-spaced samples in $\left(\theta_{i}, \theta_{o},\left|\phi_{i}-\phi_{o}\right|\right)$

- Better: reparameterize angles to better match specularities

Generally need to resample measured values to table

Very high storage requirements

MERL BRDF Database [Matusik et al. 2004] 90 * 90 * 180 measurements

Thank you!

(And thank Prof. Ravi Ramamoorthi and Prof. Ren Ng for many of the slides!)

