
Chapter 15

INTERACTION DIAGRAM
NOTATION

Cats are smarter than dogs. You can't
get eight cats to pull a sled through snow.

�JeffVaidez

Objectives

Read basic UML interaction (sequence and collaboration) diagram
notation.

Introduction

The following chapters explore object design. The language used to illustrate the
designs is primarily interaction diagrams. Thus, it is advisable to at least skim
the examples in this chapter and get familiar with the notation before moving
on.
The UML includes interaction diagrams to illustrate how objects interact via
messages. This chapter introduces the notation, while subsequent chapters
focus on using them in the context of learning and doing object design for the
NextGen POS case study.

Read the Following Chapters for Design Guidelines

This chapter introduces notation. To create well-designed objects, design princi-
ples must also be understood. After acquiring some familiarity with the notation
of interaction diagrams, it is important to study the following chapters on these
principles and how to apply them while drawing interaction diagrams.

197

michaelcostanzo
Text Box
From Craig Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design, and the Unified Process. 2nd Edition.

15 - INTERACTION DIAGRAM NOTATION

15.1 Sequence and Collaboration Diagrams

The term interaction diagram, is a generalization of two more specialized UML
diagram types; both can be used to express similar message interactions:
� collaboration diagrams
� sequence diagrams
Throughout the book, both types will be used, to emphasize the flexibility in
choice.
Collaboration diagrams illustrate object interactions in a graph or network
format, in which objects can be placed anywhere on the diagram, as shown in
Figure 15.1.

Figure 15.1 Collaboration diagram

Figure 15.2 Sequence diagram.

Each type has strengths and weaknesses. When drawing diagrams to be pub-
lished on pages of narrow width, collaboration diagrams have the advantage of
allowing vertical expansion for new objects; additional objects in a sequence dia-
grams must extend to the right, which is limiting. On the other hand, collabora-
tion diagram examples make it harder to easily see the sequence of messages.

198

EXAMPLE COLLABORATION DIAGRAM: MAKEPAYMENT
EXAMPLE COLLABORATION 1JIAGRAM: MAKEfAYMENT

Most prefer sequence diagrams when using a CASE tool to reverse engineer
source code into an interaction diagram, as they clearly illustrate the sequence
of messages.

15.2 Example Collaboration Diagram: makePayment

Figure 15.3 Collaboration diagram.

The collaboration diagram shown in Figure 15.3 is read as follows:
1. The message makePayment is sent to an instance of a Register. The sender is

not identified.
2. The Register instance sends the makePayment message to a Sale instance.
3. The Sale instance creates an instance of a Payment.

199

15 - INTERACTION DIAGRAM NOTATION

15.3 Example Sequence Diagram: makePayment

Figure 15.4 Sequence diagram.

The sequence diagram shown in Figure 15.4 has the same intent as the prior
collaboration diagram.

15.4 Interaction Diagrams Are Valuable

A common problem in object technology projects is a lack of appreciation for the
value of doing object design via the medium of interaction diagrams. A related
problem is doing them in a vague way, such as showing messages to objects that
actually require much further elaboration; for example, showing the message
runSimulation to some Simulation object, but not continuing on with the more
detailed design, as though by virtue of a well-named message the design is mag-
ically complete.
Some non-trivial time and effort should be spent in the creation of interaction
diagrams, as a reflection of thinking through details of the object design. For
example, if the length of the timeboxed iteration is two weeks, perhaps a half or
full day near the start of the iteration should be spent on their creation (and in
parallel, class diagrams), before proceeding to programming. Yes, the design
illustrated in the diagrams will be imperfect and is speculative, and it will be
modified during programming, but it will provide a thoughtful, cohesive, com-
mon starting point for inspiration during programming.

Note that it is primarily during this step that the application of design skill is
required, in terms of patterns, idioms, and principles. Relatively speaking, the
creation of use cases, domain models, and other artifacts is easier than the

200

Create interaction diagrams in pairs, not alone. The collaborative design will
be improved, and the partners will learn quickly from each other.

: Sale

makePayment(cashTendered)
: Paymentcreate(cashTendered)

implies Sale objects have a
responsibility to create Payments

: Sale

makePayment(cashTendered)

COMMON INTERACTION DIAGRAM NOTATION

assignment of responsibilities and the creation of well-designed interaction dia-
grams. This is because there is a larger number of subtle design principles and
"degrees of freedom" that underlie a well-designed interaction diagram than
most other OOA/D artifacts.

The design principles necessary for the successful construction of interaction
diagrams can be codified, explained, and applied in a methodical fashion. This
approach to understanding and using design principles is based on patterns�
structured guidelines and principles. Therefore, after introducing the syntax of
interaction diagrams, attention (in subsequent chapters) will turn to design pat-
terns and their application in interaction diagrams.

15.5 Common Interaction Diagram Notation

Illustrating Classes and Instances

The UML has adopted a simple and consistent approach to illustrate instances
vs. classifiers (see Figure 15.5):

� For any kind of UML element (class, actor, ...), an instance uses the same graphic
symbol as the type, but the designator string is underlined.

Figure 15.5 Class and instances.

Therefore, to show an instance of a class in an interaction diagram, the regular
class box graphic symbol is used, but the name is underlined.

A name can be used to uniquely identify the instance. If none is used, note that a
":" precedes the class name.

201

Sale :Sale s1: Sale

class instance named instance

15 - INTERACTION DIAGRAM NOTATION

Basic Message Expression Syntax

The UML has a standard syntax for message expressions:

return := message(parameter : parameterType) : returnType

Type information may be excluded if obvious or unimportant. For example:

spec := getProductSpect(id)
spec := getProductSpect(id:ItemID)
spec := getProductSpect(id:ItemID) ProductSpecification

15.6 Basic Collaboration Diagram Notation

Links

A link is a connection path between two objects; it indicates some form of navi-
gation and visibility between the objects is possible (see Figure 15.6). More for-
mally, a link is an instance of an association. For example, there is a link�or path
of navigation�from a Register to a Sale, along which messages may flow, such as
the makePayment message.

Figure 15.6 Link lines.

202

Note that multiple messages, and messages both ways, can flow along the
same single link.

Messages

Each message between objects is represented with a message expression and
small arrow indicating the direction of the message. Many messages may flow

1: makePayment(cashTendered)
2: foo()

2.1: bar()
: Register :Sale

link line

BASIC COLLABORATION DIAGRAM NOTATION

along this link (Figure 15.7). A sequence number is added to show the sequential
order of messages in the current thread of control.

Figure 15.7 Messages.

Messages to "self" or "this"

A message can be sent from an object to itself (Figure 15.8). This is illustrated by
a link to itself, with messages flowing along the link.

Figure 15.8 Messages to "this."

Creation of Instances

Any message can be used to create an instance, but there is a convention in the
UML to use a message named create for this purpose. If another (perhaps less
obvious) message name is used, the message may be annotated with a special
feature called a UML stereotype, like so: «create».

The create message may include parameters, indicating the passing of initial
values. This indicates, for example, a constructor call with parameters in Java.

203

1: msg2()
2: msg3()
3: msg4()

3.1: msg5()
: Register :Sale

all messages flow on the same link

msg1()

: Register

msg1()

1: clear()

15 - INTERACTION DIAGRAM NOTATION

Furthermore, the UML property {new} may optionally be added to the instance box to
highlight the creation.

Figure 15.9 Instance creation.

Message Number Sequencing

The order of messages is illustrated with sequence numbers, as shown in Figure
15.10. The numbering scheme is:
1. The first message is not numbered. Thus,msg1() is unnumbered.
2. The order and nesting of subsequent messages is shown with a legal num

bering scheme in which nested messages have a number appended to them.
Nesting is denoted by prepending the incoming message number to the out
going message number.

In Figure 15.11 a more complex case is shown.

204

1: create(cashier)
: Register :Sale {new}

create message, with optional initializing parameters. This will
normally be interpreted as a constructor call.

«create»
1: make(cashier)

: Register :Sale {new}

if an unobvious creation message name is used, the
message may be stereotyped for clarity

:ClassAmsg1() :ClassB1: msg2()

:ClassC

1.1: msg3()
not numbered

legal numbering

BASIC COLLABORATION DIAGRAM NOTATION

Figure 15.11 Complex sequence numbering.
Conditional Messages

A conditional message (Figure 15.12) is shown by following a sequence number
with a conditional clause in square brackets, similar to an iteration clause. The
message is only sent if the clause evaluates to true.

Figure 15.12 Conditional message.

Mutually Exclusive Conditional Paths

The example in Figure 15.13 illustrates the sequence numbers with mutually
exclusive conditional paths.

205

;ClassAmsg1() :ClassB1: msg2()

:ClassC

1.1: msg3()

2.1: msg5()

2: msg4()

:ClassD

2.2: msg6()

first second

fourth

sixth

fifth

third

1 [color = red] : calculate()
: Foo : Bar

message1()

conditional message, with test

15 - INTERACTION DIAGRAM NOTATION

Figure 15.13 Mutually exclusive messages.

In this case it is necessary to modify the sequence expressions with a conditional
path letter. The first letter used is a by convention. Figure 15.13 states that
either 1a or 1b could execute after msg1. Both are sequence number 1 since
either could be the first internal message.
Note that subsequent nested messages are still consistently prepended with
their outer message sequence. Thus Ib. 1 is nested message within Ib.

Iteration or Looping

Iteration notation is shown in Figure 15.14. If the details of the iteration clause
are not important to the modeler, a simple '*' can be used.

Figure 15.14 Iteration.

206

1a [test1] : msg2()
:ClassA :ClassB

:ClassC

1a.1: msg3()

msg1()

:ClassD

1b [not test1] : msg4()

1b.1: msg5()

:ClassE

2: msg6()

unconditional after
either msg2 or msg4 1a and 1b are mutually

exclusive conditional paths

1 * [i:=1..N]: num := nextInt(): SimulatorrunSimulation() : Random

iteration is indicated with a * and an optional
iteration clause following the sequence number

BASIC COLLABORATION DIAGRAM NOTATION

Iteration Over a Collection (Multiobject)

A common algorithm is to iterate over all members of a collection (such as a list or
map), sending a message to each. Often, some kind of iterator object is ultimately
used, such as an implementation of java.util.Iterator or a C++ standard library
iterator. In the UML, the term multiobject is used to denote a set of
instances�a collection. In collaboration diagrams, this can be summarized as
shown in Figure 15.15.

Figure 15.15 Iteration over a multiobject.

The "*" multiplicity marker at the end of the link is used to indicate that the
message is being sent to each element of the collection, rather than being
repeatedly sent to the collection object itself.

Messages to a Class Object

Messages may be sent to a class itself, rather than an instance, to invoke class or
static methods. A message is shown to a class box whose name is not underlined,
indicating the message is being sent to a class rather than an instance (see
Figure 15.16).

Figure 15.16 Messages to a class object (static method invocation).

207

1 *: st := getSubtotal(): Salet := getTotal()

double box indicates a multiobject (collection)

for example, a List object containing many
SalesLineItem objects

*
:SalesLineItem

:SalesLineItem

these two * symbols used together imply
iteration over the multiobject and sending the
getSubtotal message to each member

list := synchronizedList(aList)
: InstanceOfFoo java.util.Collections

msg1()

not underlined,
therefore a class

message to class, or a
static method call

15 - INTERACTION DIAGRAM NOTATION

Consequently, it is important to be consistent in underlining your instance
names when an instance is intended, otherwise messages to instances versus
classes may be incorrectly interpreted.

15.7 Basic Sequence Diagram Notation

Links

Unlike collaboration diagrams, sequence diagrams do not show links.

Messages

Each message between objects is represented with a message expression on an
arrowed line between the objects (see Figure 15.17). The time ordering is orga-
nized from top to bottom.

Figure 15.17 Messages and focus of control with activation boxes.

Focus of Control and Activation Boxes

As illustrated in Figure 15.17, sequence diagrams may also show the focus of
control (that is, in a regular blocking call, the operation is on the call stack)
using an activation box. The box is optional, but commonly used by UML prac-
titioners.

208

: Register : Sale

msg2()

msg3()

msg1()

msg4()

msg5()

BASIC SEQUENCE DIAGRAM NOTATION

Illustrating Returns

A sequence diagram may optionally show the return from a message as a
dashed open-arrowed line at the end of an activation box (see Figure 15.18).
Many practitioners exclude them. Some annotate the return line to describe
what is being returned (if anything) from the message.

Figure 15.18 Showing returns.

Messages to "self" or "this"

A message can be illustrated as being sent from an object to itself by using a
nested activation box (see Figure 15.19).

209

Figure 15.19 Messages to "this."

: Register : Sale

msg2()

msg3()

msg1()

msg4()

msg5()

: Register

msg1()

clear()

210

Figure 15.20 Instance creation and object lifelines.

Object Lifelines and Object Destruction

Figure 15.20 also illustrates object lifelines�the vertical dashed lines under-
neath the objects. These indicate the extent of the life of the object in the diagram.
In some circumstances it is desirable to show explicit destruction of an object (as
in C++, which does not have garbage collection); the UML lifeline notation
provides a way to express this destruction (see Figure 15.21).

Figure 15.21 Object destruction

: Register : Sale

makePayment(cashTendered)
: Paymentcreate(cashTendered)

authorize()

note that newly created
objects are placed at their
creation "height"

an object lifeline shows the extent of
the life of the object in the diagram

15 -

Creation of Instances

: Sale

: Paymentcreate(cashTendered)

...
the «destroy» stereotyped
message, with the large
X and short lifeline
indicates explicit object
destruction

«destroy» X

Figure 15.22 A conditional message.

Mutually Exclusive Conditional Messages

The notation for this case is a kind of angled message line emerging from a com-
mon point, as illustrated in Figure 15.23.

Figure 15.23 Mutually exclusive conditional messages.

Iteration for a Single Message

Iteration notation for one message is shown in Figure 15.24.

211

A conditional message is shown in Figure 15.22.

BASIC SEQUENCE DIAGRAM NOTATION

Conditional Messages

Figure 15.24 Iteration for one message.

: Bar: Foo

[color = red] calculate()
message1()

: B: A

[x < 10] calculate()
message1()

: C

[x > 15] calculate()

: Simulator : Random

* [i:=1..N]: num := nextInt()

runSimulation()

212

15 - INTERACTION DIAGRAM NOTATION

Iteration of a Series of Messages

Notation to indicate iteration around a series of messages is shown in Figure
15.25.

Iteration Over a Collection (Multiobject)

In sequence diagrams, iteration over a collection is shown in Figure 15.26.
With collaboration diagrams the UML specifies a '*' multiplicity marker at the
end of the role (next to the multiobject) to indicate sending a message to each
element rather than repeatedly to the collection itself. However, the UML does
not specify how to indicate this with sequence diagrams.

Messages to Class Objects

As in a collaboration diagram, class or static method calls are shown by not
underlining the name of the classifier, which signifies a class object rather than
an instance (see Figure 15.27).

Figure 15.25 Iteration for a sequence of

: Simulator : Random

hours := nextInt()

runSimulation()

: Programmer

work(hours)

* [i:=1..N]

eat()

BASIC SEQUENCE DIAGRAM NOTATION

213

Figure 15.26 Iteration over a multiobject

Figure 15.27 Invoking class or static methods

: Sale

* : st := getSubtotal()

t := getTotal()

:SalesLineItem
:SalesLineItem

: Foo

list := synchronizedList(aList)
message1()

java.util.Collections

not underlined,
therefore a class

message to class, or a
static method call

