
Chapter 30

DESIGNING THE LOGICAL
ARCHITECTURE WITH PATTERNS

Objectives

Design a logical architecture in terms of layers and partitions with the
Layers pattern.

Illustrate the logical architecture using UML package diagrams.

Apply the Facade, Observer and Controller patterns.

Introduction

First, to set the expectation level, this is an introduction to the topic of logical
architecture, a fairly large topic.

The prior iterations emphasized a strongly related group of "domain" software
objects' in the Design Model (such as Sale and Payment). No attention was paid
to the user interface or access to resources such as a database. The motivation
was to keep things simple and focus on core object design skills.

However, a typical system is composed of many logical packages, such as a user
interface package, a database access package, and so forth. Each package groups
a set of cohesive responsibilities (e.g., database access). This is the basic practice
of modularization to support a separation of concerns.

This chapter briefly explores logical architectures, and communication and cou-
pling between packages.

447

michaelcostanzo
Text Box
From Craig Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design, and the Unified Process. 2nd Edition.

30 - DESIGNING THE LOGICAL ARCHITECTURE WITH PATTERNS

30.1 Software Architecture

One definition of software architecture is:
An architecture is the set of significant decisions about the orga-
nization of a software system, the selection of the structural ele-
ments and their interfaces by which the system is composed,
together with their behavior as specified in the collaborations
among those elements, the composition of these structural and
behavioral elements into progressively larger subsystems, and
the architectural style that guides this organization---these ele-
ments and their interfaces, their collaborations, and their com-
position. [BRJ99]

Regardless of the definition (and there are many) the common theme in all soft-
ware architecture definitions is that it has to do with the large scale—the Big
Ideas in the forces, organization, styles, patterns, responsibilities, collabora-
tions, connections, and motivations of a system (or a system of systems), and
major subsystems.

In software development, architecture is thought of as both a noun and a verb.

As a noun, the architecture includes—as the prior definition indicates—the
organization and structure of the major elements of the system. Beyond this
static definition, it includes the system behavior, especially in terms of large
scale responsibilities of systems and subsystems, and their collaborations. In
terms of a description, the architecture includes the motivations or rationale for
why the system is designed the way it is.

As a verb, architecture is part investigation and part design work; for clarity,
the term is best qualified, as in architectural investigation or architectural
design.

Architectural investigation involves identifying those functional and (espe-
cially) non-functional requirements that have (or should have) a significant
impact on the system design, such as market trends, performance, cost, main-
tainability, and points of evolution. Broadly, it is requirements analysis with a
focus on those requirements that have special influence on the major system
design decisions.

Architectural design is the resolution of these forces and requirements in the
design of the software, the hardware and networking, operations, policies, and
so forth.

In the UP, architectural investigation and design are together called architec-
tural analysis, the process of which is briefly introduced in Chapter 32.

448

SOFTWARE ARCHITECTURE

Architectural Dimensions and Views in the Unified Process

The architecture of a system encompasses several dimensions. For example:

The logical architecture, which describes the system in terms of its conceptual
organization in layers, packages, major frameworks, classes, interfaces, and

subsystems.

The deployment architecture, which describes the system in terms of the
allocation of processes to processing units, and the network configuration.

The Unified Process suggests six views of the architecture (logical, deployment,
and so on), all of which are defined in Chapter 32.

This chapter focuses on a logical view of the architecture.

Architectural Patterns and Pattern Categories

There are well-known best practices in architectural design, especially regard-
ing large-scale logical architecture, and these have been written as patterns,
such as Layers. The first book dedicated to the subject of architectural patterns
was Pattern-Oriented Software Architecture (POSA) [BMRSS96].

The POSA book also offered a simple, useful categorization of patterns at differ-
ent levels:

1. Architectural patterns—related to the large-scale and
coarse-grained
design, and typically applied during the early iterations (the elaboration
phase) when the major structures and connections are established.

ο The Layers patterns, which structures a system into major layers.

2. Design patterns—related to the small and medium-scale design of
objects
and frameworks. Applicable to designing a solution for connecting the large
scale elements defined via architectural patterns, and during
detailed
design work for any local design aspect. Also known as micro-architectural
patterns.

ο The Facade pattern, which can be used to provide the interface
from one layer to the next.

ο The Strategy pattern, to allow pluggable algorithms.

3. Idioms—language or implementation-oriented low-level design solutions.

ο The Singleton pattern, to ensure global access to a single instance
of a class.

449

30 - DESIGNING THE LOGICAL ARCHITECTURE WITH PATTERNS

This chapter focuses on architectural patterns and the application of design
patterns to make connections between the large-scale structures.

There are other pattern categories. The POSA categories form a neat triad,
and are useful for many patterns, but do not cover the entire gamut of published
patterns. As the risk of oversimplification, a pattern is the repeating best prac-
tice of what works—in any domain. Other published categories of patterns
include:

� organizational and software development process patterns

� user interface patterns

� testing patterns

30.2 Architectural Pattern: Layers

Solution The essential ideas of the Layers pattern [BMRSS96] are simple:

� Organize the large-scale logical structure of a system into discrete layers of
distinct, related responsibilities, with a clean, cohesive separation of con-
cerns such that the "lower" layers are low-level and general services, and the
higher layers are more application specific.

� Collaboration and coupling is from higher to lower layers; lower-to-higher
layer coupling is avoided.

A layer is a large-scale element, often composed of several packages or sub-
systems.

The Layers pattern relates to the logical architecture; that is, it describes the
conceptual organization of the design elements into groups, independent of their
physical packaging or deployment.

Layers defines a general N-tier model for the logical architecture; it produces a
layered architecture. It has been applied and written about so often as a pat-
tern that the Pattern Almanac 2000 [Rising00] lists over 100 patterns that are
variants of or related to the Layers pattern.

� Source code changes are rippling throughout the system—many parts of the
systems are highly coupled.

� Application logic is intertwined with the user interface, and so can not be
reused with a different interface, nor distributed to another processing node.

� Potentially general technical services or business logic is intertwined with
more application-specific logic, and so can not be reused, distributed to
another node, or easily replaced with a different implementation.

450

Problems

ARCHITECTURAL PATTERN: LAYERS

• There is high coupling across different areas of concern (as suggested in the
previous problems). It is thus difficult to divide the work along clear bound
aries for different developers.

• Due to the high coupling and mixing of concerns, it is laborious and costly to
evolve the application's functionality, scale up the system, or update it to use
new technologies.

Example The purpose and number of layers varies across applications and application
domains (information systems, operating systems, and so forth. Applied to infor-
mation systems, typical layers are illustrated and explained in Figure 30.1.

Presentation
(AKA Interface, UI, View)

Application
(AKA Workflow, Process,
Mediation, App Controller)

Domain(s)
(AKA Business,

Business Services, Model)

Technical Services
(AKA Technical Infrastructure,
High-level Technical Services)

Foundation
(AKA Core Services, Base Services,

Low-level Technical Services/Infrastructure)

width implies range of applicability

y GUI windows
y reports
y speech interface
y HTML, XML, XSLT, JSP, Javascript, ...

y handles presentation layer requests
y workflow
y session state
y window/page transitions
y consolidation/transformation of disparate

data for presentation

y handles application layer requests
y implementation of domain rules
y domain services (POS, Inventory)

- services may be used by just one
application, but there is also the possibility
of multi-application services

y (relatively) high-level technical services
and frameworks

y Persistence, Security

y low-level technical services, utilities,
and frameworks

y data structures, threads, math,
file, DB, and network I/O

more
app

specific

de
pe

nd
en

cy

Business Infrastructure
(AKA Low-level Business Services)

y very general low-level business services
used in many business domains

y CurrencyConverter

451

452 30 - DESIGNING THE LOGICAL ARCHITECTURE WITH PATTERNS

Figure 30.1 Common layers in an information system logical architecture.1

Based on these archetypes, Figure 30.2 illustrates a partial logical layered
architecture for the NextGen application.

Figure 30.2 Partial logical view of layers in the NextGen application.

UML notation—Package diagrams are used to illustrate the layers. In the UML,
a layer is simply a package.

1. The width of the package is used to communicate range of applicability in this dia-
gram, but this is not a general UML practice. AKA means also known as.

Log4J

Technical Services

Domain

Presentation

Pricing

PricingStrategy
Factory

Text

ProcessSale
Console

used in quick
experiments

Persistence

DBFacade

«interface»
ISalePricingStrategy

Taxes

«interface»
ITaxCalculatorAdapter

Services
Factory

Sales

Register Sale

Swing

ProcessSale
Frame

Payments

CreditPayment
«interface»

ICreditAuthorization
ServiceAdapter

ServiceAccess

Inventory

«interface»
IInventoryAdapter

Jess

A general
purpose third-
party rules
engine.

POSRuleEngine

POSRuleEngineFacade

SOAP

not the Java
Swing libraries, but
our GUI classes
based on Swing

ARCHITECTURAL PATTERN: LAYERS

Note the absence of an Application layer for this iteration of the design; as dis-
cussed later, it is not always necessary.

Since this is iterative development, it is normal to create a design of layers that
starts simple, and evolves over the iterations of the elaboration phase. One goal
of this phase is to have the core architecture established (designed and imple-
mented) by the end of the iterations in elaboration, but this does not mean doing
a large up-front speculative architectural design before starting to program.
Rather, a tentative logical architecture is designed in the early iterations, and it
evolves incrementally through the elaboration phase.

Observe that just a few sample types are present in this package diagram; this
is not only motivated by limited page space in formatting this book, but is a sig-
nature quality of an architectural view diagram—it only shows a few note-
worthy elements in order to concisely convey the major ideas of the
architecturally significant aspects. The idea in a UP architectural view docu-
ment is to say to the reader, "I've chosen this small set of instructive elements to
convey the big ideas."

Diagram Comments:
� There are other types in these packages; only a few are shown to indicate

noteworthy aspects.
� The Foundation layer was not shown in this view; the architect (me) decided

it did not add interesting information, even though the development team
will certainly be adding some Foundation classes, such as more advanced
String manipulation utilities.

� For now, a separate Application layer is not used. The responsibilities of con-
trol or session objects in the Application layer are handled by the Register
object. The architect will add an Application layer in a later iteration as the
behavior grows in complexity, and alternative client interfaces are intro-
duced (such as a web browser and wireless networked handheld PDA).

Inter-Layer and Inter-Package Coupling

It is also informative to include a diagram in the logical view that illustrates
noteworthy coupling between the layers and packages. A partial example is
illustrated in Figure 30.3.

453

30 - DESIGNING THE LOGICAL ARCHITECTURE WITH PATTERNS

Figure 30.3 Partial coupling between packages.

UML notation:
Observe that dependency lines can be used to communicate coupling
between packages or types in packages. Plain dependency lines are excellent

when the communicator does not care to be more specific on the exact
dependency (attribute visibility, subclassing, ...), but just wants to highlight
general dependencies.

Note also the use of a dependency line emitting from a package rather than a
particular type, such as from the Sales package to POSRuleEngineFacade

class, and the Domain package to the Log4J package. This is useful when
either the specific dependent type is not interesting, or the communicator

454

Log4J

Technical Services

Domain

Presentation

Pricing

Persistence

DBFacade

Taxes

«interface»
ITaxCalculatorAdapter

Services
Factory

Sales

Register Sale

Swing

ProcessSale
Frame

Payments

CreditPayment
«interface»

ICreditAuthorization
ServiceAdapter

ServiceAccess

Inventory

«interface»
IInventoryAdapter

Jess

POSRuleEngine

POSRuleEngineFacade

SOAP

ARCHITECTURAL PATTERN: LAYERS

wants to suggest that many elements of the package may share that
dependency.

Another common use of a package diagram is to hide the specific types, and
focus on illustrating the package-package coupling, as in the partial diagram of
Figure 30.4.

Log4J

Technical Services

Domain

Presentation

JessPersistence

POSRuleEngine

Inventory

PaymentsServiceAccess

PricingSales

TextSwing

SOAP

Figure 30.4 Partial package coupling.

In fact, Figure 30.4 illustrates probably the most common style of logical archi-
tecture diagram in the UML—a package diagram that shows between perhaps 5
to 20 major packages, and their dependencies.

Inter-Layer and Inter-Package Interaction Scenarios

Package diagrams show static information. To understand the dynamics of how
objects across the layers connect and communicate, an interaction diagram is
informative. In the spirit of an "architectural view" which hides uninteresting
details, and emphasizes what the architect wants to convey, an interaction dia-

455

30 - DESIGNING THE LOGICAL ARCHITECTURE WITH PATTERNS

gram in the logical view of the architecture focuses on the collaborations as they
cross layer and package boundaries. A set of interaction diagrams that illustrate
architecturally significant scenarios (in the sense that they illustrate many
aspects of the large-scale or big ideas in the design) is thus useful.

For example, Figure 30.5 illustrates part of a Process Sale scenario that empha-
sizes the connection points across the layers and packages.

: Domain::
Sales::

Register
:Cashier

: Presentation::
Swing::
Process

SaleFrame

enterItem
(id, qty)

«singleton»
: Tech-

Services::
Persistence::
Persistence-

Facade

spec :=
getProduct
Spec(id)

x := isInvalid
(lineItem, sale)

spec := getObject(...,id)

«singleton»
: Domain::
POSRule-
Engine::

POSRule-
Engine
Facade

enterItem
(id, qty)

s :
Domain::

Sales::
Sale

: Domain::
Products::

Product
Catalog

makeLineItem(spec, qty)

«subsystem»
: Tech-

Services
::Jess

someJessCalls(lineItem, sale)

Points of crossing interesting boundaries or layers. These are especially noteworthy for people who need to
understand the system, and thus are highlighted in this diagram. This diagram supports communicating the
logical view of the architecture (a UP term) because it emphasizes architecturally significant information.

UML notation: Note that a subsytem can be modeled as an object in the UML.

This is useful in this case where I don't know or want to describe the details of how the
Jess rule engine works, but just want to show collaboration with it.

UML notation: UML path
name to indicate packaging

onPropertyEvent(s, "sale.total", total)

PropertyListener

Figure 30.5 An architecturally significant interaction diagram that emphasizes
cross-boundary connections.

UML notation:

� The package of a type can optionally be shown by qualifying the type with
the UML path name expression <PackageName>::<TypeName>. For exam-

456

ARCHITECTURAL PATTERN: LAYERS

ple, Domain::Sales::Register. This can be exploited to highlight to the reader
the inter-package and inter-layer connections in the interaction diagram.

� Note also the use of the «subsystem» stereotype. In the UML, a subsystem
is a discrete entity that has behavior and interfaces. A subsystem can be
modeled as a special kind of package, or—as shown here—as an object,
which is useful when one wants to show inter-subsystem (or system)
collaborations. In the UML, the entire system is also a "subsystem" (the
root one), and thus can also be shown as an object in interaction
diagrams (such as an SSD).

Observe that the diagram ignores showing some messages, such as certain Sale
collaborations, in order to highlight architecturally significant interactions.

Collaborations Two design decisions at an architectural level are:

1. What are the big parts?

2. How are they connected?

Whereas the architectural Layers pattern guides defining the big parts,
micro-architectural design patterns such as Facade, Controller, and Observer
are commonly used for the design of the connections between layers and
packages. This section examines patterns in connection and communication
between layers and packages.

Simple Packages vs. Subsystems

Some packages or layers are not just conceptual groups of things, but are true
subsystems with behavior and interfaces. To contrast:

� The Pricing package is not a subsystem; it simply groups the factory and
strategies used in pricing. Likewise with Foundation packages such as
java.util.

� On the other hand, the Persistence, POSRuleEngine, and Jess packages
are subsystems. They are discrete engines with cohesive responsibilities
that do work.

In the UML, a subsystem can be identified with a stereotype, as in Figure 30.6.

Facade

For packages that represent subsystems, the most common pattern of access is
Facade, a GoF design pattern. That is, a public facade object defines the services
for the subsystem, and clients collaborate with the facade, not internal sub-
system components. This is true of the POSRuleEngineFacade and the
PersistcnceFacade for access to the rules engine and persistence subsystem.

The facade should not normally expose many low-level operations. Rather, it is
desirable for the facade to expose a small number of high-level operations—the
coarse-grained services. When a facade does expose many low-level operations,

457

458

30 - DESIGNING THE LOGICAL ARCHITECTURE WITH PATTERNS

it tends to become incohesive. Furthermore, if the facade will be, or might
become, a distributed or remote object (such as an EJB session bean, or RMI
server object), fine-grained services lead to remote communication performance
problems—lots of little remote calls are a performance bottleneck in distributed
systems.

«subsystem»
Persistence

DBFacade «subsystem»
Jess

«subsystem»
POSRuleEngine

POSRuleEngineFacade
Pricing

not a subsystem

Figure 30.6 Subsystem stereotypes.

Also, a facade does not normally do its own work. Rather, it is consolidator or
mediator to the underlying subsystem objects, which do the work.

For example, the POSRuleEngineFacade is the wrapper and single point of
access into the rules engine for the POS application. Other packages do not see
the implementation of this subsystem, as it is hidden behind the facade. Sup-
pose (this is just one of many implementations) that the POS rules engine sub-
system is implemented by collaborating with the Jess rules engine. Jess is a
subsystem which exposes many fine-grained operations (this is common for very
general, third-party subsystems). But the POSRuleEngineFacade does not
expose the low level Jess operations in its interface. Rather, it provides only a
few high-level operation such as isInvalid(lineltem, sale).
If the application has only a "small" number of system operations, then it is com-
mon for the Application or Domain layer to expose only one object to an upper
layer. On the other hand, the Technical Services layer, which contains several
subsystems, exposes at least one facade (or several public objects, if facades
aren't used) for each subsystem to upper layers. See Figure 30.7.

Session Facades and the Application Layer

In contrast to Figure 30.7, when an application has many system operations and
supports many use cases, it is common to have more than one object mediating
between the Presentation and Domain layers.

ARCHITECTURAL PATTERN:. LAYERS

In the current version of the NextGen system, there is a simple design of a sin-
gle Register object acting as the facade onto the Domain layer (by virtue of the
GRASP controller pattern).

Log4J

Technical Services

Domain

Presentation

Persistence

DBFacade

Sales

Register Sale

Swing

ProcessSale
Frame

Jess SOAP

for applications with only a few system
operations, perhaps only one object acts as the
facade into the layer

The Technical Services layer
typically exposes many
interfaces--at least one per
subsystem

Figure 30.7 Number of interfaces exposed to upper layers.

However, as the system grows to handle many use cases and system operations,
it is not uncommon to introduce an Application layer of objects that maintain
session state for the operations of a use case, where each session instance repre-
sents a session with one client. These are called Session Facades, and their use
is another recommendation of the GRASP Controller pattern, such as in the
use-case session facade controller variant of the pattern. See Figure 30.8 for an
example of how the NextGen architecture may evolve with an Application layer
and session facades.

Controller

The GRASP Controller pattern describes common choices in client-side handlers
(or controllers, as they've been called) for system operation requests emitting
from the Presentation layer. Figure 30.9 illustrates.

459

460 30 - DESIGNING THE LOGICAL ARCHITECTURE WITH PATTERNS

Figure 30.9 The Controller choices.

Application

Domain

Presentation

Sales

Register Sale

Swing

ProcessSale
Frame

Application session
facade objects that
maintain session
state and control
workflow related to
some work--often
by use case.

ProcessSale
SessionFacade

ProcessRental
SessionFacade

HandleReturns
SessionFacade

ProcessRental
Frame...

Rentals

Rental ...

Figure 30.8 Session facades and an Application Layer.

Application

Domain

Presentation

Swing

ProcessSale
Frame

GRASP Controller
pattern suggests
these common
choices of objects
to handle system
operation requests.

...

...

...Register

makeNewSale
enterItem
...

ProcessSale
SessionFacade

makeNewSale
enterItem
...

OR

Figure 30.9 The Controller choices

ARCHITECTURAL PATTERN: LAYERS

System Operations and Layers

The SSDs illustrate the system operations, hiding presentation objects from the
diagram. The system operations being invoked on the system in Figure 30.10
are requests being generated by an actor via the Presentation layer, onto the
Application or Domain layer.

Domain

Presentation

Swing

ProcessSale
Frame...

... Register

makeNewSale()
enterItem()
...

: Cashier

makeNewSale()
enterItem()
endSale()

makeNewSale()
enterItem()
endSale()

enterItem(id, quantity)

:System
: Cashier

endSale()

description, total
* [more items]

makeNewSale()

the system operations handled by the system in an SSD represent the
operation calls on the Application or Domain layer from the Presentation layer

Figure 30.10 System operations in the SSDs and in terms of layers.

Upward Collaboration with Observer

The Facade pattern is commonly used for "downward" collaboration from a
higher to a lower layer, or for access to services in another subsystem of the
same layer. When the lower Application or Domain layer needs to communicate
upward with the Presentation layer, it is usually via the Observer pattern. That
is, UI objects in the higher Presentation layer implement an interface such as
Property Listener or AlarmListener, and are subscribers or listeners to events
(such as property or alarm events) coming from objects in the lower layers. The
lower layer objects are directly sending messages to the upper layer UI objects,
but the coupling is only to the objects viewed as things that implement an inter-
face such as PropertyListener, not viewed as specific GUI windows.

This was examined when the Observer pattern was introduced. Figure 30.11
summarizes the idea in relation to layers.

461

462

Figure 30.11 Observer for "upward" communication to the Presentation layer.

Relaxed Layered Coupling

The layers in most layered architectures are not coupled in the same limited
sense as a network protocol based on the OSI 7-Layer Model. In the protocol
model, there is strict restriction that elements of layer N only access the services
of the immediate lower layer N-l.

This is rarely followed in information system architectures. Rather, the stan-
dard is a "relaxed layered" or "transparent layered" architecture IBMRSS96], in
which elements of a layer collaborate with or are coupled to several other layers.

Comments on typical coupling between layers:

� All higher layers have dependencies on the Technical Services and Founda
tions layer.

ο For example, in Java all layers depend onjava.util package
elements.

� It is primarily the Domain layer that has dependency on the Business Infra
structure layer.

: Domain::
Sales::

Register
:Cashier

: Presentation::
Swing::
Process

SaleFrame

enterItem
(id, qty)

...

enterItem
(id, qty)

s :
Domain::
Sales::
Sale

makeLineItem(spec, qty)

Collaboration from the lower layers to the Presentation layer is usually via the Observer (Publish-Subscribe
pattern. The Sale object has registered subscribers that are PropertyListeners. One happens to be a Swing
GUI JFrame, but the Sale does not know this object as a GUI JFrame, but only as a PropertyListener.

onPropertyEvent(s, "sale.total", total)

PropertyListener

...

30 - DESIGNING THE LOGICAL ARCHITECTURE WITH PATTERNS

ARCHITECTURAL PATTERN: LAYERS

� The Presentation layer makes calls on the Application layer, which makes
service calls on the Domain layer; the Presentation layer does not call on the
Domain, unless there is no Application layer.

� If it is a single-process "desktop" application, software objects in the Domain
layer are directly visible to, or passed between, Presentation, Application, and
to a lesser extent, Technical Services.

ο For example, assuming the NextGen POS system is of this type, a Sale
and a Payment object could be directly visible to the GUI Presentation
Layer, and also passed into the Persistence subsystem in the Technical
Services layer.

� On the other hand, if it is a distributed system, then serializable replicates (also
known as data holder or value objects) of objects in the Domain layer are
usually passed to a Presentation layer. In this case, the Domain layer is
deployed on a server computer, and client nodes get copies of server data.

Isn't Coupling to Technical Service and Foundation Layers Dangerous?

As the GRASP Protected Variations and Low Coupling discussions explored, it
is not coupling per se that is a problem, but unnecessary coupling to variation
and evolution points that are unstable and expensive to fix. There is very little
justification in spending time and money attempting to abstract or hide some-
thing that is unlikely to change, or if it did, the change impact cost would be
negligible. For example, if building a Java technologies application, what value
is there in hiding the application from access to the Java libraries? High cou-
pling into many points of the libraries is an unlikely problem, as they are (rela-
tively) stable and ubiquitous.

Discussion In addition to the structural and collaboration issues discussed above for
this pattern, other issues include the following.

External Resources or External Database Layer at the Bottom?

Most systems rely on external resources or services, such as an Oracle database
and a Novell LDAP naming and directory service. These are physical implemen-
tation components, not a layer in the logical view of the architecture.

Showing external resources such as a particular database in a layer "below" the
Foundation layer (for example) mixes up the logical view and the deployment or
implementation views of the architecture.

Rather, in terms of the logical view of the architecture and its layers, access to a
particular set of persistent data (such as inventory data) can be viewed as a
sub-domain of the Domain Layer—the Inventory subdomain. And the general
services that provide access to databases may be viewed as a Technical Service
partition—the Persistence service. See Figure 30.12.

463

30 - DESIGNING THE LOGICAL ARCHITECTURE WITH PATTERNS

30 .12 M ix ing v i ews o f t he a rch i t ec tu re .

Logical vs. Process and Deployment Views of the Architecture

The architectural layers are a logical view of the architecture, not a deployment
view of elements to processes and processing nodes. Depending on the platform,
all layers could be deployed within the same process on the same node, such as
an application within a handheld PDA, or spread across many computers and
processes for a large-scale web application.

The UP Deployment Model that maps this logical architecture to processes and
nodes is strongly influenced by the choice of software and hardware platform
and associated application frameworks. For example, J2EE versus .NET influ-
ence the deployment architecture.

There are many ways to slice and dice these logical layers for deployment, and
in general the subject of deployment architecture will only be lightly introduced,
as it is non-trivial, largely outside the scope of the book, and dependent on
detailed discussion of the chosen software platform, such as J2EE.

Optional Application Layer?

If present, the Application layer contains objects responsible for knowing the
session state of clients, mediating between the Presentation and Domain layers,
and controlling the flow of work.

464

Domain(s)

Technical
Services

Foundation

Inventory

Persistence Naming and
Directory Services

Web
AppFramework

Technical Services

POS Inventory

Domain(s)

Foundation

Worse
mixes logical and implementation
views

Better
a logical view

a logical representation
of the need for data or
services related to these
subdomains, abstracting
implementation
decisions such as a
database.

Novell
LDAP

UML notation: A UML component, or physical part of the system.

UML notation: A physical database in the UML.

ARCHITECTURAL PATTERN: LAYERS

The flow may be organized by controlling the order of windows or web pages, for
example.
In terms of the GRASP patterns, GRASP Controller objects such as a use case
facade controller are part of this layer. In distributed systems, components such
as EJB session beans (and stateful session objects in general) are part of this
layer.

In some applications, this layer is not required. It is useful (this is not an
exhaustive list) when one or more of the following is true:

Multiple user interfaces (for example, web pages and a Swing GUI) will be
used for the system. The Application layer objects can act as Adapters that

collect and consolidate the data as needed for different UIs, and as Facades
that wrap and hide access to the Domain layer.

It is a distributed system and the Domain layer is on a different node than the
Presentation layer, and shared by multiple clients. It is usually necessary to

keep track of session state, and Application layer objects are a useful choice
for this responsibility.

The Domain Layer can not or should not maintain session state.

There is a defined workflow in terms of the controlled order of windows or
web pages that must be presented.

Fuzzy Set Membership in Different Layers

Some elements are strongly a member of one layer; a Math class is part of the
Foundation layer. However, especially between the Technical Services and Foun-
dation layers, and Domain and Business Infrastructure, some elements are
harder to classify, because the differentiation between these layers is, roughly,
"high" versus "low," or "specific" versus "general." which are fuzzy set terms.
This is normal, and it is seldom necessary to decide upon a definitive categoriza-
tion—the development team may consider an element roughly part of the Tech-
nical Services and/or Foundations layer considered as a group, broadly called
the Infrastructure layer.2

For example:

� Suppose this is a Java technologies project, and the open source logging
framework Log4J (part of the Jakarta project) has been chosen. Is
logging part of the Technical Service or Foundation layer? Log4J is a
low-level, small, general framework. It is moderately a member of both
the Technical Services and the Foundations fuzzy sets.

2. Note that there are not well-established naming conventions for layers, and name
overloading and contradiction in the architecture literature is common.

465

30 - DESIGNING THE LOGICAL ARCHITECTURE WITH PATTERNS

� Suppose this is a web application, and the Jakarta Struts framework for web
applications has been chosen. Struts is a relatively high-level, large, specific
technical framework. It is arguably strongly a member of the Technical Ser-
vices set, and weakly a member of the Foundation set.

But, one person's High-level Technical Service is another's Foundation...

Finally, it is not the case that the libraries provided by a software platform only
represent low-level Foundation services. For example, in both .NET and
J2SE+J2EE, services include relatively high-level functions such as naming and
directory services.

Terminology: Tiers, Layers, and Partitions

The original notion of a tier in architecture was a logical layer, not a physical
node, but the word has become widely used to mean a physical processing node
(or cluster of nodes), such as the "client tier" (the client computer). This presen-
tation will avoid the term for clarity, but bear this in mind when reading archi-
tecture literature.

The layers of an architecture are said to represent the vertical slices, while
partitions represent a horizontal division of relatively parallel subsystems of a
layer. For example, the Services layer may be divided into partitions such as
Security and Reporting (Figure 30.13).

Contraindications
and Liabilities

Figure 30.13 Layers and partitions.

� In some contexts, adding layers introduces performance problems. For
example, in a high-performance graphics-intensive game adding layers of
abstraction and indirection on top of direct access to graphics card compo-
nents may introduce performance problems.

� The Layers pattern is one of several core architectural patterns; it is not
applicable to every problem. For example, an alternate is Pipes and
Filters [BMRSS96]. This is useful when the main theme of the application
involves processing something through a series transformations, such
as image

466

Persistence Security Web
AppFramework

Technical Services

POS Inventory Tax

Domain

Vertical Layers

Horizontal Partitions

ARCHITECTURAL PATTERN: LAYERS

transformations, and the ordering of the transformations is changeable. Yet
even in the case when the highest level architectural pattern is Pipes and
Filters, individual pipes or filters can be design with Layers.

Benefits

� In general, there is a separation of concerns, a separation of high from
low-level services, and of application-specific from general services. This
reduces coupling and dependencies, improves cohesion, increases reuse
potential, and increases clarity.

� Related complexity is encapsulated and decomposable.

� Some layers can be replaced with new implementations. This is
generally not possible for lower-level Technical Service or
Foundation layers (e.g., java.util), but may be possible for
Presentation, Application, and Domain
layers.

� Lower layers contain reusable functions.

� Some layers (primarily the Domain and Technical Services) can
be distributed.

� Development by teams is aided because of the logical segmentation.

implementation Implementing the Layers: People and Process

It is common and recommended, within an iteration, to have a developer special-
ize within one layer or one service.

Yet, it is not the case that the entire project team focuses on one layer or service
in an iteration. Rather, it is more common to implement vertical slices across
the layers. This is the UP approach in the elaboration phase: Choose scenarios
and requirements that force, in each iteration, a broad coverage across many
architecturally significant packages/layers/subsystems, in order to reveal and
stabilize the major architectural elements in the early iterations.

However, in this book, this approach was not illustrated in the NextGen case
study, because to do so would require early discussion across many and vast top-
ics—from GUI programming to object-relational mapping and optimizing SQL
statements. The book case study has focused on the design of Domain layer
objects, while recognizing that in reality there would be parallel work going on
to develop other layers and subsystems.

The design principles illustrated for the case study are applicable in virtually all
layers of the design.

Implementation View: Mapping Source Code Organization to
Layers and Packages

Part of the UP Implementation Model is the organization of the source code. For
languages such as Java or C#, which provide easy package (namespace) support,
the mapping from the logical packaging to the implementation packaging is sim-

467

468

30 - DESIGNING THE LOGICAL ARCHITECTURE WITH PATTERNS

ilar, with notable exceptions when third-party libraries are used.3 In fact, it is
only in the early stages of development, when packages have been speculatively
drawn, but not implemented, that there are meaningful differences.

Over time, as the code base grows, it is common to abandon the early specula-
tive drawings (such as the ones we have just seen), and instead use a
reverse-engineering UML CASE tool that reads the source code and generates a
package diagram. Then, these automatically generated package diagrams, which
accurately reflect the code (the real design) become the basis for the logical view
of the architecture.

To use Java as an example for mapping to implementation packages, the layers
and packages illustrated in Figure 30.4 might map to Java package names as
follows:
//---- PRESENTATION

com.foo.nextgen.ui.swing
com.foo.nextgen.ui.text

//---- DOMAIN

// packages relatively specific to the NextGen project
com.foo.nextgen.domain.sales com.foo.nextgen.domain.pricing
com.foo.nextgen.domain.serviceaccess
com.foo.nextgen.domain.posruleengine

// packages that can easily be designed as
// multi-application common business services

com.foo.domain.inventory
com.foo.domain.creditpayment

// --- TECHNICAL SERVICES

// our team creates
com.foo.service.persistencelite

// third party
org.apache.log4j
org.apache.soap.rpc
jess

// --- FOUNDATION

// our team creates
com.foo.util
com.foo.stringutil

Notice that an effort has been made to avoid using a specific application quali-
fier ("nextgen") in the package names unless necessary. For example, the UI

3. C++ also supports namespaces, but it is awkward to use the language with dozens or
hundreds of fine-grained namespaces; not so for Java or C#.

ARCHITECTURAL PATTERN: LAYERS

packages are related to the NextGen application, and so are qualified with the
application name com.foo.nextgen.ui.*.

To support reuse, one practice is to name elements in an application-indepen-
dent manner, when appropriate. As a straightforward example, general purpose
String utilities created by the NextGen team, are placed in com.foo.stringutils,
not com.foo.nextgen.stringutils. Furthermore, com.foo.stringutils should be
placed in the company's source code repository at a company level, rather than
buried within the NextGen project's source code folders. You can't reuse it if you
can't see it.

As another example, consider the services to access external third-party inven-
tory and credit payment authorization systems. Although they were created by
the NextGen team in the service of the NextGen POS project, they are general
business services—one could imagine accessing inventory systems from within
other applications; so too for credit payment authorization. Hence,
com.foo.domain.inventory rather than com.foo.nextgen.domain.inventory.

On the other hand, the POSRuleEngine package is completely related to the
NextGen POS project. Thus, com.foo.nextgen.domain.posruleengine.

If in doubt, qualify the package with the project name. It can always be
refac-tored at a later date.

Known Uses A vast number of modern object-oriented systems (from desktop applications to
distributed J2EE web systems) are developed with Layers; it might be harder to
find one that is not, than is. Going farther back in history:

Virtual Machines and Operating Systems

Starting in the 1960s, operating system architects advocated the design of oper-
ating systems in terms of clearly defined layers, where the "lower" layers encap-
sulated access to the physical resources and provided process and I/O services,
and higher layers called on these services. These included Multics [CV65] and
the THE system [Dijkstra68].

Earlier still—in the 1950s—researchers su ggested the idea of a virtual machine
(VM) with a bytecode universal machine language (for example, UNCOL
[Conwayl958]), so that applications could be written at higher layers in the
architecture (and executed without recompilation across different platforms), on
top of the virtual machine layer, which in turn would sit on top of the operating
system and machine resources. A VM layered architecture was applied by Alan
Kay in his landmark Flex object-oriented based personal computer system
[Kay68] and later (1972) by Kay and Dan Ingalls in the influential Smalltalk
virtual machine [GK76]—the progenitor of more recent VMs such as the Java
Virtual Machine.

469

470

30 - DESIGNING THE LOGICAL ARCHITECTURE WITH PATTERNS

Information Systems: The Classic Three-Tier Architecture

An early influential description of a layered architecture for information sys-
tems that included a user interface and persistent storage of data was known as
a three-tier architecture (Figure 30.14), described in the 1970s in [TK78].
The phrase did not achieve popularity until the mid 1990s, in part due to its pro-
motion in [Gartner95] as a solution to problems associated with the widespread
use of two-tier architectures.

The original term is now less common, but its motivation is still relevant. A

classic description of the vertical tiers in a three-tier architecture is:

1. Interface—windows, reports, and so on.

2. Application Logic—tasks and rules that govern the process.

3. Storage—persistent storage mechanism.

Calculate taxes

Interface

Application
Logic

Authorize
payments

Storage
Database

Figure 30.14 Classic view of a three-tier architecture.

The singular quality of a three-tier architecture is the separation of the applica-
tion logic into a distinct logical middle tier of software. The interface tier is rela-
tively free of application processing; windows or web pages forward task
requests to the middle tier. The middle tier communicates with the back-end
storage layer.

There was some misunderstanding that the original description implied or
required a physical deployment on three computers, but the intended descrip-
tion was purely logical; the allocation of the tiers to compute nodes could vary
from one to three. See Figure 30.15.

THE MODEL-VIEW SEPARATION PRINCIPLE

Related Patterns

Figure 30.15 A three-tier logical division deployed in two physical architectures.

The three-tier architecture was contrasted by the Gartner Group with a
two-tier design, in which, for example, application logic is placed within window
definitions, which read and write directly to a database; there is no middle tier
that separates out the application logic. Two-tier client-server architectures
became especially popular with the rise of tools such as Visual Basic and
PowerBuilder.

Two-tier designs have (in some cases) the advantage of initial quick develop-
ment, but can suffer the complaints covered in the Problems section. Neverthe-
less, there are applications that are primarily simple CRUD (create, retrieve,
update, delete) data intensive systems, for which this is a suitable choice.

� Indirection—layers can add a level indirection to lower-level services.

� Protected Variation—layers can protect against the impact of varying
implementations.

� Low Coupling and High Cohesion—layers strongly support these goals.

� Its application specifically to object-oriented information
systems is described in [Fowler96].

Also Known As Layered Architecture [Shaw96, Gemstone00]

30.3 The Model-View Separation Principle

This principle has been discussed several times; this section summarizes it.

What kind of visibility should other packages have to the Presentation layer?

471

calculate
taxes

Application
Logic

Interface

calculate
taxes

Application
Logic

Interface

classic 3-tier architecture deployed
on 2 nodes: "thicker client"

classic 3-tier architecture
deployed on 3 nodes: "thiner client"

UML notation:
a node. This is
a processing
resource such
as a computer.

30 - DESIGNING THE LOGICAL ARCHITECTURE WITH PATTERNS

How should non-window classes communicate with windows? It is desirable
that there is no direct coupling from other components to window objects
because the windows are related to a particular application, while (ideally) the
non-windowing components may be reused in new applications or attached to a
new interface. The is the Model-View Separation principle.

In this context, model is a synonym for the Domain layer of objects. View is a
synonym for presentation objects, such as windows, applets and reports.

The Model-View Separation principle4 states that model (domain) objects
should not have direct knowledge of view (presentation) objects, at least as view
objects. So, for example, a Register or Sale object should not directly send a mes-
sage to a GUI window object ProcessSaleFrame, asking it to display something,
change color, close, and so forth.

As previously discussed, a legitimate relaxation of this principle is the Observer
pattern, where the domain objects send messages to UI objects viewed only in
terms of an interface such as PropertyListener or AlarmListener.
A further part of this principle is that the domain classes encapsulate the infor-
mation and behavior related to application logic. The window classes are rela-
tively thin; they are responsible for input and output, and catching GUI events,
but do not maintain data or directly provide application functionality.

The motivation for Model-View Separation includes:

� To support cohesive model definitions that focus on the domain
processes, rather than on user interfaces.

� To allow separate development of the model and user interface
layers.

� To minimize the impact of requirements changes in the interface
upon the domain layer.

� To allow new views to be easily connected to an existing domain
layer, without affecting the domain layer.

� To allow multiple simultaneous views on the same model
object, such as both a tabular and business chart view of sales
information.

� To allow execution of the model layer independent of the user
interface layer, such as in a message-processing or batch-mode
system.

� To allow easy porting of the model layer to another user
interface framework.

472

4. This is a key principle in the pattern Model-View-Controller (MVC). MVC was
originally a small-scale Smalltalk-80 pattern, and related data objects (models), GUI
widgets (views), and mouse and keyboard event handlers (controllers). More recently,
the term "MVC" has been coopted by the distributed design community to also apply
on a large-scale architectural level. The Model is the Domain Layer, the View is the
Presentation Layer, and the Controllers are the workflow objects in the Application
layer.

THE MODEL-VIEW SEPARATION PRINCIPLE

Model-View Separation and "Upward" Communication

How can windows obtain information to display? Usually, it is sufficient for
them to send messages to domain objects, querying for information which they
then display in widgets—a polling or pull-from-above model of display
updates.

Figure 30.16 A Presentation layer UIFacade is occasionally used for
push-from-below designs.

However, a polling model is sometimes insufficient. For example, polling every
second across thousands of objects to discover only one or two changes, which
are then used to refresh a GUI display, is not efficient. In this case it is more effi-
cient for the few changing domain objects to communicate with windows to
cause a display update as the state of domain objects changes. Typical situations
of this case include:

� Monitoring applications, such as telecommunications network management.

� Simulation applications which require visualization, such as aerodynamics
modeling.

In these situations, a push-from-below model of display update is required.
Because of the restriction of the Model-View Separation pattern, this leads to
the need for "indirect" communication from lower objects up to windows—push-
ing up notification to update from below.

There are two common solutions:

1. The Observer pattern, via making the GUI object simply appear as an object
that implements an interface such as PropertyListener.

2. A Presentation facade object. That is, adding a facade within the Presenta
tion layer that receives requests from below. This is an example of adding
Indirection to provide Protected Variation if the GUI changes. For example,
see Figure 30.16.

473

Domain

Presentation

Register Sale

ProcessSale
Frame

UIFacade

UIFacades are
occasionally used when
a push-from-below
communication model
is required.

Not a Swing or GUI class.
Just a plain object which
adds a level of indirection to
the GUI objects

30 - DESIGNING THE LOGICAL ARCHITECTURE WITH PATTERNS

30.4 Further Readings

There's a wealth of literature on layered architectures, both in print and on the
Web. A series of patterns in Pattern Languages of Program Design, volume 1,
[CS95] first address the topic in pattern form, although layered architectures
have been used and written about since at least the 1960s; volume 2 continues
with further layers-related patterns. Pattern-Oriented Software Architecture vol-
ume 1 [BMRSS96] provides a good treatment of the Layers pattern.

474

Chapter 31

ORGANIZING THE

DESIGN AND IMPLEMENTATION

MODEL PACKAGES

If you were plowing a field, which would you
rather use? Two strong oxen or 1024 chickens?

— Seymour Cray

Objectives

Organize packages to reduce the impact of changes.

Know alternative UML package structure notation.

Introduction

If some package X is widely depended upon by the development team, it is unde-
sirable for X to be very unstable (going through many new versions), since it
increases the impact on the team in terms of constant version re-synchroniza-
tion and fixing dependent software that breaks in response to changes in X (ver-
sion thrashing).

This sounds and is obvious, but sometimes a team does not pay attention to
identifying and stabilizing the most depended-upon packages, and ends up expe-
riencing more version thrashing than necessary.

This chapter builds on the previous chapter's introduction to layers and pack-
ages, by suggesting more fine-grained heuristics for the organization of pack-
ages, to reduce these kinds of change impact. The goal is to create a robust
physical package design.

475

31 - ORGANIZING THE DESIGN AND IMPLEMENTATION MODEL PACKAGES

One feels the pain of fragile dependency-sensitive package organization much
more quickly in C++ than in Java because of the hyper-sensitive compile and
link dependencies in C++; a change in one class can have a strong transitive
dependency impact leading to recompilation of many classes, and re-linking.1

Therefore, these suggestions are especially helpful for C++ projects, and moder-
ately so for Java, Smalltalk, or C# (as examples) projects.

The useful work of Robert Martin [Martin95], who has grappled with physical
design and packaging of C++ applications, influenced some of the following
guidelines.

Source Code Physical Design in the Implementation Model

This issue is an aspect of physical design-the UP Implementation Model for
source code packaging.

While simply diagramming a package design on a whiteboard or CASE tool, we
can arbitrarily place types in any functionally cohesive package without impact.
But during source code physical design—the organization of types into physical
units of release as Java or C++ "packages"—our choices will influence the degree
of developer impact when changes in those packages occur, if there are many
developers sharing a common code base.

31.1 Package Organization Guidelines

Guideline: Package Functionally Cohesive Vertical and Horizontal
Slices

The basic "intuitive" principle is modularization based on functional cohesion—
types are grouped together that are strongly related in terms of their participa-
tion in a common purpose, service, collaborations, policy, and function. For
example, all the types in the NextGen Pricing package are related to product
pricing. The layers and packages in the NextGen design are organized by func-
tional groups.

In addition to the usually sufficient informal guesswork on grouping by function
("I think class SalesLineltem belongs in Sales") another clue to functional group-
ing is a cluster of types with strong internal coupling and weaker extra-cluster
coupling. For example, Register has a strong coupling to Sale, which has a
strong coupling to SalesLineltem.

1. In C++ the packages may be realized as namespaces, but more likely it means the
organization of the source code into separate physical directories—one for each
"package."

476

PACKAGE ORGANIZATION GUIDELINES

Internal package coupling, or relational cohesion, can be quantified, although
such formal analysis is rarely of practical necessity. For the curious, one mea-
sure is:

Where NumberOflnternalRelations includes attribute and parameter relations,
inheritance, and interface implementations between types in the package.

A package of 6 types with 12 internal relations has RC=2. A package of 6 types
with 3 intra-type relations has RC=0.5. Higher numbers suggest more cohesion
or relatedness for the package.

Note that this measure is less applicable to packages of mostly interfaces; it is
most useful for packages that contain some implementation classes.

A very low RC value suggests either:

� The package contains unrelated things and is not factored well.

� The package contains unrelated things and the designer deliberately does
not care. This is common with utility packages of disparate services (e.g.,
java.util), where high or low RC is not important.

� It contains one or more subset clusters with high RC, but overall does not.

Guideline: Package a Family of Interfaces

Place a family of functionally related interfaces in a separate package—separate
from implementation classes. This is not primarily for the case of one or two
related interfaces, but rather when there is a family of perhaps three or more
interfaces. The Java technologies EJB package javax.ejb is an example: It is a
package of at least twelve interfaces; implementations are in separate packages.

Guideline: Package by Work and by Clusters of Unstable Classes

The context for this discussion is that packages are usually the basic unit of
development work and of release. It is less common to work on and release just
one class.

Suppose 1) there is an existing large package P1 with thirty classes, and 2)
there is a work trend that a particular subset often classes (Cl through C10) is
regularly modified and re-released.

In this case, refactor P1 into Pl-a and Pl-b, where Pl-b contains the ten fre-
quently worked on classes.

Thus, the package has been refactored into more stable and less stable subsets,
or more generally, into groups related to work. That is, if most types in a pack-
age are worked on together, then it is a useful grouping.

477

478 31 - ORGANIZING THE DESIGN AND IMPLEMENTATION MODEL PACKAGES

Ideally, fewer developers have a dependency on Pl-b than on Pl-a, and by fac-
toring out this unstable part to a separate package, not as many developers are
affected by new releases of Pl-b as by re-releasing the larger original package
P1.

Note that this refactoring is in reaction to an emerging work trend. It is difficult
to speculatively identify a good package structure in very early iterations. It
incrementally evolves over the elaboration iterations, and it should be a goal of
the elaboration phase (because it is architecturally significant) to have the
majority of the package structure stabilized by elaboration completion.

This guideline illustrates the basic strategy: Reduce widespread depen-
dency on unstable packages.

Guideline: Most Responsible Are Most Stable

If the most responsible (depended-on) packages are unstable, there is a greater
chance of widespread change dependency impact. As an extreme case, if a
widely used utility package such as com.foo.util changed frequently, many
things could break. Therefore, Figure 31.1 illustrates an appropriate depen-
dency structure.

Figure 31.1 More responsible packages should be more stable.

Visually, the lower packages in this diagram should be the most stable. There
are different ways to increase stability in a package:

Less Stable:
-more dependent
-concrete, detailed

More Stable:
-less dependent
-concrete, detailed code is stabilized
 due to refinement or mandate.
-abstract classes &
 interfaces & facades

com.foo.util

com.foo.nextgen.
domain.posruleengine

com.foo.nextgen.
ui.swing

com.foo.nextgen.
domain.sales

The more depended-on packages should be the most stable,
because when they do change, they could have the largest
impact

com.foo.nextgen.
domain.payments

PACKAGE ORGANIZATION GUIDELINES

� It contains only or mostly interfaces and abstract classes.

o For example, java.sql contains eight interfaces and six classes, and
the classes are mostly simple, stable types such as Time and Date.

� It has no dependencies on other packages (it is independent), or it depends
on other very stable packages, or it encapsulates its dependencies such that
dependents are not affected.

o For example, com.foo.nextgen.domain.posruleengine hides its rule
engine implementation behind a single facade object. Even if the
implementation changes, dependent packages are not affected.

� It contains relatively stable code because it was well-exercised and refined
before release.

o For example, java.util.

� It is mandated to have a slow change schedule

o For example, java.lang, the core package in the Java libraries, is
simply not allowed to change frequently.

Guideline: Factor out Independent Types

Organize types that can be used independently or in different contexts into sep-
arate packages. Without careful consideration, grouping by common functional-
ity may not provide the right level of granularity in the factoring of packages.

For example, suppose that a subsystem for persistence services has been defined
in one package com.foo.seruice.persistence. In this package are two very general
utility/helper classes JDBCUtililities and SQLCommand. If these are general
utilities for working with JDBC (Java's services for relational database access),
then they can be used independently of the persistence subsystem, for any occa-
sion when the developer is using JDBC. Therefore, it is better to migrate these
types into a separate package, such as com.foo.util.jdbc. Figure 31.2 illustrates.

Figure 31.2 Factoring out independent types.

479

worse better

SQLCommandJDBCUtilties

DBFacade

Schema
Mapping ...

com.foo.service.persistence

DBFacade

Schema
Mapping ...

com.foo.service.persistence

SQLCommandJDBCUtilties

com.foo.util.jdbc

480

31 - ORGANIZING THE DESIGN AND IMPLEMENTATION MODEL PACKAGES

Guideline: Use Factories to Reduce Dependency on Concrete
Packages

One way to increase package stability is to reduce its dependency on concrete
classes in other packages. Figure 31.3 illustrates the "before" situation.

 // in some methods of Register and PaymentMapper
CreditPayment pmt = new CreditPayment();

Persistence

Payment
Mapper

Payments

CreditPayment

Sales

Register

Figure 31.3 Direct coupling to concrete package due to creation.

Suppose that both Register and PaymentMapper (a class that maps payment
objects to/from a relational database) create instances of CreditPayment from
package Payments. One mechanism to increase the long-term stability of the
Sales and Persistence packages is to stop explicitly creating concrete classes
defined in other packages (CreditPayment in Payments).
We can reduce the coupling to this concrete package by using a factory object
that creates the instances, but whose create methods return objects declared in
terms of interfaces rather than classes. See Figure 31.4.

Domain Object Factory Pattern

The use of domain object factories with interfaces for the creation of all domain
objects is a common design idiom. I have seen it mentioned informally in design
literature as the Domain Object Factory pattern, but do not know of a reference
to it formally written as a pattern.

Guideline: No Cycles in Packages

If a group of packages have cyclic dependency then they may need to be treated
as one larger package in terms of a release unit. This is undesirable because
releasing larger packages (or package aggregates) increases the likelihood of
affecting something.

 // in some methods of Register and PaymentMapper
ICreditPayment pmt = DomainObjectFactory.getInstance().getNewCreditPayment();

Persistence

Payment
Mapper

Payments

CreditPayment

Sales

Register

DomainObjectCreation

DomainObjectFactory

getNewCreditPayment() : ICreditPayment
getNewProductCatalog() :
IProductCatalog
...

«interface»
ICreditPayment

setCreditAccount(...
)
...

«interface»
IProductCatalog

getProductSpecification(...)
...

Products

Product
Catalog

Figure 31.4 Reduced coupling to a concrete package by using a factory object

worse better

A...

... B

A...

... B

«interface»
IB

Figure 31.5 Breaking a cyclic dependency.

There are two solutions:

1. Factor out the types participating in the cycle into a new smaller package.

2. Break the cycle with an interface.

481

PACKAGE ORGANIZATION GUIDELINES

31 - ORGANIZING THE DESIGN AND IMPLEMENTATION MODEL PACKAGES

The steps to break the cycle with an interface are:

1. Redefine the depended-on classes in one of the packages to implement new
interfaces.

2. Define the new interfaces in a new package.

3. Redefine the dependent types to depend on the interfaces in the new pack
age, rather than the original classes.

Figure 31.5 illustrates this strategy.

31.2 More UML Package Notation

Finally, while on the subject of packages, the UML provides alternate notation
to illustrate outer and inner packages. Sometimes it is awkward to draw an
outer package box around inner packages. Alternatives are shown in Figure
31.6.

Domain::
Sales

Presentation::
Text

Presentation::
Swing

Technical Services::
Jess

Domain::
POSRuleEngine

Sales

TextSwing

Jess

POSRuleEngine

Presentatio
n

Technical
Services

Domain

Log4J

Figure 31.6 Alternate UML approaches to showing packages structure, using
UML path names, or the circle-cross symbol.

482

FURTHER READINGS

31.3 Further Readings

Most of the detailed work—not surprisingly—on improving package design to
reduce dependency impact comes from the C++ community, although the princi-
ples apply to other languages. Martin's Designing Object-Oriented C++ Applica-
tions Using the Booch Method [Martin95] provides good coverage, as does
Large-Scale C++ Software Design [Lakos96]. The subject is also introduced in
Java 2 Performance and Idiom Guide [GL99].

483

Chapter 32

INTRODUCTION

TO ARCHITECTURAL ANALYSIS

AND THE SAD

Error, no keyboard - press F1 to continue,

—early PC BIOS message

Objectives

Create architectural factor tables.

Create technical memos that record architectural decisions.

Know basic principles of architectural design.

Know resources for learning architectural patterns.

Introduction

The essence of architectural analysis is to identify factors which should influ-
ence the architecture, understand their variability and priority, and resolve
them. The difficult part is knowing what questions to ask, weighing the trade-
offs, and knowing the many ways to resolve an architecturally significant factor,
ranging from benign neglect, to fancy designs, to third-party products.

In the UP, the architectural factors are recorded in the Supplementary Specifi-
cation, and the architectural decisions that resolve them are recorded in the
Software Architecture Document (SAD, described in more detail near the
end of this chapter).

Architectural analysis starts early, during the inception phase, and is a focus of
the elaboration phase; it is a high-priority and very influential activity in soft-

485

32 - INTRODUCTION TO ARCHITECTURAL ANALYSIS AND THE SAD

ware development. The topic was deferred until this point of the book so that
fundamentals of OOA/D could be first presented. It is a useful activity to:

reduce the risk of missing something centrally important in the design of
the systems

avoid applying excessive effort to low priority issues help

align the product with business goals

This chapter is an introduction to basic steps and ideas in architectural
analysis from a UP perspective; that is, to the method, rather than to tips and
tricks of master architects. Thus, it is not a cookbook of architectural
solutions—a large and context-dependent subject that is beyond the scope of
this introductory book. Nevertheless, the NextGen POS case study comments in
the chapter do provide concrete examples of architectural solutions.

32.1 Architectural Analysis

Architectural analysis is concerned with the identification and resolution of
the system's non-functional (for example, quality) requirements, in the context
of the functional requirements.

In the UP, the term encompasses both architectural investigation (identifica-
tion) and architectural design (resolution). Here are some examples of the many
issues to be identified and resolved at an architectural level:

� How do reliability and fault-tolerance requirements affect the design?

ο For example, in the NextGen POS, for what remote services (e.g.,
tax calculator) will fail-over to local services be allowed? Why? Do
they provide exactly the same services locally as remotely, or are
there differences?

� How do the licensing costs of purchased subcomponents affect
profitability?

ο For example, the producer of the excellent database server, Clue-
less, wants 2% of each NextGen POS sale, if their product is used as
a subcomponent. Using their product will speed development (and
time to market) because it is robust and provides many services,
and many developers know it, but at a price. Should the team
instead use the less robust, open source YourSQL database server?
At what risk? How does it restrict the ability to charge for the
NextGen product?

� How does distribution of services affect the quality requirements and
functional requirements?

ο For example, using a remote (single, centralized) tax calculator
reduces the footprint of each NextGen client, reduces licensing
fees (only one copy is needed), and minimizes the custom configu-

486

ARCHITECTURAL ANALYSIS

ration effort (each installation requires weekly adjustment due to
changing government and business policies). However, the remote
service reduces response time sufficiently that taxes can only be
calculated once, after all line items have been entered; one cannot
see a running total with taxes after each line item entry; and the
remote call takes too long. It also creates a single point of failure.

� How do the adaptability and configurability requirements affect the design?

ο For example, most retailers have variations in business rules they
want represented in their POS applications. What are the varia-
tions? What is the "best" way to design for them? What is the crite-
ria for best? Can NextGen make more money by requiring
customized programming for each customer (and how much effort
will that be?), or with a solution that allows the customer to add
the customization easily themselves? Should "more money" be the
goal in the short-run?

Common Steps in Architectural Analysis

There are several methods of architectural analysis. Common to most of these is
some variation of the following steps:

1. Identify and analyze the non-functional requirements that have an impact
on the architecture. Functional requirements are also relevant (especially in
terms of variability or change), but the non-functional are given thorough
attention. In general, all these may be called architectural factors (also
known as the architectural drivers).

ο This step could be characterized as regular requirements analysis,
but since it is done in the context of identifying architectural
impact and deciding high-level architectural solutions, it is considered
a part of architectural analysis in the UP.

ο In terms of the UP, some of these requirements will be roughly
identified and recorded in the Supplementary Specification or use
cases during inception. During architectural analysis, which
occurs in early elaboration, the team investigates these requirements
more closely.

2. For those requirements with a significant architectural impact, analyze
alternatives and create solutions that resolve the impact. These are archi
tectural decisions.

ο Decisions range from "remove the requirement," to a custom solution,
to "stop the project," to "hire an expert."

This presentation introduces these basic steps in the context of the NextGen
POS case study. For simplicity, it avoids architectural deployment issues such as
the hardware and operating system configuration, which are very context and
time sensitive.

487

32 - INTRODUCTION TO ARCHITECTURAL ANALYSIS AND THE SAD

32.2 Types and Views of Architecture

Some descriptions of architecture define different types, such as the "application
architecture" (allocation of features to components) or "system architecture"
(hardware and operating system configuration).

In the UP, there is a similar specialization of information, but these are
described in "views" of the architecture, which summarize and emphasize a par-
ticular perspective. For example, the logical view of the architecture, which
was introduced in Chapter 30, summarizes the organization and functionality of
the major software elements (such as the layers)—it is similar to the term appli-
cation architecture. The deployment view summarizes the system topology,
communications, and mapping of executable elements to processing nodes—it is
similar to the term system architecture.

The UP defines six views of the architecture, which are described in detail near
the end of this chapter. Concretely, the views combine text and diagrams, and—
if described at all—are recorded in the SAD.

Architectural analysis is related to the architectural views because the architec-
tural decisions are reflected in, and described in, one or more architectural
views.

32.3 The Science: Identification and Analysis of Architectural
Factors

488

Architectural Factors

Any and all of the FURPS+ requirements may have a significant influence on
the architecture of a system, ranging from reliability, to schedule, to skills, and
to cost constraints. For example, a case of tight schedule with limited skills and
sufficient money probably favors buying or outsourcing to specialists, rather
than building all components in-house.

However, the factors with the strongest architectural influence tend to be within
the high-level FURPS+ categories of functionality, reliability, performance,
sup-portability, implementation, and interface (see Chapter 5 for a detailed
breakdown). Interestingly, it is usually the non-functional quality attributes
(such as reliability or performance) that give a particular architecture its unique
flavor, rather than its functional requirements. For example, the design in the
Next-Gen system to support different third-party components with unique
interfaces, and the design to support easily plugging in different sets of
business rules.

In the UP, these factors with architectural implications are called architectur-
ally significant requirements. "Factors" is used here for brevity.

THE SCIENCE: IDENTIFICATION AND ANALYSIS OF ARCHITECTURAL FACTORS

Many technical and organizational factors can be characterized as constraints
that restrict the solution in some way (such as, must run on Linux, or, the bud-
get for purchasing third-party components is X).

Quality Scenarios

When defining quality requirements during architectural factor analysis, qual-
ity scenarios1 are recommended, as they define measurable (or at least observ-
able) responses, and thus can be verified. It is not much use to vaguely state
"the system will be easy to modify" without some measure of what that means.

Quantifying some things, such as performance goals and mean time between
failure, are well known practices, but quality scenarios extend this idea and
encourages recording all (or at least, most) factors as measurable statements.

Quality scenarios are short statements of the form <stimulus> <measurable
response>; for example:

� When the completed sale is sent to the remote tax calculator to add the
taxes, the result is returned within 2 seconds "most" of the time, measured
in a production environment under "average" load conditions.

� When a bug report arrives from a NextGen beta test volunteer, reply with a
phone call within 1 working day.

Note that "most" and "average" will need further investigation and definition by
the NextGen architect; a quality scenario is not really valid until it is testable,
which implies fully specified. Also, observe the qualification in the first quality
scenario in terms of the environment to which it applies. It does little good to
specify a quality scenario, verify that it passes in a lightly loaded development
environment, but fail to evaluate it in a realistic production environment.

Pick Your Battles

A caution: Writing these quality scenarios can be a mirage of usefulness. It's
easy to write these detailed specifications, but not to realize them. Will anyone
ever really test them? How and by whom? A strong dose of realism is required
when writing these; there's no point in listing many sophisticated goals if no one
will ever really follow through on testing them.

There is a relationship here to the "pick your battles" discussion that was pre-
sented in an earlier chapter on the Protected Variations pattern. What are the
really critical make-or-break quality scenarios? For example, in an airline reser-
vation system, consistently fast transaction completion under very high load
conditions is truly critical to the success of the system—it must definitely
be

1. A term used in various architectural methods promoted by the Software Engineering
Institute (SEI); for example, in the Architecture Based Design method.

489

32 - INTRODUCTION TO ARCHITECTURAL ANALYSIS AND THE SAD

tested. In the NextGen system, the application really must be fault-tolerant and
fail over to local replicated services when the remote ones fail—it must defi-
nitely be properly tested and validated. Therefore, focus on writing quality sce-
narios for the important battles, and follow through with a plan for their
evaluation.

Describing Factors

One important goal of architectural analysis is to understand the influence of
the factors, their priorities, and their variability (immediate need for flexibility
and future evolution). Therefore, most architectural methods (for example, see
[HNS00]) advocate creating a table or tree with variations of the following infor-
mation (the format varies depending on the method). The following style shown
in Table 32.1 is called a factor table, which in the UP is part of the Supplemen-
tary Specification.

Factor Measures and
quality scenarios

Variability (current flexibility and future evolu-
tion)

Impact of factor (and its vari-
ability) on stakeholders,
architecture and other factors

Prior-
ity for
Suc-
cess

Diffi-
culty
or
Risk

Reliability — Recoverability
Recovery from
remote service
failure

When a remote ser-
vice fails, reestablish
connectivity with it
within 1 minute of its
detected re-avail-
ability, under normal
store load in a pro-
duction environment.

current flexibility - our SME says local
client-side simplified services are acceptable
(and desirable) until reconnection is possible.
evolution - within 2 years, some retailers may
be willing to pay for full local replication of
remote services (such as the tax calculator).
Probability? High.

High impact on the
large-scale design.
Retailers really dislike it when
remote services fail, as it pre-
vents or restricts them from
using a POS to make sales.

H M

Table 32.1 Sample factor table. Legend: H-high. M-medium. SME-subject
matter expert.

Notice the categorization scheme: Reliability— Recoverability (from the FURPS+
categories). This isn't presented as the best or only scheme, but it is useful to
group architectural factors into categories. For example, certain categories (such
as reliability and performance) strongly relate to identifying and defining test
plans, and thus it is useful to group them.

The basic priority and risk code values of H/M/L are simply suggestive of using
some codes the team finds useful; there are a variety of coding schemes
(numeric and qualitative) from different architectural methods and standards
(such as ISO 9126). A caution: If the extra effort of using a more complex scheme
does not lead to any practical action, it isn't worthwhile.

490

EXAMPLE: PARTIAL NEXTGEN POS ARCHITECTURAL FACTOR TABLE

Factors and UP Artifacts

The central functional requirements repository in the UP are the use cases, and they,
along with the Vision and Supplementary Specification, are an important source of
inspiration when creating a factor table. In the use cases, the Special Requirements,
Technology Variations, and Open Issues should be reviewed, and their implied or
explicit architectural factors consolidated in the Supplementary Specification.

It is reasonable to at first record use-case related factors with the use case during its
creation, because of the obvious relationship, but it is ultimately more convenient
(in terms of content management, tracking, and readability) to consolidate all the
architectural factors in one location—in the factor table in the Supplementary
Specification.

Use Case UC1: Process Sale

Main Success Scenario:
1. ...
Special Requirements:
- Credit authorization response within 30 seconds 90% of the time.
- Somehow, we want robust recovery when access to remote services such the inven

tory system is failing.

Technology and Data Variations List:
2a. Item identifier entered by bar code laser scanner (if bar code is present) or keyboard.

Open Issues:
- What are the tax law variations?
- Explore the remote service recovery issue.

32.4 Example: Partial NextGen POS Architectural Factor Table

The partial factor table in Table 32.2 shows some factors related to later discussion.

491

32 - INTRODUCTION TO ARCHITECTURAL ANALYSIS AND THE SAD

Factor Measures and
quality scenarios

Variability (current flexibility and future evolu-
tion)

Impact of factor (and its vari-
ability) on stakeholders,
architecture and other factors

Priority
for
Suc-
cess

Diffi-
culty
or
Risk

Reliability —
Rec
Recovery from
remote service
failure

coverability
When a remote ser-
vice fails, reestablish
connectivity with it
within 1 minute of its
detected re-avail-
ability, under normal
store load in a pro-
duction environment.

current flexibility - our SME says local
client-side simplified services are acceptable
(and desirable) until reconnection is possible.
evolution - within 2 years, some retailers may
be willing to pay for full local replication of
remote services (such as the tax calculator).
Probability? High.

High impact on the
large-scale design.
Retailers really dislike it when
remote services fail, as it pre-
vents them from using a POS
to make sales.

H M

Recovery from
remote product
database failure

as above current flexibility - our SME says local
client-side use of cached "most common"
product info is acceptable (and desirable) until
reconnection is possible.
evolution - within 3 years, client-side mass
storage and replication solutions will be cheap
and effective, allowing permanent complete
replication and thus local usage. Probability?
High.

as above H M

Supportability - Adaptability
Support many
third-party ser-
vices (tax cal-
culator,
inventory, HR,
accounting).
They will vary at
each installation.

When a new
third-party system
must be integrated, it
can be, and within
10 person days of
effort.

current flexibility - as described by factor
evolution - none

Required for product accep-
tance. Small impact on
design.

H L

Support wireless
PDA terminals
for the POS
client?

When support is
added, it does not
require a change to
the design of the
non-UI layers of the
architecture.

current flexibility - not required at present
evolution - within 3 years, we think the proba-
bility is very high that wireless "PDA" POS cli-
ents will be desired by the market.

High design impact in terms
of protected variation from
many elements. For example,
the operating systems and
Uls are different on small
devices.

L H

Other - Legal
Current tax
rules must be
applied.

When the auditor
evaluates
conform-ance, 100%
con-formance will be
found.
When tax rules
change, they will be
operational within
the period allowed
by government.

current flexibility - conformance is inflexible,
but tax rules can change almost weekly
because of the many rules and levels of gov-
ernment taxation (national, state, ...)
evolution - none

Failure to comply is a criminal
offense.
Impacts tax calculation ser-
vices.
Difficult to write our own ser-
vice-complex rules, constant
change, need to track all
levels of government.
But, easy/low risk if buy a
package.

H L

Table 32.2 Partial factor table for the NextGen architectural analysis.

492

THE ART: RESOLUTION OF ARCHITECTURAL FACTORS

32.5 The Art: Resolution of Architectural Factors

One could say the science of architecture is the collection and organization of
information about the architectural factors, as in the factor table. The art of
architecture is making skillful choices to resolve these factors, in light of trade-
offs, interdependencies, and priorities.

Adept architects have knowledge in a variety of areas (for example, architec-
tural styles and patterns, technologies, products, pitfalls, and trends) and apply
this to their decisions.

Recording Architectural Alternatives, Decisions, and Motivation

Ignoring for now principles of architectural decision-making, virtually all archi-
tectural methods recommend keeping a record of alternative solutions, deci-
sions, influential factors, and motivations for the noteworthy issues and
decisions.

Such records have been called technical memos [Cunningham96J, issue
cards [HNS00], and architectural approach documents (SEI architectural
proposals), with varying degrees of formality and sophistication. In some meth-
ods, these memos are the basis for yet another step of review and refinement.

In the UP, the memos should be recorded in the SAD.

An important aspect of the technical memo is the motivation or rationale. When
a future developer or architect needs to modify the system,2 it is immensely
helpful to understand the motivations behind the design, such as why a particu-
lar approach to recovery from remote service failure in the NextGen POS was
chosen and others rejected, in order to make informed decisions about changing
the system.

Explaining the rationale of rejecting the alternatives is important, as during
future product evolution, an architect may reconsider these alternatives, or at
least want to know what alternatives were considered, and why one was chosen.

A sample technical memo follows that records an architectural decision for the
NextGen POS. The exact format is, of course, not important. Keep it simple and
just record information that will help the future reader make an informed deci-
sion when changing the system.

2. Or when four weeks have passed and the original architect has forgotten their own
rationale!

493

32 - INTRODUCTION TO ARCHITECTURAL ANALYSIS AND THE SAD

Technical Memo Issue:
Reliability—Recovery from Remote Service Failure

Solution Summary: Location transparency using service lookup, failover from remote
to local, and local service partial replication.

Factors

� Robust recovery from remote service failure (e.g., tax calculator, inventory)

� Robust recovery from remote product (e.g., descriptions and prices) database failure

Solution

Achieve protected variation with respect to location of services using an Adapter created in a
Services-Factory. Where possible, offer local implementations of remote services, usually with simplified
or constrained behavior. For example, the local tax calculator will use constant tax rates. The local
product information database will be a small cache of the most common products. Inventory updates
will be stored and forwarded at reconnection.
See also the Adaptability—Third-Party Services technical memo for the adaptability aspects of this solu-
tions, because remote service implementations will vary at each installation.
To satisfy the quality scenarios of reconnection with the remote services ASAP, use smart Proxy objects
for the services, that on each service call test for remote service reactivation, and redirect to them when
possible.

Motivation

Retailers really don't want to stop making sales! Therefore, if the NextGen POS offers this level of reliabil-
ity and recovery, it will be a very attractive product, as none of our competitors provide this capability. The
small product cache is motivated by very limited client-side resources. The real third-party tax calculator
is not replicated on the client primarily because of the higher licensing costs, and configuration efforts (as
each calculator installation requires almost weekly adjustments). This design also supports the evolution
point of future customers willing and able to permanently replicate services such as the tax calculator to
each client terminal.

Unresolved Issues

none

Alternatives Considered

A "gold level" quality of service agreement with remote credit authorization services to improve reliability.
It was available, but much too expensive.

494

Note as illustrated in this example—and this is a key point—that an architec-
tural decision described in one technical memo may resolve a group of factors,
not only one.

Priorities

There is a hierarchy of goals that guides architectural decisions:

1. Inflexible constraints, including safety and legal compliance,
o The NextGen POS must correctly apply tax policies.

THE ART: RESOLUTION OF ARCHITECTURAL FACTORS

2. Business goals.
ο Demo of noteworthy features ready for the POSWorld trade show in

Hamburg in 18 months.

ο Has qualities and features attractive to department stores in
Europe (for example, multi-currency support and customizable
business rules).

3. All other goals
ο These can often be traced back to directly stated business goals,

but are indirect. For example, "easily extendible: can add <some
unit of functionality> in 10 person weeks" could trace to a business
goal of "new release every six months."

In the UP, many of these goals are recorded in the Vision artifact. Mind that the
Priority for Success scores in the factor table should reflect the priority of these
goals.
There is a distinguishing aspect of decision-making at this level vs. small-scale
object design: one has to simultaneously consider more (and often globally influ-
ential) goals and their trade-offs. Furthermore, the business goals become cen-
tral to the technical decisions (or at least they should). For example:

Technical Memo Issue: Legal—Tax
Rule Compliance

Solution Summary: Purchase a tax calculator component.

Factors

� Current tax rules must be applied, by law.

Solution

Purchase a tax calculator with a licensing agreement to receive ongoing tax rule updates. Note that different
calculators may be used at different installations.

Motivation

Time-to-market, correctness, low maintenance requirements, and happy developers (see alternatives).
These products are costly, which affects our cost-containment and product pricing business goals, but the
alternative is considered unacceptable.

Unresolved Issues

What are the leading products and their qualities?

Alternatives Considered

Build one by the NextGen team? It is estimated to take too long, be error prone, and create an ongoing
costly and uninteresting (to the company's developers) maintenance responsibility, which affects the goal
of "happy developers" (surely, the most important goal of all).

495

32 - INTRODUCTION TO ARCHITECTURAL ANALYSIS AND THE SAD

Priorities and Evolution Points: Under- and Over-engineering

Another distinguishing feature of architectural decision-making is prioritization by
probability of evolution points—points of variability or change that may arise in the
future. For example, in NextGen, there is a chance that wireless handheld client
terminals will become desirable. Designing for this has a significant impact because of
differences in operating systems, user interface, hardware resources, and so forth.

The company could spend a huge amount of money (and increase a variety of risks) to
achieve this "future proofing." If it turns out in the future that this was not relevant,
doing it would be a very expensive exercise in over-engineering. Note also that future
proofing is arguably rarely perfect, since it is speculation; even if the predicted change
occurs, some change in the speculated design is likely.

On the other hand, future proofing against the Y2K date problem would have been
money very well spent; instead, there was under-engineering with a wickedly expensive
result.

The art of the architect is knowing what battles are worth fighting—where it's
worth investing in designs that provide protection against evolutionary change.

To decide if early "future-proofing" should be avoided, realistically consider the scenario
of deferring the change to the future, when it is called for. How much of the design and
code will actually have to change? What will be the effort? Perhaps a close look at the
potential change will reveal that what was at first considered a gigantic issue to protect
against, is estimated to consume only a few person-weeks of effort.

This is just a hard problem; "Prediction is very difficult, especially if it's about the
future" (unverifiably attributed to Niels Bohr).

Basic Architectural Design Principles

The core design principles explored in much of this book that were applicable to
small-scale object design are still dominant principles at the large-scale architectural
level:

• low coupling

• high cohesion

• protected variation (interfaces, indirection, service lookup, and so forth)

However, the granularity of the components is larger—it is low coupling between
applications, subsystems, or process rather than between small objects.

496

THE ART: RESOLUTION OF ARCHITECTURAL FACTORS

Furthermore, at this larger scale, there are more or different mechanisms to achieve qualities
such as low coupling and protected variation. For example, consider this technical memo:

Technical Memo Issue: Adaptability—Third-Party Services

Solution Summary: Protected Variation using interfaces and Adapters Factors
• Support many and changeable third-party services (tax calculators, credit authorization, inventory, ...)

Solution

Achieve protected variation as follows: Analyze several commercial tax calculator products (and so forth for the other product
categories) and construct common interfaces for the lowest common denominators of functionality. Then use Indirection via the
Adapter pattern. That is, create a resource Adapter object that implements the interface and acts as connection and translator
to a particular back-end tax calculator.
See also the Reliability—Recovery from Remote Service Failure technical memo for the location transparency aspects of this
solution.

Motivation
Simple. Cheaper, and faster communication than using a messaging service (see alternatives), and in any event a messaging
service can't be used to directly connect to the external credit authorization service.

Unresolved Issues

Will the lowest common denominator interfaces create an unforeseen problem, such as too limited? Alternatives Considered

Apply indirection by using a messaging or publish subscribe service (e.g., a JMS implementation) between the client and tax
calculator, with adapters. But not directly usable with a credit authorizes costly (for reliable ones), and more reliability in message
delivery than is practically needed.

The point is that at the architectural level, there are usually new mechanisms to achieve protected
variation (and other goals), often in collaboration with third-party components, such as using a
Java Messaging Service (JMS) or EBJ server.

Separation of Concerns and Localization of Impact

Another basic principle applied during architectural analysis is to achieve a separation of
concerns. It is also applicable at the scale of small objects, but achieves prominence during
architectural analysis.

Cross-cutting concerns are those with a wide application or influence in the system, such as
data persistence or security. One could design persistence support in the NextGen application
such that each object (that contained application logic code) itself also communicated with a
database to save its data. This

497

32 - INTRODUCTION TO ARCHITECTURAL ANALYSIS AND THE SAD

would weave the concern of persistence in with the concern of application logic, in the
source code of the classes—so too with security. Cohesion drops and coupling rises.
In contrast, designing for a separation of concerns factors out persistence support and
security support into separate "things" (there are very different mechanisms for this
separation). An object with application logic just has application logic, not persistence
or security logic. Similarly, a persistence subsystem focuses on the concern of
persistence, not security. A security subsystem doesn't do persistence.
Separation of concerns is a large-scale way of thinking about low coupling and high
cohesion at an architectural level. It also applies to small-scale objects, because its
absence results in in-cohesive objects that have multiple areas of responsibility. But it
is especially an architectural issue because the concerns are broad, and the solutions
involve major, fundamental design choices.
There are at least three large-scale techniques to achieve a separation of concerns:
1. Modularize the concern into a separate component (for example, subsystem)

and invoke its services.
o This is the most common approach. For example, in the NextGen system, the

persistence support could be factored into a subsystem called the
persistence service. Via a facade, it can offer a public interface of services to
other components. Layered architectures also illustrate this separation of
concerns.

2. Use decorators.
o This is the second most common approach; first popularized in the Microsoft

Transaction Service, and afterwards with EJB servers. In this approach, the
concern (such as security) is decorated onto other objects with a Decorator
object that wraps the inner object and interposes the service. The Decorator
is called a container in EJB terminology. For example, in the NextGen POS
system, security control to remote services such as the HR system can be
achieved with an EJB container that adds security checks in the outer
Decorator, around the application logic of the inner object.

3. Use post-compilers and aspect-oriented technologies.
o For example, with EJB entity beans one can add persistence support to

classes such as Sale. One specifies in a property descriptor file the
persistence characteristics of the Sale class. Then, a post-compiler (by
which I mean another compiler that executes after the "regular" compiler)
will add the necessary persistence support in a modified Sale class
(modifying just the bytecode) or subclass. The developer continues to see the
original class as a "clean" appli-cation-logic-only class. Another variation is
aspect-oriented technologies such as AspectJ (www.aspectj.org), which
similarly

498

SUMMARY OF THEMES IN ARCHITECTURAL ANALYSIS

support post-compilation weaving in of cross-cutting concerns
into the code, in a manner that is transparent to the developer.
These approaches maintain the illusion of separation during
development work, and weave in the concern before execution.

Promotion of Architectural Patterns

An exploration of architectural patterns and how they could apply (or
misapply) to the NextGen case study is out of scope in this introductory text.
However, a few pointers:

Probably the most common mechanism to achieve low coupling, protected
variation, and a separation of concerns at the architectural level is the
Layers pattern, which has been introduced a previous chapter. This is an
example of the most common separation technique—modularizing concerns
into separate components or layers.

There is a large and growing body of written architectural patterns.
Studying these is the fastest way I know of to learn architectural solutions.
Please see the recommended readings.

32.6 Summary of Themes in Architectural Analysis

One theme to note is that "architectural" concerns are especially related to
nonfunctional requirements, and include an awareness of the business or
market context of the application. At the same time, the functional
requirements (for example, processing sales) cannot be ignored; they
provide the context within which these concerns must be resolved. Further,
identification of their variability is architecturally significant.

A second theme is that architectural concerns involve system-level,
large-scale, and broad problems whose resolution usually involves
large-scale or fundamental design decisions; for example, the choice of—or
even use of—an application server.

A third theme in architectural analysis is interdependencies and trade-offs.
For example, improved security may affect performance or usability, and
most choices affect cost.

A fourth theme in architecture analysis is the generation and evaluation of
alternative solutions. A skilled architect can offer design solutions that
involve building new software, and also suggest solutions (or partial
solutions) using commercial or publicly available software and hardware.
For example, recovery in a remote server of the NextGen POS can be
achieved through designing and programming "watchdog" processes, or
perhaps through clustering, replication, and failover services offered by
some operating system and hardware components. Good architects know
third-party hardware and software products.

499

32 - INTRODUCTION TO ARCHITECTURAL ANALYSIS AND THE SAD

The opening definition of architectural concerns provides the framework for
how to think about the subject of architecture: identifying the issues with
large-scale or system-level implications, and resolving them.

Architectural analysis is concerned with the identification and resolution
of the system's non-functional (e.g., quality) requirements, in the context
of the functional requirements.

32.7 Architectural Analysis within the

UP Caution: Waterfall Architectural

Analysis

Architectural analysis methods and books often implicitly encourage
waterfall-style extensive architectural design decisions before
implementation. In iterative development and UP, apply these ideas in the
context of small steps, feedback, and adaptation, rather than attempting to
fully resolve the architecture before programming. Tackle implementation
of the riskiest or most difficult solutions in early iterations, and adjust the
architectural solutions based on feedback and growing insight.

Architectural Information in the UP Artifacts

• The architectural factors (for example, in a factor table) are recorded in
the Supplementary Specification.

• The architectural decisions are recorded in the SAD. This includes the
technical memos and descriptions of the architectural views.

The SAD and Its Architectural Views

In addition to the UML package, class, and interaction diagrams, another
key artifact in the UP Design Model is the SAD. It describes the big ideas
in the architecture, including the decisions of architectural analysis.
Practically, it is a learning aid for developers who need to understand the
essential ideas of the system.

When someone joins the team, a project coach can say, "Welcome to the
NextGen project! Please go to the project website and read the ten page
SAD in order to get an introduction to the major ideas." During a later
release, when new people work on the system, the SAD is a key learning
aid.

500

ARCHITECTURAL ANALYSIS WITHIN THE UP

Therefore, it should be written with this audience and goal in mind: What do I need to
say (and draw in the UML) that will quickly help someone understand the major ideas in
this system?

The essence of the SAD is a summary of the architectural decisions (such as with
technical memos) and the UP architectural views.

Architectural Views in the SAD

Having an architecture is one thing; describing it is something else.

In [Kruchten95], the influential idea of describing an architecture with multiple views was
promoted. The essential idea of an architectural view is this:

Architectural View

A view of the system architecture from a given perspective; focuses primarily on
structure, modularity, essential components, and the main control flows. [RUP].

An important aspect of the view missing from this RUP definition is the motivation.
That is, an architectural view should explain why the architecture is the way it is.

An architectural view is a window onto the system from a particular perspective that
emphasizes the key noteworthy information or ideas, and ignores the rest.

An architectural view is a tool of communication, education, or thought; it is expressed in
text and UML diagrams.

In the UP, six views of the architecture are suggested (more are allowed, such as a
security view).3 All are optional, but documenting at least the logical, process, use case,
and deployment views is recommended. The six views are:

1. Logical
o Conceptual organization of the software in terms of the most important

layers, subsystems, packages, frameworks, classes, and interfaces. Also
summarizes the functionality of the major software elements, such as each
subsystem.

o Shows outstanding use-case realization scenarios (as interaction diagrams)
that illustrate key aspects of the system.

o A view onto the UP Design Model, visualized with UML package, class, and
interaction diagrams.

3. Early versions of the UP described the "4+1" views as defined in [Kruchten95], which evolved into
the six views.

501

32 - INTRODUCTION TO ARCHITECTURAL ANALYSIS AND THE SAD

2. Process

o Processes and threads. Their responsibilities, collaborations, and the allocation of
logical elements (layers, subsystems, classes, ...) to them.

o A view onto the UP Design Model, visualized with UML class and interaction
diagrams, using the UML process and thread notation.

3. Deployment
o Physical deployment of processes and components to processing nodes, and the

physical network configuration between nodes.

o A view onto the UP Deployment Model, visualized with UML deployment diagrams.
Normally, the "view" is simply the entire model rather than a subset, as all of it is
noteworthy. See Chapter 38 for the UML deployment diagram notation.

4. Data

o Overview of the persistent data schema, the schema mapping from objects to
persistent data (usually in a relational database), the mechanism of mapping from
objects to a database, database stored procedures and triggers.

o A view onto the UP Data Model, visualized with UML class diagrams used to
describe a data model.

5. Use case

o Summary of the most architecturally significant use cases and their
non-functional requirements. That is, those use cases that, by their
implementation, illustrate significant architectural coverage or that exercise many
architectural elements. For example, the Process Sale use case, when fully
implemented, has these qualities.

o A view onto the UP Use-Case Model, expressed in text and visualized with UML use
case diagrams.

6. Implementation

o First, a definition of the Implementation Model: In contrast to the other UP models,
which are text and diagrams, this "model" is the actual source code, executables,
and so forth. It has two parts: 1) deliverables, and 2) things that create deliverables
(such as source code and graphics). The Implementation Model is all of this stuff,
including web pages, DLLs, executables, source code, and so forth, and their
organization—such as source code in Java packages, and bytecode organized into
JAR files.

o The implementation view is a summary description of the noteworthy organization
of deliverables and the things that create deliverables (such as the source code).

502

ARCHITECTURAL ANALYSIS WITHIN THE UP

o A view onto the UP Implementation Model, expressed in text and visualized with
UML package and component diagrams.

For example, the NextGen package and interaction diagrams shown in Chapter 30 on layering
and logical architecture show the big ideas of the logical structure of the software architecture. In
the SAD, the architect will create a section called Logical View, insert those UML diagrams, and
add some written commentary on what each package and layer is for, and the motivation behind
the logical design. Likewise with the process and deployment views.

A key idea of the architectural views—which concre tely are text and diagrams— is that they do
not describe all of the system from some perspective, but only outstanding ideas from that
perspective. A view is, if you will, the "one minute elevator" description: What are the most
important things you would say in one minute in an elevator to a colleague on this perspective?

Architectural views may be created:

• after the system is built, as a summary and learning aid for future
developers

• at the end of certain iteration milestones (such as the end of elaboration) to
serve as a learning aid for the current development team, and new members

• speculatively, during early iterations, as an aid in creative design work, rec
ognizing that the original view will change as design and implementation
proceeds

Sample Structure of a SAD

Software Architecture Document Architectural

Representation

(Summary of how the architecture will be described in this document, such as using by technical memos and the architectural
views. This is useful for someone unfamiliar with the idea of technical memos or views. Note that not all views are necessary.)

Architectural Factors and Decisions

(Reference to the Supplementary Specification to view the Factor Table. Also, the set of technical memos the summarize the
decisions.)

Logical View

(UML package diagrams, and class diagrams of major elements. Commentary on the large scale structure and functionality of
major components.)

Process View

(UML class and interaction diagrams illustrating the processes and threads of the system. Group this by threads and processes
that interact. Comment on how the interprocess communication works (e.g., by Java RMI).

503

32 - INTRODUCTION TO ARCHITECTURAL ANALYSIS AND THE SAD

Use-Case View
(Brief summary of the most architecturally significant use cases. UML interaction diagrams for some architectural
significant use-case realizations, or scenarios, with commentary on the diagrams explaining how they illustrate the
major architectural elements.)

Deployment View

(UML deployment diagrams showing the nodes and allocation of processes and components. Commentary on the
networking.)

Phases

Inception—If it is unclear if it is technically possible to satisfy the architecturally
significant requirements, the team may implement an architectural
proof-of-concept (POC) to determine feasibility. In the UP, its creation and
assessment is called Architectural Synthesis. This is distinct from plain old small
POC programming experiments for isolated technical questions. An architectural POC
lightly covers many of the architecturally significant requirements to assess their
combined feasibility.

Elaboration—A major goal of this phase is to implement the core risky architectural
elements, thus most architectural analysis is completed during elaboration. It is
normally expected that the majority of factor table, technical memo, and SAD content
can be completed by the end of elaboration.

Transition—Although ideally the architecturally significant factors and decisions
were resolved long before transition, the SAD will need a review and possible revision at
the end of this phase to ensure it accurately describes the final deployed system.

Subsequent evolution cycles—Before the design of new versions, it is common to
revisit architectural factors and decisions. For example, the decision in version 1.0 to
create a single remote tax calculator service, rather than one duplicated on each POS
node, could have been motivated by cost (to avoid multiple licenses). But perhaps in the
future the cost of tax calculators is reduced, and thus, for fault tolerance or
performance reasons, the architecture is changed to use multiple local tax calculators.

504

FURTHER READINGS

32.8 Further Readings

There is a growing body of architecture-related patterns, and general
software architecture advice. Suggestions:

• Pattern-Oriented Software Architecture, both volumes.

• Software Architecture in Practice [BCK98].

• Pattern Languages of Program Design, all volumes. Each volume has a
sec
tion on architecture-related patterns.

• Online Web articles on architectural patterns (such as J2EE
architectures),
available at Sun, IBM, and other websites.

• Online Web articles on architecture available at the Carnegie Mellon
Uni
versity Software Engineering Institute (SEI), which has long been a
center
of architecture investigation (www.sei.cmu.edu).

505

