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This paper makes use of the recently introduced technique of γ-operators to evaluate the Hankel determinant
with binomial coefficient entries ak = (3k)!/(2k)!k! . We actually evaluate the determinant of a class of
polynomials ak(x) having this binomial coefficient as constant term. The evaluation in the polynomial case
is as an almost product, i.e. as a sum of a small number of products. The γ-operator technique to find the
explicit form of the almost product relies on differential-convolution equations and establishes a second order
differential equation for the determinant.
In addition to x = 0, product form evaluations for x = 3

5
, 3

4
, 3

2
, 3 are also presented. At x = 1, we obtain

another almost product evaluation for the Hankel determinant with ak = (3k + 1)!/(2k + 1)!k! .

Keywords: Hankel determinants, binomial coefficients, almost product form evaluations, differential equations, γ-
operators.

1 Introduction
Certain classes of Hankel determinants with combinatorially interesting entries ak = ai+j have product
representations with surprising evaluations. An example that was proved in (1) is

det
[(

3(i+ j) + 2
i+ j

)]
0≤i,j≤n

=
n∏
i=1

(6i+ 4)!(2i+ 1)!
2(4i+ 2)!(4i+ 3)!

.

A number of evaluations of this type appear in Gessel and Xin (4), and a comprehensive list can be found
in Krattenthaler ((6), Theorem 31). For product form evaluations, LU decomposition, continued fractions
and Dodgson condensation are the standard tools. There is an extensive literature on this topic, and a
compilation of the state of affairs of the theory of determinants up to 2005 is in Krattenthaler (5; 6).

It appears that the evaluation of Hankel determinants with one of the simplest looking binomial entries
among the lot, namely the one corresponding to

ak =
(

3k
k

)
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does not appear in these compilations. In this paper we prove that

det
[(

3(i+ j)
i+ j

)]
0≤i,j≤n

=
n∏
i=1

3(3i+ 1)(6i)!(2i)!
(4i)!(4i+ 1)!

. (1)

However, this evaluation is only one of the many results that follows from our method. We actually
evaluate the determinant of the Hankel matrix with polynomial entries

ak(x) =
k∑

m=0

(
3k −m
k −m

)
xm (2)

as an almost product (2; 3), in this case as a sum of n+ 1 simple products. Put

H0(n, x) = det[ai+j(x)]0≤i,j≤n . (3)

For small parameters, ak(x) and H0(n, x) are as follows:

a0(x) = 1
a1(x) = 3 + x

a2(x) = 15 + 5x+ x2

a3(x) = 84 + 28x+ 7x2 + x3

a4(x) = 495 + 165x+ 45x2 + 9x3 + x4

and

H0(0, x) = 1
H0(1, x) = 6− x
H0(2, x) = 99− 24x− x2

H0(3, x) = 4590− 1242x− 252x2 + 62x3

H0(4, x) = 601749− 161082x− 82080x2 + 29640x3 − 2090x4 .

The polynomials in (2) are of the form

a
(β,α)
k (x) =

k∑
m=0

(
βk + α−m
k −m

)
xm .

Following (2; 3), we refer to this as the (β, α)-case of the Hankel determinant evaluation problem.
In addition to the specialization at x = 0, the method to prove the (3, 0)-case provides product eval-

uations similar to (1) for x = 3
5 ,

3
4 ,

3
2 , 3. These are given in Corollaries 1 and 2. The evaluation of the

(3, 0)-case uses the γ-operator technique that we introduced in (3), and the tables therein. The γ-operators
bypass the trace calculations of (2) that were used to evaluate the in-between (3, 1)-case and consequently
the evaluation of the Hankel determinant of binomial coefficients

ak =
(

3k + 1
k

)
.
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This Hankel determinant was evaluated as an almost product in (2). Taking x = 1 in (2) and using
Theorem 1 below, we obtain yet another formula for this evaluation.

The technique presented in (2) and further developed in (3) to find the explicit form of the almost
product for H0(n, x) relies on establishing a second order ODE satisfied by H0(n, x), constructing the
polynomial solution of this ODE by the method of Frobenius, and evaluating it at x = 0. Sometimes the
constant of integration can be obtained more easily if the Frobenius solution is sought at some point other
than x = 0. In the proof of Theorem 1, for example, we use x = 3

2 .
We give the elements of the application of γ-operators by working through the proof of the following

theorem. The evaluations at special points x = 0, 3
5 ,

3
4 ,

3
2 , 3 are obtained as byproducts along the way to

obtaining the ODE for H0(n, x).

Theorem 1 Suppose ak and the H0(n, x) are as defined in (2) and (3). Then

H0(n, x) =
n∏
i=1

9(2i)!(6i− 2)!
2(4i)!(4i− 2)!

n∑
k=0

n(n− 1) · · · (n− k + 1)pk(n)
9kk! (4n+ 1)(4n) · · · (4n− k + 3)

(2x− 3)k (4)

where pk are integral polynomials satisfying the recurrence relation

pk(x) = −2(2x+ k)pk−1(x)− 15(k − 1)(4x+ 4− k)pk−2(x)

for k > 2 with p0(x) = 1, p1(x) = −1, p2(x) = 4x− 11.

The outline of this paper is as follows: In section 2, we define the determinant Hλ for partitions λ
obtained from a given Hankel matrix and the γ-operators. For the proofs of the combinatorial properties
of the γ-operators and their compiled tables of values we refer the reader to (3). This is followed in section
3 by the three identities that are typical of our methods, and the derivation of the equations satisfied by
the various Hλ that arise in the calculations. We obtain a system of first order ODE which results in a
second order ODE for H0(n, x) in section 4. Evaluation at special points are discussed in section 5, and
the general solution of the differential equation is derived in section 6, followed by remarks. The proofs
of the three identities used can be found in the Appendix.

2 Preliminaries
A partition λ of an integer m is a weakly decreasing sequence of nonnegative integers λ = (λ1 ≥ λ2 ≥
· · · ≥ λm) with m = λ1 + λ2 + · · · + λm. Each of the integers λi > 0 is a part of λ. For example
λ = (3, 2, 2) is a partition of m = 7 into three parts.

We use the notation λ = mαm · · · 2α21α1 for integer partitions λ = (λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0),
indicating that λ has αi parts of size i. Thus for example, λ = 32213 denotes the partition 3 + 3 +
2 + 1 + 1 + 1 of 11. We use the special notation 0 to denote the partition of zero. Each partition
(λ1 ≥ λ2 ≥ · · · ≥ λn+1) defines a determinant of a matrix obtained from the (n+ 1)× (n+ 1) Hankel
matrix An = [ai+j ]0≤i,j≤n in the symbols ak, by shifting the column indices of the entries up according
to λ as follows:

Hλ = det[ai+j+λn+1−j
]0≤i,j≤n .
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For example when n = 3,

H0 = det


a0 a1 a2 a3

a1 a2 a3 a4

a2 a3 a4 a5

a3 a4 a5 a6

 , H2 = det


a0 a1 a2 a5

a1 a2 a3 a6

a2 a3 a4 a7

a3 a4 a5 a8

 , H312 = det


a0 a2 a3 a6

a1 a3 a4 a7

a2 a4 a5 a8

a3 a5 a6 a10


We remark that these are obtained in a way similar to the expansion of Schur functions in terms of the
homogeneous symmetric functions by the Jacobi-Trudi identity (7). When it is clear from the context, we
use Hλ for the (n+ 1)× (n+ 1) Hankel determinant Hλ(n, x).

The γ-operator is a multilinear operator defined on m-tuples of matrices:

Definition 1 Given (n+1)×(n+1) matricesA andX1, X2, . . . , Xm withm ≥ 1, define γA( ) = det(A)
and

γA(X1, . . . , Xm) = ∂t1∂t2 · · · ∂tm det(A+ t1X1 + t2X2 + · · ·+ tmXm)|t1=···=tm=0

where t1, t2, . . . , tm are variables that do not appear in A or X1, X2, . . . , Xm.

One of our motivations for using the γ-operators is that they differentiate nicely; the derivative of a γ
is a sum of γ’s.

Proposition 1 For m ≤ n,

d

dx
γA(X1, . . . , Xm) = γA(

d

dx
A,X1, . . . , Xm) +

m∑
j=1

γA(X1, . . . , Xj−1,
d

dx
Xj , Xj+1, . . . , Xm) .

The reader is referred to (3) for the proofs of various properties of γ-operators. It is worth mentioning
that the values of the γ-operators need not be calculated from scratch for different Hankel determinant
evaluations. Tables of of values of γ-operators (as well as a computationally feasible combinatorial inter-
pretation of γA(X1, . . . , Xm) for small m) are given in (3) (Sections 3, 4 and Appendix III).

Let ak(x) be as in (2) and define the convolution polynomials

cn =
n∑
k=0

akan−k

with c−1 = 0.

3 Identities and expansions
The bulk of the work for the proof of Theorem 1 is contained in obtaining the ODE for H0(n, x), and this
part of the argument itself relies on three essential identities, which are characteristic of our method.

Lemma 1 (First Identity (FI))(i)

3(x− 3)x(4x− 3)
d

dx
an = (4(2x− 3)n+ 2(2x− 5)) an+1

−
(
27(2x− 3)n+ 3(4x2 − 3x− 9)

)
an (5)

+4(x− 1)cn+1 − 27(x− 1)cn .

(i) In (2) p. 47, where this identity appears, there is a typo and the constant 4 in front of the cn+1 term is missing.
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Lemma 2 (Second Identity (SI))(
4(2x− 3)2(5x− 3)n+ 2(2x− 3)(5x− 3)(6x− 11)

)
an+2

−
(
81(8x3 − 24x2 + 27x− 9)n+ 18(37x3 − 123x2 + 153x− 54)

)
an+1 (6)

+(729x3n+ 486x3)an + 4(x− 1)(2x− 3)(5x− 3)cn+2

−3(40x4 − 30x3 − 207x2 + 270x− 81)cn+1 + 162x2(5x2 − 15x+ 9)cn = 0 .

Lemma 3 (Third Identity)
n+2∑
j=0

wn,j(x)ai+j(x) = 0 (7)

for i = 0, 1, . . . , n where wn,j(x) are certain polynomials weights with

wn,n+2 = 8(3 + 4n)(5 + 4n)(5x− 3) , (8)
wn,n+1 = 4(3 + 4n)(150 + 219n+ 81n2 − 250x− 365nx− 135n2x− 50x2 − 40nx2) ,
wn,n = 3(−942n− 2733n2 − 2484n3 − 729n4 + 1570nx+ 4555n2x+ 4140n3x

+1215n4x+ 720x2 + 2196nx2 + 2188n2x2 + 720n3x2) .

We will use the third identity in a determinantal form as given in (12). The proofs of these three lemmas
are given in the Appendix. The first two are straightforward generating function calculations, whereas the
proof of the third identity uses an alternate form of the generating function of the ak and requires a new
technique. Similar to the third identity proofs of (3, 1) and (2, 1)-cases given in (2), we prove that weights
wn,j(x) of Lemma 3 exist without explicitly constructing them except for the three in (8) that we need.

Theorem 2 Suppose the polynomials ak(x) and the (n+1)×(n+1) Hankel determinantH0 = H0(n, x)
are as defined in (2) and (3). Then

(x− 3)(2x− 3)(5x− 3)
d2

dx2
H0 − 2

(
10nx2 − 10x2 − 27nx+ 36x− 9n− 45

) d

dx
H0

+n(10xn− 3n− 10x+ 21)H0 = 0 . (9)

Proof: The proof is made up of a number of different sections. First we derive two equations that relate
the determinants H2, H12 , H1, H0. These are used to express H2 and H12 in terms of H1, H0. Then we
find expressions for the derivatives of H0 and H1 in terms of H0 and H1.

3.1 Equation from γA([SI(i+ j)])

Apply γA(∗) to the (n+ 1)× (n+ 1) matrix whose (i, j)-th entry is obtained from the second identity (6)
evaluated at i+ j and expand using linearity. If we denote the matrix so obtained from the second identity
by [SI(i+ j)], then the computation is the expansion of γA([SI(i+ j)]) = 0. Making use of the entries
in the γA(∗) computations from Table 2 of (3), we get

0 = 4(2x− 3)2(5x− 3)(2nH2 − 2(n− 1)H12)
+2(2x− 3)(5x− 3)(6x− 11)(H2 −H12)− 81(8x3 − 24x2 + 27x− 9)(2nH1)
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−18(37x3 − 123x2 + 153x− 54)H1 + 729x3n(n+ 1)H0 + 486x3(n+ 1)H0

+4(x− 1)(2x− 3)(5x− 3)(2H2 − 2H12 + 2(x+ 3)H1 + (2n− 1)(x2 + 5x+ 15)H0)
−3(40x4 − 30x3 − 207x2 + 270x− 81)(2H1 + 2n(x+ 3)H0)
+162x2(5x2 − 15x+ 9)(2n+ 1)H0 .

Therefore

2(5 + 4n)(2x− 3)2(5x− 3)H2 − 2(1 + 4n)(2x− 3)2(5x− 3)H12 (10)
−2(−621− 729n+ 1863x+ 2187nx− 1476x2 − 1944nx2 + 247x3 + 648nx3 + 80x4)H1

+(540 + 378n− 1620x− 1134nx+ 2754x2 + 2430nx2 − 2044x3 − 1663nx3 + 729n2x3

+ 734x4 + 1232nx4 − 40x5 − 160nx5)H0 = 0 .

3.2 Equation from the third identity
Define the column vector

vj = [aj , aj+1, . . . , aj+n]T .

The third identity (7) says that the vectors v0, v1, . . . , vn+2 are linearly dependent with the weights wn,j
i.e.

n+2∑
j=0

wn,jvj = 0 . (11)

Now consider the determinant of the (n+ 1)× (n+ 1) matrix whose first n columns are the columns of
A, and whose last column is the zero vector. Writing the zero vector in the form (11) and expanding the
determinant by linearity, we find

wn,n+2H2 + wn,n+1H1 + wn,nH0 = 0 . (12)

Substituting the weights from (8), this gives the equation

8(3 + 4n)(5 + 4n)(5x− 3)H2 (13)
+4(3 + 4n)(150 + 219n+ 81n2 − 250x− 365nx− 135n2x− 50x2 − 40nx2)H1

+3(−942n− 2733n2 − 2484n3 − 729n4 + 1570nx+ 4555n2x+ 4140n3x

+1215n4x+ 720x2 + 2196nx2 + 2188n2x2 + 720n3x2)H0 = 0 .

This is the second equation we need. Equations (10) and (13) form a linear system which can be solved
to express the determinants H2, H12 in terms of the determinants H0, H1. We obtain

8(3 + 4n)(5 + 4n)(5x− 3)H2 = (14)
−3
(
− 942n− 2733n2 − 2484n3 − 729n4 + 1570nx+ 4555n2x+ 4140n3x+ 1215n4x+ 720x2

+2196nx2 + 2188n2x2 + 720n3x2
)
H0

+4(3 + 4n)
(
− 150− 219n− 81n2 + 250x+ 365nx+ 135n2x+ 50x2 + 40nx2

)
H1 ,
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8(1 + 4n)(3 + 4n)(2x− 3)2H12 = (15)(
− 2160− 12870n− 26613n2 − 22356n3 − 6561n4 + 2880x+ 17160nx+ 35484n2x

+29808n3x+ 8748n4x+ 264x2 + 1348nx2 + 280n2x2 − 3456n3x2 − 2916n4x2 − 24x3

−272nx3 − 1616n2x3 − 1728n3x3 − 96x4 − 512nx4 − 512n2x4
)
H0 + 4(3 + 4n)

(
36

+171n+ 243n2 − 48x− 228nx− 324n2x− 14x2 − 44nx2 + 108n2x2 + 8x3 + 32nx3
)
H1 .

4 The derivatives of H0 and H1

We now proceed with the calculation of the derivatives of H0 and H1.

4.1 The derivative of H0

From Definition 1, H0 = γA( ) . Therefore by Proposition 1

d

dx
H0 = γA([

d

dx
ai+j ]) .

Using FI(i+ j),

3(x− 3)x(4x− 3)
d

dx
H0 = 4(2x− 3)γA([(i+ j)ai+j+1])

+2(2x− 5)γA([ai+j+1])
−27(2x− 3)γA([(i+ j)ai+j ])
−3(4x2 − 3x− 9)γA([ai+j ])
+4(x− 1)γA([ci+j+1])
−27(x− 1)γA([ci+j ]) .

The values for γA(∗) from Table 2 of (3) give

3(x− 3)x(4x− 3)
d

dx
H0 = 4(2x− 3)2nH1

+2(2x− 5)H1

−27(2x− 3)n(n+ 1)H0

−3(4x2 − 3x− 9)(n+ 1)H0

+4(x− 1)(2H1 + 2n(x+ 3)H0)
−27(x− 1)(2n+ 1)H0 .

Therefore

3(x− 3)x(4x− 3)
d

dx
H0 = (16)

2(4n+ 3)(2x− 3)H1 + (54 + 138n+ 81n2 − 18x− 83nx− 54n2x− 12x2 − 4nx2)H0 .
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4.2 The derivative of H1

To differentiate H1 we use the expression H1 = γA([ai+j+1]) from Table 2 of (3). From Proposition 1
we have

d

dx
H1 = γA([ai+j+1], [

d

dx
ai+j ]) + γA([

d

dx
ai+j+1]) .

Therefore, to compute d
dxH1

γA([ai+j+1], [FI(i+ j)]) and γA([FI(i+ j + 1)])

are needed. Using the entries in Table 3 of (3) for the γA([ai+j+1], ∗) computations, we get for the first
one of these

3(x− 3)x(4x− 3)γA([ai+j+1], [FI(i+ j)]) = 4(2x− 3)(2(2n− 1)H12)
+2(2x− 5)2H12

−27(2x− 3)n(n− 1)H1

−3(4x2 − 3x− 9)nH1

+4(x− 1)(4H12 + 2(n− 1)(x+ 3)H1

−2(n− 1)(x2 + 5x+ 15)H0)
−27(x− 1)((2n− 1)H1 − (2n− 1)(x+ 3)H0) ,

and the second one by using Table 2 of (3) as

3(x− 3)x(4x− 3)γA([FI(i+ j + 1)]) = 4(2x− 3)(2nH2 − 2(n− 1)H12)
+2(6x− 11)(H2 −H12)
−27(2x− 3)(2nH1)
−3(4x2 + 15x− 36)H1

+4(x− 1)(2H2 − 2H12 + 2(x+ 3)H1

+(2n− 1)(x2 + 5x+ 15)H0)
−27(x− 1)(2H1 + 2n(x+ 3)H0).

Adding, we get

3(x− 3)x(4x− 3)
d

dx
H1 = 2(4n+ 5)(2x− 3)H2 (17)

+2(4n+ 1)(2x− 3)H12

+(135 + 138n+ 81n2 − 72x− 83nx− 54n2x− 12x2 − 4nx2)H1

+(x− 1)(4x2 − 7x− 21)H0 .

Note that we obtained the expressions for the derivative of H0 in (16) and the derivative of H1 in (17)
by a direct application of γ-operators. The derivations do not require the expansions (14) and (15) which
used the third identity (7) for their derivation.
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We can use (14) and (15) to express d
dxH1 as a linear combination of H0, H1:

6(4n+ 3)(x− 3)x(2x− 3)(4x− 3)(5x− 3)
d

dx
H1 = (18)

2(4n+ 3)
(
280nx4 + 120x4 + 540n2x3 − 82nx3 − 162x3 − 1944n2x2 − 2817nx2

−594x2 + 2187n2x+ 3807nx+ 891x− 729n2 − 1242n− 243
)
H1

+
(
− 1280n2x5 − 960nx5 − 8640n3x4 − 16400n2x4 − 14640nx4 − 5400x4 − 14580n4x3

−17928n3x3 + 15178n2x3 + 34902nx3 + 14418x3 + 52488n4x2 + 159408n3x2

+157140n2x2 + 48384nx2 − 486x2 − 59049n4x− 201204n3x− 230445n2x− 100602nx
−13122x+ 19683n4 + 67068n3 + 76815n2 + 33534n+ 4374

)
H0 .

Therefore we have a first order linear system of equations of the form

Q
d

dx
H0 = Q0H0 +Q1H1 (19)

U
d

dx
H1 = U0H0 + U1H1

where the coefficient polynomials are as given in (16) and (18). First differentiate the first equation in
(19) and substitute the expansion of d

dxH0 and d
dxH1 in terms of H0 and H1. After that, H1 can be

eliminated from the resulting equation for d2

dx2H0 and the equation for d
dxH0 that we already have. This

proves Theorem 2. 2

5 Product evaluations at special points
At this point we have enough information to evaluate H0(n, x) at special points. The evaluations do not
use the ODE (9) for H0(n, x). We recall the following general result on Hankel determinants from (2)
((2), Section 3, Proposition 1):

Proposition 2

H0(n− 1, x)H0(n+ 1, x) = H0(n, x)H2(n, x) +H0(n, x)H12(n, x)−H1(n, x)2 . (20)

Note that for our problem we know both H2(n, x) and H12(n, x) as a linear combination of H1(n, x)
and H0(n, x). This means that for any x = x0 for which we can evaluate H2(n, x0), H12(n, x0) and
H1(n, x0) in terms of H0(n, x0), we obtain a recursion of the form

H0(n− 1, x0)H0(n+ 1, x0) = f(n, x0)H0(n, x0)2 , (21)

where f(n, x0) is a rational function of n. Since this is a recursion in H0(n, x0)/H0(n − 1, x0) with
H0(1, x0)/H0(0, x0) = 6 − x0, it can be solved to evaluate H0(n, x0) in product form. Note that in
particular, we can easily evaluateH1(n, x0)/H0(n, x0) for any x0 for which the right hand side of (18) (or
(16)) vanishes. We first show that there are product form evaluations ofH0(n, x) at the points x = 0, 3

4 , 3.
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Corollary 1 Suppose ak(x) is as defined in (2). Then

det[ai+j(0)]0≤i,j≤n =
n∏
i=1

3(3i+ 1)(2i)!(6i)!
(4i)!(4i+ 1)!

, (22)

det[ai+j( 3
4 )]0≤i,j≤n =

n∏
i=1

3(2i)!(6i+ 1)!
2(4i)!(4i+ 1)!

, (23)

det[ai+j(3)]0≤i,j≤n =
(3n+ 2)!

2

n∏
i=1

3(2i)!(6i− 2)!
(4i)!(4i+ 1)!

. (24)

Proof: Evaluating the expansions (14) and (15) and the derivative (18) at the points x = 0, 3
4 , 3, we obtain

the factor f(n, x0) in the recursion (21) explicitly as:

f(n, 0) =
9(3n+ 2)(3n+ 4)(6n+ 1)(6n+ 5)

4(4n+ 1)(4n+ 3)2(4n+ 5)
,

f(n, 3
4 ) =

9(3n+ 1)(3n+ 2)(6n+ 5)(6n+ 7)
4(4n+ 1)(4n+ 3)2(4n+ 5)

,

f(n, 3) =
9(3n+ 4)(3n+ 5)(6n− 1)(6n+ 1)

4(4n+ 1)(4n+ 3)2(4n+ 5)
.

As an example of the steps involved in these derivations, we consider the case of the point x = 0.
Specialize the identities (10), (16) and (17) at x = 0 and solve for H2, H12 , H1 to obtain

H1 =
27n2 + 46n+ 18

2(4n+ 3)
H0

H2 =
729n4 + 3942n3 + 7655n2 + 6286n+ 1800

8(4n+ 3)(4n+ 5)
H0 (25)

H12 =
3
(
243n4 + 342n3 − 7n2 − 126n− 32

)
8(4n+ 1)(4n+ 3)

H0 .

Substituting these expressions in (20),

H0(n− 1, 0)H0(n+ 1, 0) =
9(3n+ 2)(3n+ 4)(6n+ 1)(6n+ 5)

4(4n+ 1)(4n+ 3)2(4n+ 5)
H0(n, 0)2 .

This recurrence gives

H0(n, 0) =
n−1∏
m=0

6
m∏
i=1

9(3i+ 2)(3i+ 4)(6i+ 1)(6i+ 5)
4(4i+ 1)(4i+ 3)2(4i+ 5)

,

which can in turn be rewritten as (23). The proofs of the other two evaluations are similar. Specializing
(10), (16) and (17) at x = 3

4 we obtain

H1 =
54n2 + 98n+ 45

4(4n+ 3)
H0



Evaluation of a Special Hankel Determinant of Binomial Coefficients 261

H2 =
1458n4 + 8208n3 + 16756n2 + 14654n+ 4635

16(4n+ 3)(4n+ 5)
H0 (26)

H12 =
3
(
243n4 + 396n3 + 104n2 − 69n− 14

)
8(4n+ 1)(4n+ 3)

H0 ,

and at x = 3, we obtain

H1 =
27n2 + 49n+ 36

2(4n+ 3)
H0

H2 =
729n4 + 4104n3 + 9107n2 + 10108n+ 4680

8(4n+ 3)(4n+ 5)
H0 (27)

H12 =
3
(
243n4 + 396n3 + 347n2 − 114n− 32

)
8(4n+ 1)(4n+ 3)

H0 .

2

6 The differential equation solution
We now indicate briefly the solution to the ODE (9) forH0(n, x). Let bk be the coefficient of the Frobenius
solution at the regular singular point x = 3

2 . The exponents are computed to be r = 0, 4n + 3. The
polynomial solution is for r = 0, and we obtain the recursion for the coefficients

bk =
4(k − n− 1)

27k(k − 4n− 3)
(
− 3(k + 2n)bk−1 + 5(k − n− 2)bk−2

)
(28)

with
b0 = H0(n, 3

2 ) , b1 = −2
9
n b0

where the expression for b1 follows from specializing identity (16) at x = 3
2 . We can show by induction

using (28) that for k > 0

bk =
(

2
9

)k
n(n− 1) · · · (n− k + 1)

k! (4n+ 1)(4n) · · · (4n− k + 3)
pk(n) b0

where pk = pk(x) is an integral polynomial of degree k− 1 satisfying the recurrence relation in Theorem
1. We omit the proof of this step. Using the product form of b0 = H0(n, 3

2 ) from (30) we obtain (4). This
completes the proof of Theorem 1.

7 Remarks and additional results
We have made use of the γ-operators of (3) to evaluate the Hankel determinant of the polynomials in (2)
and obtained a number of product form evaluations at special points as corollaries of the method.

We remark that the polynomials p4k, p4k−1, p4k−2, p4k−3 for k ≥ 1 that appear in the almost product
evaluation in (4) are divisible in ZZ[x] by

k−1∏
i=1

(2x− 2i+ 1) .
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It should also be possible to write (4) in alternate forms.

The method also allows for the product form evaluations of the Hankel determinant at x = 3
5 ,

3
2 , and

we give a sketch of the proof for these two. In addition to (14) and (15) we evaluate the identity we obtain
from the expansion of γA([SI(i + j + 1)]) at x = 3

5 . These give H2(n, 3
5 ), H12(n, 3

5 ) and H1(n, 3
5 ) in

terms of H0(n, 3
5 ), and we find

f(n, 3
5 ) =

9(3n+ 4)(3n+ 5)(6n+ 5)(6n+ 7)
4(4n+ 3)(4n+ 5)2(4n+ 7)

.

Similarly, at x = 3
2 we evaluate (14) and (15) together with the identity we obtain from the expansion of

γA([ai+j+1], [SI(i+ j)]). This gives

f(n, 3
2 ) =

9(3n+ 1)(3n+ 2)(6n− 1)(6n+ 1)
4(4n− 1)(4n+ 1)2(4n+ 3)

.

Therefore

Corollary 2 Suppose ak(x) is as defined in (2). Then

det[ai+j( 3
5 )]0≤i,j≤n =

n∏
i=1

9(2i)!(6i+ 4)!
20(4i+ 1)!(4i+ 3)!

, (29)

det[ai+j( 3
2 )]0≤i,j≤n =

n∏
i=1

9(2i)!(6i− 2)!
2(4i)!(4i− 2)!

. (30)

The evaluation of γA([SI(i+ j+ 1)]) and γA([ai+j+1], [SI(i+ j)]) using the tables of γ-operators in (3)
can be found in the Appendix.

Since ak(1) =
(
3k+1
k

)
, we also get the following evaluation

Corollary 3

det
[(

3(i+ j) + 1
i+ j

)]
0≤i,j≤n

=
n∏
i=1

9(2i)!(6i− 2)!
2(4i)!(4i− 2)!

n∑
k=0

n(n− 1) · · · (n− k + 1)pk(n)(−1)k

9kk! (4n+ 1)(4n) · · · (4n− k + 3)

where pk(x) are the integral polynomials defined in Theorem 1.

The (3, 1)-case was already evaluated as an almost product in two different ways in (2) (see (2), (5) and
(6)). The above expression is a third evaluation of this determinant.
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[1] Ö. Eğecioğlu, T. Redmond and C. Ryavec. From a Polynomial Riemann Hypothesis to Alternating

Sign Matrices. The Electronic Journal of Combinatorics, Volume 8 (1), (2001), #R36.
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[8] G. Pólya and G. Szegö. Problems and Theorems in Analysis, Vol. I, translated by D. Aeepli, Springer-
Verlag New York 1972, Part 3, Problem 216, pp. 146, 349.

8 Appendix
The generating function of the ak(x) defined in (2) is given by

f(x, y) =
∑
k≥0

ak(x)yk =
t

(3− 2t) (1− t2xy)
(31)

where

t =
∑
k≥0

(3k)!
(2k + 1)!k!

yk = 1 + y + 3y2 + 12y3 + · · · (32)

satisfies
yt3 = t− 1 . (33)

A general case of this generating function can be found in (8).

8.1 First and Second identities
The proofs of Lemma 1, Lemma 2 are based on generating function manipulations.

Using d
dy t = t3/(1− 3yt2) in the computation of d

dyf and using the resulting expressions for d
dxf and

f ′ = d
dyf , we make the substitutions

d

dx
an → d

dx
f

an → f

nan → yf ′

an+1 → (f − 1)/y
nan+1 → y((f − 1)/y)′
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an+2 → (f − 1− (3 + x)y)/y2

nan+2 → y((f − 1− (3 + x)y)/y2)′

cn → f2

cn+1 → (f2 − 1)/y
cn+2 → (f2 − 1− 2(3 + x)y)/y2

The generating function of the left hand side minus the right hand side of (5) factors as

3
(
yt3 − t+ 1

)
(2t− 3)2y (3t2y − 1) (t2xy − 1)2

(
− 8x2y2t5 + 24x2y2t4 + 18x2y2t3 − 54xy2t3

+8x2yt3 + 4xyt3 − 4x2yt2 − 18xyt2 − 4xt− 12x2yt+ 9xyt+ 27yt+ 6
)
.

The generating function of the left hand side of (6) factors as

3
(
yt3 − t+ 1

)
(2t− 3)2y2 (3t2y − 1) (t2xy − 1)2

(
− 324x4y3t5 + 324x3y3t5 + 80x4y2t5 − 168x3y2t5

+72x2y2t5 + 972x4y3t4 − 972x3y3t4 − 240x4y2t4 + 504x3y2t4 − 216x2y2t4

−243x4y3t3 + 729x3y3t3 + 360x4y2t3 − 270x3y2t3 − 162x2y2t3 − 80x4yt3

+128x3yt3 + 12x2yt3 − 36xyt3 − 270x4y2t2 + 162x3y2t2 − 729x2y2t2 + 729xy2t2

+40x4yt2 + 96x3yt2 − 342x2yt2 + 162xyt2 + 40x3t− 84x2t− 486x3y2t+ 36xt

+18x3yt− 351x2yt+ 648xyt− 243yt− 60x2 + 126x+ 243x2y − 243xy − 54
)
.

Since yt3 − t + 1 is a factor in each numerator, they are both zero by (33) and Lemma 1 and Lemma 2
hold as stated.

8.2 Third identity
For the proof of the third identity we need the following form of the generating function:

Lemma 4 The generating function in (31) has the alternate expression

f(x, y) =
t(3− 2x)− 3x

(x− 3)(4x− 3) + t ((9y − 4)x2 + 10x− 6)
(34)

where yt3 = t− 1.

Proof:

t

(3− 2t) (1− t2xy)
− t(3− 2x)− 3x

(x− 3)(4x− 3) + ((9y − 4)x2 + 10x− 6) t
=

x(4xt− 6t+ 9)
(
yt3 − t+ 1

)
(2t− 3) (t2xy − 1) (−4tx2 + 9tyx2 + 4x2 + 10tx− 15x− 6t+ 9)

and therefore the right hand side vanishes by (33). 2
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We prove the existence of weights wn,0, wn,1, . . . , wn,n+2 satisfying the third identity (7) where
wn,n+2, wn,n+1, wn,n are as in (8).

There is a nontrivial polynomial Q0 = Q0(y) of degree n+ 1 such that

tQ0 = Q1 + y2n+3Ψ0 (35)

where Q1 = Q1(y) is a polynomial of degree n + 1, and Ψ0 = Ψ0(y) is a power series in y; i.e. the
coefficients of yk in tQ0 vanish for n + 2 ≤ k ≤ 2n + 2. Such a nontrivial Q0 exists because there are
n + 2 coefficients to determine in Q0 and only n + 1 linear homogeneous equations these coefficients
need to satisfy. In the next step, put

Q2 =
(
(9y − 4)x2 + 10x− 6

)
Q1 + (x− 3)(4x− 3)Q0 . (36)

Then Q2 = Q2(x, y) is a polynomial in x and y of y-degree n+ 2. All three polynomials Q0, Q1, Q2 are
nontrivial. We claim that the coefficients of Q2 are the weights we want. In other words, the coefficients
of the terms yn+2 through y2n+2 in fQ2 vanish. Writing (34) in the form

f(x, y)
( (

(9y − 4)x2 + 10x− 6
)
t+ (x− 3)(4x− 3)

)
= t(3− 2x)− 3x

and multiplying through by Q0, we get

f(x, y)
( (

(9y − 4)x2 + 10x− 6
)

(Q1+y2n+3Ψ0)+(x−3)(4x−3)Q0

)
= (3−2x)(Q1+y2n+3Ψ0)−3xQ0

Therefore
fQ2 = Q1 + y2n+3Ψ1 (37)

where Ψ1 = Ψ(y) is a power series in y. This last statement (37) is equivalent to
n+2∑
j=0

Cn+2−j(Q2)ai+j = 0 (38)

for i = 0, 1, . . . , n, where by Ck(Ψ) we denote the coefficient of the term yk in a power series Ψ. Thus
(7) holds with

wn,j = Cn+2−j(Q2)

for j = 0, 1, . . . , n+ 2. Therefore

C0(Q2)H2 + C1(Q2)H1 + C2(Q2)H0 = 0 . (39)

This identity is not trivial, for otherwise we would have a nontrivial linear relationship among the n + 1
columns v0, v1, . . . , vn ofHn, butHn does not identically vanish. Rewrite (39) in terms of C0(Q0), C1(Q0), C2(Q0)
which are pure constants, independent on x and y. We will express the coefficients in (39) in terms of
these. Using the expansion in (32) and comparing coefficients in (35) and (36), we obtain

C0(Q1) = C0(Q0)
C1(Q1) = C1(Q0) + C0(Q0)
C2(Q1) = C2(Q0) + C1(Q0) + 3C0(Q0)
C0(Q2) = (−4x2 + 10x− 6)C0(Q1) + (x− 3)(4x− 3)C0(Q0)
C1(Q2) = (−4x2 + 10x− 6)C1(Q1) + 9x2C0(Q1) + (x− 3)(4x− 3)C1(Q0)
C2(Q2) = (−4x2 + 10x− 6)C2(Q1) + 9x2C1(Q1) + (x− 3)(4x− 3)C2(Q0) .
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Therefore

C0(Q2) = (3− 5x)C0(Q0)
C1(Q2) = (3− 5x)C1(Q0) + (5x2 + 10x− 6)C0(Q0) (40)
C2(Q2) = (3− 5x)C2(Q0) + (5x2 + 10x− 6)C1(Q0)− 3(x2 − 10x+ 6)C0(Q0) .

Substituting back in (39) we have

(3− 5x)H0 C2(Q0)−
(
(5x2 + 10x− 6)H0 + (3− 5x)H1

)
C1(Q0)

+
(
3(x2 − 10x+ 6)H0 − (5x2 + 10x− 6)H1 − (3− 5x)H2

)
C0(Q0) = 0 . (41)

We need two linearly independent relations between C2(Q0), C1(Q0), C0(Q0). These are obtained by
evaluating at any two of the special points {0, 3

4 , 3}. Using the expressions (25) for H1, H2, H12 in terms
of n and H0 in (41) we obtain

8(3 + 4n)(5 + 4n)C2(Q0)− 12(5 + 4n)(2 + 10n+ 9n2)C1(Q0)
−3(120 + 778n+ 1445n2 + 1026n3 + 243n4)C0(Q0) = 0 . (42)

This is the first equation we need. For the next point we use x = 3. Using the expressions from (27) for
H1, H2, H12 in terms of n and H0 in (41) we obtain

8(3 + 4n)(5 + 4n)C2(Q0)− 6(5 + 4n)(1 + 2n+ 18n2)C1(Q0)
−3(30 + 67n+ 338n2 + 540n3 + 243n4)C0(Q0) = 0 . (43)

Solving (42) and (43) for C2(Q0) and C1(Q0) in terms of the parameter C0(Q0), we get

C2(Q0) = −
3n
(
243n3 + 540n2 + 343n+ 50

)
8(4n+ 3)(4n+ 5)

C0(Q0)

C1(Q0) = −3(n+ 1)(9n+ 10)
2(4n+ 5)

C0(Q0)

Substituting back into (40) we obtain

C0(Q2) = (3− 5x)C0(Q0)
C1(Q2) =

(
135xn2 − 81n2 + 40x2n+ 365xn− 219n+ 50x2 + 250x− 150

)
C0(Q0)/2(4n+ 5)

C2(Q2) = 3
(
1215xn4 − 729n4 + 720x2n3 + 4140xn3 − 2484n3 + 2188x2n2 + 4555xn2

−2733n2 + 2196x2n+ 1570xn− 942n+ 720x2
)
C0(Q0)/8(4n+ 3)(4n+ 5)

Taking
C0(Q0) = −8(3 + 4n)(5 + 4n)

these are exactly the weights wn,n+2, wn,n+1, wn,n as claimed in (8).
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8.3 The expansions γA([SI(i+ j + 1)]) and γA([ai+j+1], [SI(i+ j)])

The expansion of γA([SI(i+ j + 1)]) using Table 2 of (3) is

2(7 + 4n)(2x− 3)2(5x− 3)H3

−2(3 + 4n)(2x− 3)2(5x− 3)H21 + 2(4n− 1)(2x− 3)2(5x− 3)H13

+(1971 + 1458n− 5913x− 4374nx+ 4896x2 + 3888nx2 − 1142x3 − 1296nx3 − 160x4)H2

+(−513− 1458n+ 1539x+ 4374nx− 1008x2 − 3888nx2 − 154x3 + 1296nx3 + 160x4)H12

+(378− 1134x+ 2430x2 − 1663x3 + 1458nx3 + 1232x4 − 160x5)H1

+(2403 + 1242n− 7209x− 3726nx+ 9108x2 + 5148nx2 − 5029x3 − 2990nx3

− 15x4 − 714nx4 + 198x5 + 912nx5 + 40x6 − 160nx6)H0 = 0 ,

and the expansion of γA([ai+j+1], [SI(i+ j)]) using Table 3 of (3) is

2(5 + 4n)(2x− 3)2(5x− 3)H21 − 4(4n− 1)(2x− 3)2(5x− 3)H13

+(1026 + 2916n− 3078x− 8748nx+ 2016x2 + 7776nx2 + 308x3 − 2592nx3 − 320x4)H12

+(162 + 378n− 486x− 1134nx+ 324x2 + 2430nx2 + 348x3 − 3121nx3 + 729n2x3 − 498x4

+ 1232nx4 + 120x5 − 160nx5)H1

+(−1782− 1242n+ 5346x+ 3726nx− 6534x2 − 5148nx2 + 3534x3 + 2990nx3 − 342x4

+ 714nx4 + 258x5 − 912nx5 − 120x6 + 160nx6)H0 = 0 .
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