
.

A Recursive Doubling Algorithm

for Solution of Tridiagonal Systems

on Hypercube Multiprocessors

Omer Egecioglu†‡

Department of Computer Science
University of California

Santa Barbara, CA 93106

Cetin K. Koc††

Alan J. Laub††

Scientific Computation Laboratory
Department of Electrical & Computer Engineering

University of California
Santa Barbara, CA 93106

This article was presented at the Third SIAM Conference on Parallel Processing for Scientific Computing, Los
Angeles, California, December 1-4, 1987, and The Third Conference on Hypercube Concurrent Computers and
Applications, California Institute of Technology, JPL , Pasadena, California, January 19-20, 1988.

† Supported in part by NSF Grant No. DCR-8603722.

† † Supported in part by Lawrence Livermore National Laboratory Contract No. LLNL-7526225 and the
National Science Foundation (and AFOSR) under Grant No. ECS84-06152.

‡ Author to whom correspondence should be addressed.

-2-

ABSTRACT

The recursive doubling algorithm as developed by Stone can be used to solve a tridiagonal linear system of
size n on a parallel computer withn processors usingO (logn) parallel arithmetic steps. In this paper,
we give a limited processor version of the recursive doubling algorithm for the solution of tridiagonal linear

systems usingO (
n

p
+ log p) parallel arithmetic steps on a parallel computer withp < n processors.

The main technique relies on fast parallel prefix algorithms, which can be efficiently mapped on the hyper-
cube architecture using the binary-reflected Gray code.For p << n this algorithm achieves linear speed-
up and constant efficiency over its sequential implementation as well as over the sequential LU decomposi-
tion algorithm. These results are confirmed by numerical experiments obtained on an Intel iPSC/d5 hyper-
cube multiprocessor.

Categories and Subject Descriptors: F.2.1 [Analysis of Algorithms and Problem Complexity]: Numerical
Algorithms and Problems-Computations on matrices; G.1.0 [Numerical Analysis]: General-Numerical
algorithms, parallel algorithms; G.1.3 [Numerical Analysis]: Numerical Linear Algebra-Linear systems
(direct and iterative methods); G.4 [Numerical Analysis]: Mathematical Software-Algorithms Analysis,
Efficiency; C.1.2 [Processor Architectures]: Multiple Data Stream Architectures (Multiprocessors)-Multi-
ple-instruction-stream, multiple-data-stream processors (MIMD)

General Terms: Tridiagonal systems, hypercube multiprocessors

Additional Key Words and Phrases: Recursive doubling, mapping, binary-reflected Gray code, parallel pre-
fix, LU decomposition, speed-up and efficiency.

-3-

1. INTRODUCTION

We are interested in solving the following system of linear equations

A x = d (1)

where A is a (nonsymmetric) tridiagonal matrix of ordern

A =

b0

a1

c0

b1

a2

c1

b2

.

c2

.

.

.

.

an−2

.

bn−2

an−1

cn−2

bn−1

and x and d are vectors of dimensionn

x = (x0 , x1 , . . , xn−2 , xn−1)T

d = (d0 , d1 , . . , dn−2 , dn−1)T .

We shall assume thatA , x and d have real coefficients. Extension to the complex case is straight-
forward. Tridiagonal systems of equations appear frequently in the solution of partial differential equa-
tions, cubic spline interpolation, and in numerous other areas of science and engineering. There has been a
considerable amount of work to solve (1) on parallel computers; see, for example, the review articles [4],
[13], and [19]. More recently Johnsson, et al.have dev eloped algorithms to solve such systems on ensem-
ble architectures [5,6,7,8]. The recursive doubling algorithm is one of the first algorithms that has resulted
from considering parallelism in computation. This approach relates the LDU decomposition ofA to first
and second order linear recurrences. The well known relationship between (1) and linear recurrences was
utilized by Stone to develop an algorithm to solve (1) in O (logn) parallel arithmetic steps withn pro-
cessors [18]. This algorithm can be generalized to solve banded linear systems as well [9].

The recursive doubling algorithm is suitable when a large number of processing elements are avail-
able, such as the Connection Machine.In this paper we give a limited processor version of the recursive
doubling algorithm on hypercube multiprocessor architectures withp < n processors. This algorithm is
more suitable for hypercubes of smaller dimension such as the Caltech Hypercube, the Intel iPSC series,
and the NCUBE. We show that the limited processor version recursive doubling algorithm solves a tridiag-

onal system of sizen with arithmetic complexity O (
n

p
+ log p) and communication complexity

O (log p) on a hypercube multiprocessor withp processors. The algorithm becomes more efficient if
p < < n . The main techniques rely on fast parallel prefix algorithms for which we describe an efficient

mapping using the binary-reflected Gray code. These techniques can also be extended to solve banded or
block tridiagonal linear systems.

We compare the algorithm proposed here to the LU decomposition algorithm and to a sequential ver-
sion of the recursive doubling algorithms. The theoretical estimates for speed-up and efficiency, as well as
the experimental results on an Intel iPSC/d5 hypercube multiprocessor indicate that the limited processor
recursive doubling algorithm achieves linear speed-up and its efficiency is more than 0.5.

2. THE LU DECOMPOSITION ALGORITHM

One of the most efficient existing sequential algorithms for solving (1) relies on theLU decomposi-
tion of A ; see, for example, [2]. HereA is decomposed into a product of two bidiagonal matricesL and
U as follows :

-4-

A = L U =

1

e1 1

. .

en−2 1

en−1 1

f0 c0

f1 c1

. .

fn−2 cn−2

fn−1

The algorithm then proceeds to solve for y from L y = d and then findsx by solving U x = y . More
precisely, the LU decomposition algorithm (the LU Algorithm) to solve the system (1) consists of the fol-
lowing steps:

The LU Algorithm

Step 1.Compute LU decomposition ofA given by

f0 = b0

ei = ai / fi−1 1 ≤ i ≤ n − 1

fi = bi − ei * ci−1 1 ≤ i ≤ n − 1 .

Step 2.Solve for y from L y = d using

y0 = d0

yi = di − ei * yi−1 1 ≤ i ≤ n − 1 .

Step 3.Compute x by solving U x = y using

xn−1 = yn−1 / fn−1

xi = (yi − ci * xi+1) / fi 0 ≤ i ≤ n − 2 .

We record the number of arithmetic operations required by the algorithm as

THEOREM 1.

The LU Algorithm solves the tridiagonal linear system of sizen using 8 n − 7 arithmetic opera-
tions.

PROOF.

The proof is straightforward counting of the number of multiplication, division and subtraction oper-
ations performed inSteps 1, 2,and3 above. •

2. SOLUTION OF TRIDIAGONAL SYSTEMS USING PREFIX ALGORITHMS

The equation (1) can be represented as a three-term recurrence relation

ai xi−1 + bi xi + ci xi+1 = di (2)

for 1 ≤ i ≤ n − 2 with

b0 x0 + c0 x1 = d0

an−1 xn−2 + bn−1 xn−1 = dn−1 .

Define a0 = cn−1 = 1 and x−1 = xn = 0 . Then with this convention, the relation in (2) holds for
0 ≤ i ≤ n − 1 .

Solving for xi+1 in equation (2) we get

xi+1 = −
bi

ci
xi −

ai

ci
xi−1 +

di

ci
. (3)

-5-

Here we assume that allci ’s are nonzero, since otherwise the system of equations can be broken into two
decoupled tridiagonal systems which can then be treated separately. Setting

α i = −
bi

ci
β i = −

ai

ci
γ i =

di

ci

(3) can be rewritten as

xi+1 = α i xi + β i xi−1 + γ i

for 0 ≤ i ≤ n − 1 . This recurrence formula can be put in a matrix form neatly as

xi+1

xi

1

=

α i

1

0

β i

0

0

γ i

0

1

xi

xi−1

1

which is essentially the same idea developed in [18]. Now define

Xi =

xi

xi−1

1

and Bi =

α i

1

0

β i

0

0

γ i

0

1

.

Then we may write

Xi+1 = Bi Xi 0 ≤ i ≤ n − 1 (4)

This matrix recursion formula allows us to calculate allXi for 1 ≤ i ≤ n − 1 provided that the initial vec-
tor X0 is available. Since

X0 =

x0

x−1

1

=

x0

0

1

all we need is to calculatex0 to start the computation. Now note that by repeated application of (4) we
obtain

X1 = B0 X0

X2 = B1 X1 = B1 B0 X0

. . .

Xn = Bn−1 Bn−2
. . . B1 B0 X0 .

Now let

Ci = Bi Bi−1
. . . B1 B0 0 ≤ i ≤ n − 1 .

Then Xn = Cn−1 X0 , or more explicitly

xn

xn−1

1

=

g00

g10

0

g01

g11

0

g02

g12

1

x0

x−1

1

,

where

Cn−1 =

g00

g10

0

g01

g11

0

g02

g12

1

and the gij depend andα i , β i , γ i for 0 ≤ i ≤ n − 1 . Since xn = x−1 = 0 , by multiplying the first row
of Cn−1 with X0 we obtain

0 = g00 x0 + g02 ,

-6-

which gives us x0 as

x0 = −
g02

g00
. (5)

Once X0 is available in this manner, we can calculate allXi for 1 ≤ i ≤ n − 1 by using the matrix recur-
sion formula Xi = Ci−1 X0 .

The sequential prefix algorithm (The SP Algorithm) to solve the tridiagonal system (1) thus pro-
ceeds as follows :

The SPAlgorithm

Step 1.Form the matricesBi for 0 ≤ i ≤ n − 1 using

α i = −
bi

ci
β i = −

ai

ci
γ i =

di

ci

and

Bi =

α i

1

0

β i

0

0

γ i

0

1

.

Step 2.Compute the chain productsCi by

C0 = B0

Ci = Bi Ci−1 1 ≤ i ≤ n − 1

Step 3.Denote Cn−1 computed inStep 2by

Cn−1 =

g00

g10

0

g01

g11

0

g02

g12

1

.

Compute x0 and henceX0 using

x0 = −
g02

g00
,

X0 =

x0

x−1

1

=

x0

0

1

.

Step 4.Compute Xi and hencexi using

Xi =

xi

xi−1

1

= Ci−1 X0 1 ≤ i ≤ n − 1 .

Step 2of this algorithm essentially calculates prefixes of the matrices(B0 , B1 , B2 , . . . , Bn−1)
(here we imagine that the matrix products in performed in reverse order). If this algorithm is used to solve
a tridiagonal system of dimensionn sequentially, then O (n) arithmetic operations suffice, but the algo-
rithm turns out to be slightly less efficient then the LU Algorithm.Nevertheless it is more suitable for effi-
cient implementation on a parallel machine than the LU Algorithm.

THEOREM 2.

The SP Algorithm for the solution of the tridiagonal linear system of equations (1) requires
15n − 11 arithmetic operations.

PROOF.

-7-

Step 1requires 3n divisions to form theBi matrices. InStep 2we perform n − 1 matrix multi-
plications to compute theCi matrices, but because of the special structure of the matrices each matrix
multiplication can be performed using6 floating-point multiplications and4 floating-point additions.
HenceStep 2requires 6(n − 1) multiplications and 4 (n − 1) additions.Step 3is a single division. In
Step 4to compute all xi for 1 ≤ i ≤ n − 1 we perform n − 1 multiplications and n − 1 additions. Thus
the total number of arithmetic operations sums to 15n − 11 . •

3. PARALLEL PREFIX ALGORITHMS ON HYPERCUBE MULTIPROCESSORS

In this section we show that the prefix algorithm for the solution of a tridiagonal linear system of
equations can implemented efficiently on hypercube multiprocessors.

Step 2of the SP algorithm where the prefixes of the matrices(B0 , B1 , . . . , Bn−1) are computed is
the bottleneck point in the algorithm. An efficient parallel implementation of the recursive doubling algo-
rithm depends on how efficiently this computation can be performed.Various parallel algorithms have been
developed for prefix computation [10] [11]. The prefixes of the quantities(q0 , q1 , . . . , qn−1) can be
computed inlog n steps† given n processors. Hereeach step consists of a suitably defined binary opera-
tion performed in any of the identical processors. For n = 8 the parallel prefix algorithm is given in Figure
1. This algorithm is the same as the algorithms given in [10] and [18]. For simplicity we denote the product
block q j q j−1 . . qi+1 qi as j i . For exampleq7 q6 q5 q4 is denoted by the pair7 4 .

If the elementqi is initially allocated to processorpi then at stepk , for 1 ≤ k ≤ log n , processor
pi sends its data to processorp j where j = i + 2k−1 . Processor p j receives this data and multiplies

with its own and writes the result where its data resides.

The implementation of this algorithm on a hypercube multiprocessor will be efficient only if the
communication requirements of this algorithm are minimal. This requires that we map the parallel prefix
algorithm efficiently on the cube. First we give a definition of a hypercube connected parallel computer:

Definition: Hypercube connected parallel computer:If p = 2d and bd
. . .b1 is the binary representation

of b for b ∈ [0 , . . , p − 1] and b(i) is the number whose binary representation is
bd. . .bi+1bi bi−1

. . .b1 , where bi is the complement ofbi and 1≤ i ≤ d then in a hypercube connected
computer, processing elementb is connected to processing elementb(i) , for 1 ≤ i ≤ d [15,16,17].

Now we giv e the definition of the binary-reflected Gray code and a lemma related to the mapping of
the parallel prefix algorithm on the cube:

Definition: Binary-reflected Gray code: G(b) = gdgd−1
. . .g1 of a d bit binary number

b = bdbd−1
. . .b1 is defined by setting [14]

gi = bi + bi+1 mod2 , for i = 1 , 2 , .. . , d − 1 , gd = bd .

LEMMA 1.

If b and c are two d -bit binary numbers such that0 ≤ b ≤ 2d − 1 − 2k−1 and c = b + 2k−1 then
the Hamming distance betweenG(b) and G(c) is 1 if k = 1 and 2 if 2≤ k ≤ d . Furthermore the
communication paths are disjoint.

(For proof see Lemma 5.1 in [6].)

Thus we allocate the elementqi to processorG (i) . The parallel prefix algorithm requires that at
step k for 1 ≤ k ≤ log n , the node to which elementqi is allocated should communicate with the node
to which elementqi + 2k−1 is allocated. The distance between nodesG(i) and G(i + 2k−1) is 1 if
k = 1 and 2 if 2≤ k ≤ log n . Hence we see that by making use of the properties of a Gray code, local-

ity is achieved at the sole expense of slightly increasing the number of routing instructions.The hypercube
implementation of the parallel prefix algorithm proposed here requires at most twice the number of routing
instructions of a fully-connected system implementation.

The following pseudo-code shows the required computations. This code runs in all nodes concur-
rently. The binary address of each node is returned when the subroutinenode_id () is called. The

† All logarithms are base 2.

-8-

subroutineG−1 (.) converts from Gray code to binary code.For example G−1 (110) = 100 .Initially the
node G (i) contains the elementqi . This element, which is local to nodeG (i) , is denoted byQ . At
the end of the computation nodeG (i) contains the productq0 q1

. . . qi . Without loss of generality we
assume thatn = 2d .

PROCEDURE Parallel_Prefix (n , Q)
i = G−1 (node_id ())

FOR k = 1 TO logn DO BEGIN
IF i ∈ { 0 , . . , n − 1 − 2k−1 } T HEN

SEND Q TO PROCESSORG (i + 2k−1)
IF i ∈ { 2 k−1 , . . , n − 1 } THEN

RECEIVE temp_Q
Q = temp_Q * Q

END FOR
END PROCEDURE.

Thus we have the following lemma:

LEMMA 2.

The prefixes ofn elements can be computed inlog n arithmetic and in 2 logn − 1 communication
steps on a hypercube withn nodes.

PROOF.

It follows from Lemma 2 that the first step will cost1 arithmetic and 1 communication step.The
remaining steps cost logn − 1 arithmetic and2 (logn − 1) communication steps.•

Now we suppose that we have p processors withp < n and m p= n . Then the prefixes ofn ele-
ments are computed as follows: we allocatem elements to each processor and perform sequential prefix at
each processor to find prefixes of these elements. Then we find prefixes of thep product blocks by per-
forming the parallel prefix algorithm.Processori sends this product to processori + 1 for 0 ≤ i ≤ n − 2
and this element is multiplied with each element in the processor except the last one.Initially we allocate
the elementsq(i+1)m−1 , q(i+1)m−2 , . . . , qim to node G (i) . These elements, which are local to node
G (i) , are denotedQ1 , Q2 , . . , Qm . After the sequential prefix at each node we obtain a product block

at each node. This result

Q1 Q2
. . . Qm = q(i+1)m−1 q(i+1)m−2

. . . qim

also resides in nodeG (i) . At the end of all computations the nodeG (i) contains the products

q0 q1 q2 . . q(i+1)m−1

q0 q1 q2 . . q(i+1)m−1 q(i+1)m−2

. . .

q0 q1 q2 . . q(i+1)m−1 q(i+1)m−2 . . qim

The following code shows the required computations:

PROCEDURE Parallel_Prefix (n , p , Q1 , Q2 , . . , Qm) { limited processor case; n = m p }
i = G−1 (node_id ())

FOR k = 2 TO m DO BEGIN
Qk = Qk * Qk−1

END FOR

FOR k = 1 TO logn DO BEGIN
IF i ∈ { 0 , . . , n − 1 − 2k−1 } T HEN

-9-

SEND Qm TO PROCESSORG (i + 2k−1)
IF i ∈ { 2 k−1 , . . , n − 1 } THEN

RECEIVE temp_Qm

Qm = temp_Qm * Qm

END FOR

IF i ∈ { 0 , . . , n − 1 − 2k−1 } T HEN
SEND Qm TO PROCESSORG (i + 1)

IF i ∈ { 1 , . . , n − 1 } THEN
RECEIVE temp_Qm

FOR k = 1 TO m − 1 DO BEGIN
Qk = temp_Qm * Qk

END FOR
END PROCEDURE.

LEMMA 2.

The prefixes ofn = m p elements can be performed in2
n

p
+ log p − 2 arithmetic and 2 log p

communication steps on a hypercube withp nodes.

PROOF.

First we perform sequential prefix computation which costsm − 1 arithmetic steps. The parallel
prefix costs log p arithmetic and2 log p − 1 communication steps according to Lemma 2. The transfer
of the last element of each block to the next processor will take 1 communication step. Then we multiply
this element with each element in the processor except the last one which will take m − 1 arithmetic steps.
Thus the total number of arithmetic and communication steps become2 m + log p − 2 and 2log p ,
respectively. •

In Figure 2 we illustrate the limited processor parallel prefix algorithm for the values ofn = 12 and

p = 4 . Thus it takes 2log 4 = 4 communication steps and2
12

4
+ log 4 − 2 = 6 arithmetic steps to com-

pute prefixes of12 terms with 4 processors.

For parallel implementation of the SP Algorithm (henceforth called the PP Algorithm) we allocate
m matrices to each processor and perform the limited processor parallel prefix algorithm with these matri-

ces. Considering all four steps of the SP algorithm for the solution of (1) we have the following theorem:

THEOREM 3.

The PP Algorithm solves (1) withn = m p in 35
n

p
+ 20 logp − 29 parallel arithmetic and

13 logp communication steps on a hypercube withp nodes.

PROOF.

Step 1is performed in 3m divisions since there arem matrices allocated to each processor.

Step 2has 3 substeps. In the first we perform sequential prefix at each processor. Because of the spe-
cial structure of the matrices each matrix multiplication is performed with6 multiplications and4 addi-
tions. Hence the first substep costs10 (m − 1) arithmetic operations. In the second substep ofStep 2we
perform parallel prefix using these product blocks. We lose some of the structure in the matrices involved
and perform matrix multiplication using12 multiplications and 8 additions.Thus the parallel prefix step
will take 20 log p arithmetic steps. Since only the first two rows of the matrices need to be communicated,
the parallel prefix step will take 6(2 log p − 1) communication steps. In the third substep ofStep 2we
first send the product block in processorG (i) to processorG (i + 1) which will cost 6 communica-
tion steps. Then we multiply this element with all the elements in the processor except the last one.This
substep costs20 (m − 1) arithmetic steps since the matrices are multiplied with12 floating-pointmulti-
plications and8 floating-point additions.

-10-

In Step 3processor p − 1 , which holds the matrixCn−1 , calculates x0 by performing a single
division, and thenx0 is broadcast to all other processors. This operation can be performed inlog p com-
munication steps by embedding a suitable tree of depthlog p [15,16]. InStep 4we calculate allxi by
performing m multiplications andm additions per processor. The total result follows by summing the
number of arithmetic operations and communication steps.•

Step ArithmeticComplexity CommunicationComplexity

1 3 m -
2 30 (m − 1) + 20 logp 12 logp
3 1 log p
4 2 m -

Total 35m + 20 logp − 29 13log p

Finally it is interesting to observe that an SIMD system with processor masking capability is ade-
quate for the algorithm although in actual experiments we used the Intel iPSC/d5 which is an MIMD sys-
tem.

5. ESTIMATED SPEED-UP AND EFFICIENCY

The speed-up and efficiency of the PP Algorithm with respect to the LU and the SP Algorithms can
be estimated using the arithmetic and communication complexity figures found previously. We hav eper-
formed experiments, similar to those mentioned in [12], on the Intel iPSC/d5 hypercube running XENIX
286 R3.4 and iPSC Software R3.1 to measure the time it takes to perform a floating-point operation
(τ comp), and the time it takes to transfer a floating-point number to an adjacent node (τ comm). Theexperi-
ments indicated thatτ comp ≈ 0. 058 milliseconds for floating-point multiplication, andτ comm ≈ 1. 48 mil-
liseconds. Usingthese we can estimate the speed-up of the PP Algorithm with respect to the LU and the SP
Algorithms as

SPP/LU =
TLU

TPP
=

(8 n − 7) τ comp

(35
n

p
+ 20 logp − 29)τ comp + (13 log p) τ comm

,

SPP/SP =
TSP

TPP
=

(15 n − 11)τ comp

(35
n

p
+ 20 logp − 29)τ comp + (13 log p) τ comm

.

Similarly the efficiency of the PP Algorithm with respect to the LU and the SP Algorithms is found
as

EPP/LU =
SPP/LU

p
=

(8 n − 7) τ comp

(35 n + 20 p log p − 29 p) τ comp + (13 p log p) τ comm
,

EPP/SP =
SPP/SP

p
=

(15 n − 11)τ comp

(35 n + 20 p log p − 29 p) τ comp + (13 p log p) τ comm
.

The results are shown in Table 1 for the value ofp = 32 .

6. EXPERIMENTAL RESULTS AND CONCLUSIONS

We hav eexperimented on an Intel iPSC/d5 hypercube system for the values ofn between 32 and
8192 .The LU and the SP algorithms were run on a single node and the PP algorithm was run on1 , 2 ,
3 , 4 and 5 dimensionalsubcubes. The initial loading of the data was not taken into account for any of

these algorithms. The experiments were done to compute the cubic spline approximation of some random
data. The types of tridiagonal matrices that arise in cubic spline approximation are diagonally dominant and

-11-

mostly symmetric [1]. It has been shown that some stability problems arise in the use of the recursive dou-
bling algorithm when the size of system is large [3]. Since the size of memory on the Intel iPSC/d5 is
about 300 kilobytes/node, experimentation was kept to tridiagonal systems of size no more than 8192.

The computation and communication time were measured using theclock() routine at the beginning
and end of each program. The timings of the LU, the SP, and PP algorithms are given in Table 2 in millisec-
onds. Usingthese data we can compute the measured speed-up and efficiency of the PP Algorithm with
respect to its sequential counterparts. These are shown in Table 3 for the value ofp = 32 (compareTable
1 to Table 3). Also, in Figures 3a, and 3b we show the estimated and measured efficiency of the PP Algo-
rithm with respect to LU algorithm as a function of dimension of the cube for values of n = 4096 and
n = 8192 ,respectively. Similarly, the PP Algorithm is compared to the SP Algorithm in Figures 4a and 4b.

The small differences between the estimated and measured values are due to the fact that we assumed all
floating-point operations take the same amount of time, and also overhead factors, such as loop control,
memory fetch etc. were not taken into account.

The experimental results have shown the proposed algorithm achieves linear speed-up and its effi-
ciency is somewhere between 0.50 and 0.60.

REFERENCES

1. AHLBERG,J. H., NILSON, E. N. and WALSH, J. L.The Theory of Splines and their Applications,
Academic Press, 1967.

2. DONGARRA,J.J., BUNCH, J. R., MOLER, C. B., and STEWART, G.W. Linpack Users’ Guide,
SIAM, Philadelphia, 1979.

3. DUBOIS,P. and RODRIGUE, G. An analysis of the recursive doubling algorithm, inHigh Speed
Computer and Algorithm Organization, edited by D. J. Kuck, D. H. Lawrie and A. H. Sameh, pp.
299-305, Academic Press, 1977.

4. HELLER, D. A survey of parallel algorithms in numerical linear algebra,SIAM Review, pp.
740-777, October 1978

5. JOHNSSON,S. L. Band matrix systems solvers on ensemble architecture, inSupercomputers: Algo-
rithms, Architectures, and Scientific Computation, edited by F. A. Matsen and T. Tajima, pp. 196-216,
University of Texas Press, Austin, 1986.

6. JOHNSSON,S. L. Solving tridiagonal systems on ensemble architectures,SIAM Journal on Scien-
tific and Statistical Computing, Vol. 8, No. 3, pp. 354-392, May 1987.

7. JOHNSSON,S. L. Communication efficient basic linear algebra computations on hypercube multi-
processors,Journal of Parallel and Distributed Computing, No. 4, pp. 133-172, 1987.

8. JOHNSSON,S. L. and HO, C. T. Multiple tridiagonal systems, the alternating direction methods
and boolean cube configured multiprocessors, Research Report, Yale University,
YALEU/DCS/RR-532, June 1987.

9. KOGGE, P. M. and STONE, H. S.A parallel algorithm for the efficient solution of a general class of
recurrence equations,IEEE Transactions on Computers, Vol. C-22, No. 8, pp. 786-793, August 1973.

10. KRUSKAL, C. P., RUDOLPH, L. and SNIR, M. The power of parallel prefix,IEEE Transactions on
Computers, Vol. C-34, No. 10, pp. 965-968, October 1985.

11. LADNER,R. and FISCHER, M.Parallel prefix computation,Journal of ACM, Vol. 27, No. 4, pp.
831-838, October 1980.

12. MCBRYAN, O. A. and VAN DE VELDE, E. F. Hypercube algorithms and implementations,SIAM
Journal on Scientific and Statistical Computing, Vol. 8, No. 2, pp. s227-s287, March 1987.

13. ORTEGA, J. and VOIGT, R. Partial differential equations on vector and parallel computers,SIAM
Review, pp. 149-240, June 1985.

14. REINGOLD,E. M., NIEVERGELT, J. and DEO, N. Combinatorial Algorithms: Theory and Prac-
tice, pp. 173-179, Prentice-Hall, 1977.

-12-

15. SAAD,Y. and SCHULTZ, M. H. Data communication in hypercubes, Research Report, Yale Univer-
sity, YALEU/DCS/RR-428, October 1985.

16. SAAD,Y. and SCHULTZ, M. H. Topological properties of hypercubes, Research Report, Yale Uni-
versity, YALEU/DCS/RR-389, June 1985.

17. SEITZ,C. L. The cosmic cube,Communications of the ACM, Vol. 28, No. 1, pp. 22-33, January
1985.

18. STONE, H. S. An efficient parallel algorithm for the solution of a tridiagonal linear system of equa-
tions,Journal of ACM, Vol. 20, No. 1, pp. 27-38, January 1973.

19. STONE, H. S. Parallel tridiagonal equation solvers,ACM Transactions on Mathematical Software,
Vol. 1, No. 4, pp. 289-307, December 1975.

-13-

Table 1. Estimated speed-up and efficiency for p = 32

n SPP/LU SPP/SP EPP/LU EPP/SP

32 0.14 0.27 0.004 0.008

64 0.28 0.53 0.009 0.017

128 0.54 1.02 0.017 0.032

256 1.02 1.91 0.032 0.060

512 1.79 3.35 0.056 0.105

1024 2.87 5.39 0.090 0.168

2048 4.13 7.74 0.129 0.242

4096 5.28 9.89 0.165 0.309

8192 6.13 11.49 0.192 0.359

-14-

Table 2. The timings of the LU, SP and PP Algorithms (in milliseconds)

n LU SP
PP

p = 2

PP

p = 4

PP

p = 8

PP

p = 16

PP

p = 32
32 15 40 40 30 25 25 75

64 30 75 80 45 35 60 85

128 60 155 155 85 55 65 90

256 120 315 310 160 95 80 100

512 235 625 615 315 165 125 120

1024 480 1250 1225 620 320 210 150

2048 960 2495 2445 1230 625 370 230

4096 1920 4990 4885 2450 1235 655 400

8192 3840 9990 9775 4895 2455 1260 685

-15-

Table 3. Measured speed-up and efficiency for p = 32

n SPP/LU SPP/SP EPP/LU EPP/SP

32 0.20 0.53 0.006 0.017

64 0.35 0.88 0.011 0.028

128 0.67 1.72 0.021 0.054

256 1.20 3.15 0.038 0.098

512 1.96 5.21 0.061 0.163

1024 3.20 8.33 0.100 0.260

2048 4.17 10.85 0.130 0.339

4096 4.80 12.47 0.150 0.390

8192 5.61 14.58 0.175 0.456

