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We introduce alternate Lucas cubes, a new family of graphs designed as an alternative for

the well known Lucas cubes. These interconnection networks are subgraphs of Fibonacci

cubes and have a useful fundamental decomposition similar to the one for Fibonacci
cubes. The vertices of alternate Lucas cubes are constructed from binary strings that are

encodings of Lucas representation of integers. As well as ordinary hypercubes, Fibonacci

cubes and Lucas cubes, alternate Lucas cubes have several interesting structural and
enumerative properties. In this paper we study some of these properties. Specifically,

we give the fundamental decomposition giving the recursive structure, determine the
number of edges, number of vertices by weight, the distribution of the degrees; as well
as the properties of induced hypercubes, q-cube polynomials and maximal hypercube

polynomials. We also obtain the irregularity polynomials of this family of graphs, deter-
mine the conditions for Hamiltonicity, and calculate metric properties such as the radius,
diameter, and the center.
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1. Introduction

The hypercube graph Qn = (Vn, En) of dimension n is one of the basic models

for interconnection networks. The vertex set Vn denotes the processors and the

edge set En corresponds to the communication links between processors in an ideal

interconnection network. The vertices of Qn are represented by binary strings of

length n with an edge between two vertices if and only if they differ in exactly one

position. Qn is a regular graph but the number of vertices grows very rapidly, as n

increases.

Fibonacci cubes and Lucas cubes were introduced as new models of computation

for interconnection networks [10, 16]. The growth rate of the number of vertices

of these graphs are slower than the one of Qn. Both families are subgraphs of

Qn and admit decompositions that allow recursive constructions. Fibonacci cubes

decompose into two smaller Fibonacci cubes and a perfect matching, whereas in the

analogous decomposition of Lucas cubes, instead of two lower dimensional Lucas

cubes and a perfect matching, the decomposition is again in terms of a pair of

lower dimensional Fibonacci cubes. Both families have interesting structural, met-

ric, combinatorial and enumerative properties [10, 13, 16]. Similar results are also

obtained for the graphs derived from hypercubes: generalized Fibonacci cubes [11],

generalized Lucas cubes [12] and k-Fibonacci cubes [6].

We introduce alternate Lucas cubes, a new family of graphs whose number of

vertices and the number of edges are equinumerous with those of Lucas cubes. As

is the case with Lucas cubes, they are also induced subgraphs of Fibonacci cubes.

Alternate Lucas cubes have a useful fundamental (canonical) decomposition similar

to that of the Fibonacci cubes; they are constructed from two smaller alternate

Lucas cubes and a perfect matching.

Alternate Lucas cubes have many interesting structural and enumerative prop-

erties. In this paper we describe the canonical decomposition which parallels the

decomposition of Fibonacci cubes and then make use of this recursive structure.

After the preliminaries in the next section we consider the canonical decomposition

and the properties of the vertex labels in Sec. 3. In Sec. 4, we present enumer-

ative properties such as the number of edges, number of vertices by weight, the

distribution of the degrees, properties of induced hypercubes, q-cube and maximal

hypercube polynomials. We obtain the irregularity polynomials of alternate Lucas

cubes in Sec. 5. Hamiltonicity is considered in Sec. 6 where we give the conditions for

the existence of Hamiltonian cycles and Hamiltonian paths, and give a construction

for Hamiltonian paths. Finally we give a number of metric properties such as the

radius, diameter and the center in Sec. 7 and show that the diameter of alternate

Lucas cubes is less than or equal to the diameter of Lucas cubes.

2. Preliminaries

First we present some notation and preliminary results. We start with the descrip-

tion of a hypercube. The n-dimensional hypercube (or n-cube) Qn is the simple
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graph with vertex set consisting of the 2n binary strings

Vn = {bn . . . b2b1 | bi ∈ {0, 1}, 1 ≤ i ≤ n}.

The edges of Qn are between pairs of vertices differing in exactly one bit. The

Fibonacci cube Γn is the induced subgraph of Qn, obtained from Qn by removing

all vertices containing consecutive 1s. The number of vertices of Γn is Fn+2, where

F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2 are the Fibonacci numbers. If we

remove the vertices with b1 = bn = 1 from Γn, then we obtain the Lucas cube Λn.

For n ≥ 1, Λn has Ln vertices, where L0 = 2, L1 = 1 and Ln = Ln−1 + Ln−2 for

n ≥ 2 are the Lucas numbers.

Here we note that every positive integer can be represented uniquely as the sum

of distinct Fibonacci numbers in such a way that the sum does not include any

two consecutive Fibonacci numbers. This representation is called the Zeckendorf

representation, sometimes also called the canonical representation. By convention

we assume that the integer 0 is represented by the n-bit string (0 . . . 0) when we are

considering n-dimensional graphs with binary labels.

A similar representation of integers using Lucas numbers is considered in [4]

where it is shown that every positive integer n can be expressed uniquely as a sum

of distinct Lucas numbers in the form

n =
∑
i≥0

bi+1Li,

where bi · bi+1 = 0 for i ≥ 1 and b1 · b3 = 0. We call this representation the Lucas

representation of integers, or sometimes the Lucas basis. We will also refer to the

binary encoding of an integer via its coefficients bi in this representation as its

binary alternate Lucas string. Lucas representation of the integers n = 0, 1, . . . , 6

and their corresponding binary encodings are given in Table 1.

The n-dimensional alternate Lucas cube Ln is defined as the induced subgraph

of Qn obtained by removing vertices from Qn that do not correspond to binary

alternate Lucas strings. More precisely,

V (Ln) = {bn . . . b2b1 | bi · bi+1 = 0 for 1 ≤ i < n and b1 · b3 = 0} ⊆ Vn.

Example 1. At the top of Fig. 1, the first four Lucas cubes are presented with

their vertices labeled with the corresponding binary strings in the hypercube graph.

Table 1. Lucas representation of n = 0, 1, . . . , 6 and their binary encoding as

used as vertex labels in the construction of the alternate Lucas cubes.

n Lucas representation Binary encoding b4b3b2b1

0 0 0000

1 L1 0010

2 L0 0001
3 L2 0100

4 L3 1000

5 L3 + L1 1010
6 L3 + L0 1001



November 16, 2021 21:26 112-IJFCS 2150027
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Fig. 1. Lucas cubes Λ1,Λ2,Λ3,Λ4 and the alternate Lucas cubes L1, L2, L3, L4.

At the bottom of Fig. 1, the first four alternate Lucas cubes are presented with

their labels that are their digits in the Lucas representation. The first three cubes

L1, L2, L3 are identical to the first three Lucas cubes Λ1, Λ2, Λ3. However L4 is

not isomorphic to Λ4 because of the existence of a vertex of degree 3 in L4. This

vertex has label 1000 as shown in Fig. 1.

In fact we can show via our calculation of the degree sequences of the family Ln

and comparing with the known degree sequence of the Lucas cubes Λn that Ln is

not isomorphic to Λn for n ≥ 4.

The following decompositions of Γn and Λn can be obtained easily from the

definitions.

For the Fibonacci cubes, one can classify the binary strings defining the vertices

of Γn according to whether bn = 0 or bn = 1. In this way Γn decomposes into

a subgraph Γn−1, whose vertices are given by the strings that start with 0, and

a subgraph Γn−2 whose vertices are given by the strings that start with 10. This

decomposition can be denoted as

Γn = 0Γn−1 + 10Γn−2. (1)

Furthermore, Γn−1 in turn has a subgraph Γ′n−2 (whose vertices start with 00 in Γn)

isomorphic to Γn−2. Each vertex of this Γ′n−2 is connected by an edge to its twin

in Γn−2. In other words, there is a perfect matching between these two copies of

Γn−2. This is the fundamental decomposition of Γn, also referred to as its canonical

decomposition.
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Λn has a decomposition that comes from the classification of the binary strings

defining its vertices. Λn has a subgraph Γn−1 whose vertices are denoted by the

corresponding strings starting with 0 and a subgraph Γn−3 whose vertices are given

by the strings that start with 10 and end with 0 in Λn. Furthermore, in this decom-

position Γn−1 has a subgraph Γ′n−3 (whose vertices start with 00 and end with 0)

isomorphic to Γn−3, and each vertex of Γ′n−3 is connected by an edge to its twin in

Γn−3. This decomposition is denoted by

Λn = 0Γn−1 + 10Γn−30. (2)

However note that the lower dimensional graphs that appear in the decomposition

of Λn are not Lucas cubes, but Fibonacci cubes.

In the fundamental decomposition for Fibonacci cubes, there are Fn edges

between Γ′n−2 and Γn−2. For Lucas cubes, there are Fn−1 edges between Γ′n−3 and

Γn−3 that arise in the decomposition.

In Fig. 2, we present Fibonacci cubes and their subgraphs Lucas and alternate

Lucas cubes for n = 1, 2, 3, 4.

In Fig. 3, the labels of Λ4 are given using the hypercube’s binary digits as the

Zeckendorf expansion of integers. The corresponding labeling of the vertices of L4

are the binary strings interpreted as the expansion of the labels in the Lucas basis.

The newly added material, i.e. the subgraph induced by the vertices {4, 5, 6} which

Fig. 2. Fibonacci, Lucas and alternate Lucas cubes Γn,Λn and Ln for n = 1, 2, 3, 4.
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Fig. 3. Λ4 and L4 with the labels of the newly added vertices indicated in decimal.

we view as having been added to the graph on the vertices induced by {0, 1, 2, 3} in

L3 is easily seen to be isomorphic to L2 as shown in Fig. 3. On the other hand if we

consider the new vertices in Λ4 that were added to Λ3 on integer labels {0, 1, 2, 3},
this property fails to hold. Here 6 does not appear as a label since its Zeckendorf

expansion starts and ends with a 1. We also note that the subgraph corresponding

to the new labels {4, 5, 7} has an isolated vertex, and therefore not isomorphic to Λ2.

It is worth emphasizing that the n-bit binary representations of the integer

labels 0, 1, . . . , 2n − 1 correspond to the binary labels of the vertices of the hyper-

cube graph Qn. Similarly, the n-bit Zeckendorf representations of the integer labels

0, 1, . . . , Fn+2 − 1 correspond to the binary labels of the vertices of the Fibonacci

cube Γn. This property is carried over to alternate Lucas cubes; the n-bit Lucas

representations of the integer labels 0, 1, . . . , Ln− 1 correspond to the binary labels

of the vertices of the alternate Lucas cube Ln. This pleasing property is missing in

the classical Lucas cubes.

3. Vertex Labels and the Canonical Decomposition

In the definition of the Lucas cubes, the binary strings bn . . . b2b1 that are the labels

of the vertices satisfy bi ·bi+1 = 0 for i = 1, 2, . . . , n−1 as in the case of the Fibonacci

graphs, and in addition also b1 · bn = 0. There are some obvious reasons why this

definition has been in use for defining Lucas cubes. For one thing, the number of

such strings is the Lucas number Ln, so the number of vertices of Λn is Ln. For

another, there is the pleasing symmetry afforded by viewing bn . . . b2b1 circularly as

a necklace, making b1 adjacent to bn, and then requiring the product of adjacent

bits to be zero in this setting, generalizing the requirement of the case of Fibonacci

cubes. However other than the notion of circularity and forbidden adjacent pairs of

1s, the mapping of the binary strings to the vertex names in Λn (as integer labels)

is not satisfactory with this definition.

The vertices of Γn may be assigned consecutive integers from 0 to Fn+2 − 1

where binary strings corresponding to these numbers are given by their Zeckendorf

representations. Let us first start with Fibonacci cubes Γn to see this labeling
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property. The number of vertices in Γn is Fn+2, the number of n-bit Fibonacci

strings. There is a one to one correspondence between these strings and integers

0, 1, . . . , Fn+2 − 1

with which the vertices of Γn are labeled. The correspondence is simply viewing

the Fibonacci strings as the Zeckendorf expansion digits, where the rightmost digit

corresponds to F2, the second from the right to F3 and so on. This labeling behaves

extremely well in the case of Γn with respect to the fundamental recursion, as in the

building of Γn from the two lower dimensional graphs Γn−1 and Γn−2, the vertices

of the form 0Γn−1 retain their old labels as the integers

0, 1, . . . , Fn+1 − 1,

and the newly added vertices in 10Γn−2 now have labels immediately following these

sequentially as

Fn+1, Fn+1 + 1, . . . , Fn+2 − 1,

making up the totality of the vertex labels 0, 1, . . . , Fn+2 − 1 of Γn.

Lucas cubes Λn do not enjoy this property. In fact it can be argued that the

symmetry of the idea of a circular string seems to work against the labeling of the

vertices of Lucas cubes (see Fig. 3).

The alternate Lucas cube Ln can be decomposed into two subgraphs induced

by the vertices that start with 0 and 10 respectively. The vertices that start with 0

constitute a graph isomorphic to Ln−1 and the vertices that start with 10 constitute

a graph isomorphic to Ln−2. Additionally, there is a perfect matching between these

two subgraphs, analogous to the decomposition of Fibonacci cubes. For n ≥ 3 we

denote this decomposition of Ln symbolically as

Ln = 0Ln−1 + 10Ln−2 (3)

just as we did for the case of the Fibonacci cubes themselves. In (3), there are Ln−2
edges in the perfect matching between the vertices in 10Ln−2 and the corresponding

vertices in 00Ln−2 ⊂ 0Ln−1, in complete analogy with the Fibonacci decomposition

(see Fig. 4). Of course in the case of Γn, the corresponding perfect matching is

enumerated by Fibonacci numbers.

Fig. 4. Recursive decomposition of the alternate Lucas cube Ln in terms of Ln−1 and Ln−2,

cf. [13, Fig. 3].
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Remark 2. The canonical decomposition of Γn in (1) reflects the recursion Fn =

Fn−1 + Fn−2 whereas the corresponding decomposition of Λn in (2) reflects the

well known identity Ln = Fn+1 + Fn−1. The decomposition of alternate Lucas

cubes as defined here in (3) corresponds directly to the numerical recursion Ln =

Ln−1 + Ln−2.

The decomposition (3) also has the welcome property that the labeling of the

vertices behaves just as well as the case of Γn. In the construction of Ln from the

two lower dimensional graphs Ln−1 and Ln−2, the vertices of the form 0Ln−1 retain

their old labels as the integers

0, 1, . . . , Ln−1 − 1,

and the newly added vertices in 10Ln−2 now have labels immediately following

these sequentially as

Ln−1, Ln−1 + 1, . . . , Ln − 1,

making up the totality of the vertex labels 0, 1, . . . , Ln − 1 of Ln.

In the example given in Fig. 3, n = 4 and these vertex labels are 0, 1, 2, 3 for L3

followed by 4, 5, 6 for L2, with the corresponding vertex labels in binary that come

from the Lucas basis expansions shown in Table 1.

4. Enumerative Properties of Alternate Lucas Cubes

By the definition of alternate Lucas cubes, we know that the number of vertices of

Ln is equal to the number of vertices of Λn, that is, |V (Ln)| = |V (Λn)| = Ln.

4.1. The number of edges

Denote the number of edges of Ln by en. First few values for n ≥ 2 are

2, 3, 8, 15, 30, 56, 104, 189, 340, 605, . . .

By the fundamental decomposition (3), the edges of Ln are of three types: those

that are from Ln−1, those that are from Ln−2, and the Ln−2 link edges that

are added between the twin nodes in the two copies of Ln−2. This gives the

recursion

en = en−1 + en−2 + Ln−2 (4)

for n ≥ 3. By using the well known relation

Ln−2 = Fn−1 + Fn−3

relating the Lucas and the Fibonacci numbers and the initial values, we find that

the solution to the recursion (4) is given by en = nFn−1. Therefore, the number

of edges of Ln is identical to the number of edges of the Lucas cube Λn itself

(see [16]).
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Proposition 3. The number of edges of alternate Lucas cube Ln is nFn−1.

4.2. Number of vertices by weight

The weight of a vertex v in Ln is its Hamming weight, in other words the number

of 1s in its binary alternate Lucas string.

We can consider Ln as the Hasse diagram of the ranked poset of binary alternate

Lucas strings of length n, where the covering relation is flipping a 0 to a 1. In this

setting the weight of a vertex is its rank in the poset.

Let rn,w denote the number of elements of weight w in Ln. Similar to the case

of Fibonacci cubes [17, Remark 3.3] and Lucas cubes [14, Corollary 5.3.] we obtain

Proposition 4. The number of vertices of weight w in Ln is given by

rn,w =
n

n− w

(
n− w
w

)
. (5)

Proof. From the fundamental decomposition (3) of alternate Lucas cubes, we

obtain the recurrence relation

rn,w = rn−1,w + rn−2,w−1 (6)

for n ≥ w ≥ 1 with rn,0 = 1 for n ≥ 1 and rn,1 = n for n ≥ 2. The solution to (6)

is given by (5).

We note that it follows from (5) that as a ranked poset, the rank generating

function of Ln is given in closed form as

F (Ln, q) =

bn/2c∑
w=0

rn,wq
w = 2−n((1−

√
1 + 4q)n + (1 +

√
1 + 4q)n).

4.3. Degree sequences

By using the fundamental decomposition (3) of alternate Lucas cubes we can find

the degree sequence of Ln by considering the contribution of the vertices in 0Ln−1
and 10Ln−2 separately. For n ≥ 1 and 0 ≤ k ≤ n, let an,k and bn,k denote the

number of vertices of 10Ln−2 and 0Ln−1 of degree k respectively. Let

a(x, y) =
∑

n,k≥0

an,kx
nyk and b(x, y) =

∑
n,k≥0

bn,kx
nyk

be their generating functions. Comparing with the linear system for the Fibonacci

cubes that is derived in [14] and using the same notation, we see that these gener-

ating functions satisfy the similar linear system of equations below:

a(x, y)− 2x2y = x2ya(x, y) + x2yb(x, y)

b(x, y)− x+ x2y − x2y2 = xyb(x, y) + xa(x, y).



November 16, 2021 21:26 112-IJFCS 2150027
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The solutions are

a(x, y) =
x2y(2 + x− 2xy − x2y + x2y2)

(1− xy)(1− x2y)− x3y

b(x, y) =
x(1− xy + x2y + xy2 + x3y2 − x3y3)

(1− xy)(1− x2y)− x3y
.

In particular by adding the two, the degree enumerator polynomial for the alternate

Lucas cube Ln is calculated as

x(1 + y(1 + y)x+ 2y(1− y)x2)

(1− yx)(1− yx2)− yx3

=
x+ yx2 + y2x2 + 2yx3 − 2y2x3

(1− yx)(1− yx2)− yx3

= x+ (2y + y2)x2 + (3y + y3)x3 + (y + 4y2 + y3 + y4)x4

+ (6y2 + 3y3 + y4 + y5)x5 + (4y2 + 7y3 + 5y4 + y5 + y6)x6 + · · · . (7)

Using technical computations which are standard, we obtain the following result

along the lines of the proof of [14, Theorem 1.1].

Theorem 5. Let `n,k denote the number of vertices of Ln of degree k for n ≥ k ≥ 1.

Then

`n,k =

k∑
j=0

[
2

(
n− 2j − 3

k − j − 1

)(
j + 1

n− k − j − 1

)
+

(
n− 2j − 2

k − j − 2

)(
j

n− k − j

)

+

(
n− 2j − 2

k − j

)(
j

n− k − j − 1

)]
.

Proof. By using Newton’s expansion formula zk

(1−z)k+1 =
∑

i≥k
(
i
k

)
zi, it was shown

in [14] that

1

(1− xy)(1− x2y)− x3y
=

∑
n,k,j≥0

(
n− 2j

k − j

)(
j

n− k − j

)
xnyk. (8)

To find the number of vertices of Ln of degree k we need to find the coefficient of the

monomial xnyk in the expansion of (7). Let cn,k be the coefficient of the monomial

xnyk in (8). Then using (7) we can write

`n,k = cn−1,k + cn−2,k−1 + cn−2,k−2 + 2cn−3,k−1 − 2cn−3,k−2. (9)

Substituting cn,k =
∑

j≥0
(
n−2j
k−j

)(
j

n−k−j
)

in (9) and using the properties of binomial

coefficients we get the desired result.

Next we consider a refinement of this result by keeping track of the weight of

the vertex in the computation as well. Let `n,k,w be the number of vertices of Ln of
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degree k and weight w. Again, using techniques similar to the ones in [14, Sec. 4]

we can determine `n,k,w. From

Ln = 0Ln−1 + 10Ln−2 = (00Ln−2 + 010Ln−3) + 10Ln−2

we obtain the recurrence relation

`n,k,w = `n−1,k−1,w + `n−2,k−1,w−1 + `n−3,k−1,w−1 − `n−3,k−2,w−1.

Denote by `(x, y, z) the generating function of this sequence so that `n,k,w is the

coefficient of the term xnykzw in the series expansion. Then

`(x, y, z) =
2x3yz + x2y2 + 2x2yz + x− 2x3y2z − x2y

(1− xy)(1− x2yz)− x3yz
.

Our proof of the following proposition makes use of the results in [14, Sec. 4].

Proposition 6. For 0 ≤ w ≤ k ≤ n, the number of vertices of Ln having degree k

and weight w is

`n,k,w =

(
w

n− k − w

)[
2

(
n− 2w − 1

k − w

)
+

(
n− 2w − 2

k − w − 2

)]
+

(
w

n− k − w − 1

)(
n− 2w − 2

k − w

)
.

Proof. By direct inspection the claim holds for n ≤ 5. Let fn,k,w be the number

of vertices of Γn having degree k and weight w and s0n,k,w be the number of such

vertices of Γn whose last bit is 0. Any vertex of Ln can be written as αabc where α

is a Fibonacci string of length n− 3 and abc is a Fibonacci string not equal to 101.

Assume that αabc corresponds to a vertex of Ln having degree k and weight w.

Then for n ≥ 5 we have the following cases:

(1) If abc = 001 or abc = 010, then α corresponds to a vertex of Γn−3 having weight

w − 1 and degree k − 1. This is because αabc has neighbors of the form βabc

and α000 in Ln, where α and β correspond to two adjacent vertices of Γn−3. It

follows that the number of such vertices is 2fn−3,k−1,w−1.

(2) If abc = 100, then α must end with a 0, that is, α = α10 and α1 corresponds

to a vertex of Γn−4 having weight w − 1 and degree k − 1. This is because

α10100 has neighbors of the form β10100 and α000 in Ln, where α1 and β1
correspond to two adjacent vertices of Γn−4. Then the number of such vertices

is fn−4,k−1,w−1.

(3) If abc = 000, then we have two subcases:

(a) Assume that α ends with a 1, that is, α = α201. Then α2 corresponds to

a vertex of Γn−5 having weight w − 1 and degree k − 3, since α201000 has

neighbors of the form β201000, α200000, α010 and α001 in Ln, where α2

and β2 correspond to two adjacent vertices of Γn−5. The number of such

vertices is fn−5,k−3,w−1.
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882 Ö. Eğecioğlu, E. Saygı & Z. Saygı

(b) Assume that α ends with a 0, that is, α = α10. Then α corresponds to a

vertex of Γn−3 having weight w and degree k− 3, since α000 has neighbors

of the form β000, α100, α010 and α001 in Ln, where α and β correspond

to two adjacent vertices of Γn−3. Since α corresponds to a vertex of Γn−3
ending with a 0, the number of such vertices is s0n−3,k−3,w.

It was shown in [14, Theorem 4.6] that

fn,k,w =

(
w + 1

n− k − w + 1

)(
n− 2w

k − w

)
.

Using [14, Lemma 4.5] we have

s0n,k,w =

(
w

n− k − w

)(
n− 2w − 3

k − w − 3

)
.

Considering the cases above and using the binomial identity(
n

k

)
+

(
n

k − 1

)
=

(
n+ 1

k

)
we get the desired result.

Remark 7. Summing the formula in Proposition 6 over w ≥ 0, we obtain an

alternate expression for the `n,k given in Theorem 5:

`n,k =
∑
w≥0

[(
w

n− k − w

)[
2

(
n− 2w − 1

k − w

)
+

(
n− 2w − 2

k − w − 2

)]

+

(
w

n− k − w − 1

)(
n− 2w − 2

k − w

)]
.

Remark 8. Similarly, the expression for rn,w in Proposition 4 can be written as

the sum of `n,k,w over k ≥ 0, giving the binomial identity

n

n− w

(
n− w
w

)
=
∑
k≥0

[(
w

n− k − w

)[
2

(
n− 2w − 1

k − w

)
+

(
n− 2w − 2

k − w − 2

)]

+

(
w

n− k − w − 1

)(
n− 2w − 2

k − w

)]
.

From the expression of the generating function (7), we immediately obtain the

following recursion for the degree generating polynomial for Ln. Set

gn(y) =
∑
k≥0

cky
k

where ck is the number of vertices of degree k in Ln given in Theorem 5. Then

g1(y) = 1, g2(y) = 2y + y2, g3(y) = 3y + y3
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and for n ≥ 4,

gn(y) = ygn−1(y) + ygn−2(y) + y(1− y)gn−3(y). (10)

It is interesting that the denominators of the bivariate generating functions for the

number of vertices of degree k in each of the families Γn, Λn and Ln are identical

(see [14, Sec. 6]). Therefore, the corresponding degree generating polynomials for

these families all satisfy the recursion in (10), except of course, they have different

initial values.

The first four degree generating polynomials for the alternate Lucas cubes are

1, 2y + y2, 3y + y3, y + 4y2 + y3 + y4

whereas the corresponding polynomials for the Lucas cubes themselves are

1, 2y + y2, 3y + y3, 6y2 + y4.

Clearly L1 through L3 are isomorphic to Λ1 through Λ3 but L4 is not isomorphic

to Λ4. In fact Ln and Λn are never isomorphic for n ≥ 4. We record this as a

proposition.

Proposition 9. The alternate Lucas cube Ln and the Lucas cube Λn are not iso-

morphic for n ≥ 4.

Proof. For n ≥ 4, Ln has a unique vertex of degree n−1, namely 10n−1. Because of

the additional requirement that b1 · bn = 0 on the Fibonacci strings that constitute

the vertices of the Lucas cubes, for the same values of n, Λn does not have vertex

of degree n− 1.

The coefficient of the smallest degree term in gn(y) for the first few values of

n ≥ 1 are found to be

1, 2, 3, 1, 6, 4, 1, 11, 5, 1, 17, 6, 1, 24, 7, 1, 32, 8, 1, . . .

The following result characterizes the smallest degree vertices in Ln as well as their

number.

Proposition 10. The smallest degree vertex in the alternate Lucas cube Ln has

degree
⌊
n+1
3

⌋
. The number of such minimum degree vertices in Ln is

m+ 2 if n = 3m,

1 if n = 3m+ 1,

1

2
(m2 + 7m+ 4) if n = 3m+ 2.

Proof. Let sn be the smallest degree of a vertex in Ln and an,k be the number of

vertices of degree k in Ln. Then write

gn(y) = an,sny
sn +

∑
k>sn

an,ky
k.
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From the recurrence (10), sn satisfies the recurrence relation

sn = min{sn−1 + 1, sn−2 + 1, sn−3 + 1}

with s1 = 0, s2 = s3 = 1. The result follows by induction on n by considering

separately the three cases n = 3m, n = 3m + 1 and n = 3m + 2. The second part

follows from Theorem 5.

With a little more effort, we can actually obtain a more general version of the

degree polynomial gn(y) whose recursive structure is given in (10). This general-

ization keeps track of the number of down-neighbors of a node v (i.e., the number

of vertices obtained by changing a 1 to a 0), and the up-neighbors, which are the

vertices obtained by changing a 0 to a 1 in v. These two quantities are denoted by

degdown(v) and degup(v), respectively. Clearly degdown(v) is the Hamming weight

of v and the sum of these two types of degrees is deg(v). Set

Gn(u, z) =
∑
v∈Ln

udegup(v)zdegdown(v).

Clearly, Gn(y, y) = gn(y). Define the generating function of the polynomials

Gn(u, z) by

G(x) = G(u, z, x) =
∑
n≥1

Gn(u, z)xn.

Using standard technical computations that we omit here, the following closed form

expression for G(x) is obtained.

Theorem 11. The generating function of the bivariate polynomials Gn(u, z) is

given by

G(x) =
x(1 + (2z − u(1− u))x+ 2z(1− u)x2)

(1− ux)(1− zx2)− zx3
. (11)

Rewriting (11) as a recurrence relation, we have

G1(u, z) = 1, G2(u, z) = 2z + u2, G3(u, z) = 3z + u3

and for n ≥ 4,

Gn(u, z) = uGn−1(u, z) + zGn−2(u, z) + z(1− u)Gn−3(u, z).

4.3.1. Special cases of Theorem 11

(1) Taking u = z = 1, in (11), we have the generating function of the Lucas numbers

L1, L2, . . .:

x+ 2x2

1− x− x2
.

(2) Taking u = z = y, we have the generating function of the degree polynomials

as given in (7).
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(3) Taking u = 1 in Gn(u, z), we obtain the weight enumerator polynomial Gn(1, z)

of Ln. This specialization gives

x(1 + 2zx)

1− x− zx2
= x+ (1 + 2z)x2 + (1 + 3z)x3 + (1 + 4z + 2z2)x4

+ (1 + 5z + 5z2)x5 + (1 + 6z + 9z2 + 2z3)x6 + · · · (12)

(4) Similarly, the up-degree enumerators Gn(u, 1) have the generating function

x(1 + (2− u(1− u))x+ 2(1− u)x2)

(1− ux)(1− x2)− x3

= x+ (2 + u2)x2 + (3 + u3)x3 + (3 + 2u+ u2 + u4)x4

+ (5 + u+ 3u2 + u3 + u5)x5 + · · · . (13)

(5) The number of edges between ranks w and w − 1 in Ln is wrn,w where rn,w
is the number of vertices of weight w. On the other hand, these edges can be

counted as the sum of the up-degrees of all the vertices of weight w − 1, which

is the coefficient of zw−1 in ∂
∂uGn(u, z) evaluated at u = 1. From (11), the

generating function of ∂
∂uGn(u, z) evaluated at u = 1 is

(2− x)x2

(1− x− zx2)2
=
∑
w≥1

w(2− x)x2w

(1− x)w+1
zw−1

and the coefficient of zw−1 here is

w(2− x)x2w

(1− x)w+1
= w(2− x)x2w

∑
k≥0

(
k + w

k

)
xk

= 2wx2w +
∑
k≥1

[
2w

(
k + w

k

)
− w

(
k + w − 1

k − 1

)]
xk+2w.

(14)

Since the coefficient of xn in (14) is equal to wrn,w, we find

rn,w = 2

(
n− w
w

)
−
(
n− w − 1

w

)
=

n

n− w

(
n− w
w

)
.

This is another derivation of the number of alternate Lucas strings of length n

with weight w given in Proposition 4.

(6) In the generating function (11) the exponent of z is the weight of the vertex. If

we replace z by zu, then the exponent of u now becomes the total degree of the

vertex. Using the variable z for the weight and y for the total degree we obtain

the generating function of the monomials that keep track of the length (as the

exponent of x), weight (as the exponent of z) and the degree (as the exponent
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of y) over all binary alternate Lucas strings as

x(1 + (2zy − y(1− y))x+ 2zy(1− y)x2)

(1− yx)(1− zyx2)− zyx3

=
x(1− y(1− y)x)

1− yx
+ (2 + (1− 2y)x− y(1− y)x2)

×
∑
k≥1

(
ykx2k(1 + (1− y)x)k

(1− yx)k+1

)
zk.

This provides an alternate albeit more complicated expression for the number

`n,k,w of vertices of degree k and weight w in Ln that was given in Proposition 6.

From Proposition 6, we obtain the distribution of the up-degrees in Ln.

Proposition 12. The number of vertices in Ln with up-degree k is given by∑
w≥0

[(
w

n− k − 2w

)[
2

(
n− 2w − 1

k

)
+

(
n− 2w − 2

k − 2

)]

+

(
w

n− k − 2w − 1

)(
n− 2w − 2

k

)]
. (15)

Proof. In Ln, we know that the number of vertices with up-degree k and weight

w is equal to the number of vertices having degree k + w and weight w. Using

Proposition 6 we obtain formula (15) by summing `n,k+w,w over all w ≥ 0.

We note that we can obtain an alternate expression for (15) by using the gener-

ating function of the up-degree enumerators in (13). Following the idea in [14], we

expand

1

(1− ux)(1− x2)− x3
=

∑
h,i,j≥0

(
i

k

)(
j

k

)
ui−hxi+2j . (16)

The coefficient of ukxn in this expansion is given by

cn,k =
∑
i≥0

(
n− 2i

k

)(
i

n− 2i− k

)
.

Multiplying (16) by the numerator in (13), we obtain an alternate expression for

(15) as

cn−1,k + 2cn−2,k + 2cn−3,k − cn−2,k−1 − 2cn−3,k−1 + cn−2,k−2.

4.4. q-cube polynomials

Let hn,k denote the number of k-dimensional hypercubes in Ln. The cube polyno-

mial [3], or the cube enumerator polynomial of Ln is defined as

c(Ln, x) =
∑
k≥0

hn,kx
k.
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Its q-analogue c(Ln, x; q) is defined as follows. Let hn,k,d be the number of k-

dimensional hypercubes in Ln whose distance to the all 0 vertex in Ln is d. Then

we set

c(Ln) = c(Ln, x; q) =
∑
d,k≥0

hn,k,dq
dxk.

This definition is analogous to the q-cube polynomial of Γn introduced in [19]. Note

that by taking q = 1 one obtains the cube polynomial of Ln. Furthermore, the

constant term c(Ln, 0, q) is the rank generating function of Ln as a polynomial in

q, which for q = 1 gives the number of vertices in Ln. The coefficient of x in c(Ln)

evaluated at q = 1 gives the number of edges in Ln. We define c(L1) = 1. First few

of these q-cube polynomials of Ln are as follows:

c(L1) = 1,

c(L2) = 1 + 2q + 2x,

c(L3) = 1 + 3q + 3x, (17)

c(L4) = 1 + 4q + 2q2 + (4 + 4q)x+ 2x2, (see Fig. 5)

c(L5) = 1 + 5q + 5q2 + (5 + 10q)x+ 5x2.

Proposition 13. For n ≥ 3 the q-cube polynomial c(Ln) satisfies

c(Ln) = c(Ln−1) + (q + x)c(Ln−1)

Fig. 5. The calculation of the q-cube polynomial c(L4, x; q) = 1 + 4q + 2q2 + (4 + 4q)x + 2x2

indicating the contribution of each hypercube in L4.
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with c(L1) = 1 and c(L2) = 1 + 2q + 2x. The generating function of {c(Ln)}n≥1 is

given by ∑
n≥1

c(Ln)tn =
t+ t2(2q + 2x)

1− t− t2(q + x)
. (18)

Proof. The recurrence relation and the resulting generating function for the q-cube

polynomials of Ln can be proved along the lines of the proofs of the analogous

statements for the q-cube polynomials of Γn [19, Lemma 1, Proposition 1]. The

recurrence relation is a consequence of the fact that the fundamental decompositions

of Γn and Ln follow the same pattern.

Remark 14. The q-cube polynomials of the Λn were determined in [20]. From the

generating function given therein, we see that for n ≥ 1, the q-cube polynomials of

Λn and Ln are identical. This is a curious fact as Λn and Ln are nonisomorphic for

n ≥ 4 by Proposition 9. So not only does Ln have the same number of vertices and

the same number of edges as Λn, but the number of induced hypercubes of every

dimension is also the same for both, even when we take into account their distance

to the all zero vertex in each.

Using the generating functions (18) and (12) we obtain

Corollary 15. Let hn,k,d denote the number of k-dimensional hypercubes in Ln

whose distance to the all 0 vertex is d. Then
w∑

k=0

hn,k,w−k =
2wn

n− w

(
n− w
w

)
= 2wrn,w.

Proof. The generating function of the weight enumerator polynomial Gn(1, z) of

Ln given in (12) is identical to the generating function of the q-cube polynomials

in (18) evaluated at q = x = 1
2z. Comparing the coefficients of zw in the resulting

identity we obtain the formula in the corollary.

Corollary 15 has the following combinatorial interpretation. For a fixed w, the

number of vertices of weight w in Ln is rn,w by Proposition 5. For any such vertex,

select k 1s in its string representation. By flipping these 1s to 0 all possible ways, we

obtain the vertices of a copy of Qk. The distance of this hypercube to all zero vertex

is then w − k. So from any vertex with weight w we obtain
(
w
k

)
different copies

of Qk. In total, we have
∑w

k=0

(
w
k

)
= 2w hypercubes of dimension k = 0, 1, . . . , w.

Therefore, the total number of these is 2wrn,w.

4.5. Maximal hypercube polynomials

The number of maximal hypercubes isomorphic to Qk in Λn, which are not con-

tained in any H ⊆ Λn isomorphic to Qk+1 is studied in [15]. By generalizing this
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idea, the maximum number of disjoint subgraphs isomorphic to Qk in Γn is pre-

sented in [9] and also studied in [18]. Now we consider the maximal hypercubes of

dimension k in Ln as they appear in [15]. These are induced subgraphs H of Ln

that are isomorphic to Qk, and such that there exists no induced subgraph H ′ of Ln

isomorphic to Qk+1 with H ⊂ H ′. Let mn,k be the number of maximal hypercubes

of dimension k of Ln with enumerator polynomial m(Ln, x) =
∑∞

k=0mn,kx
k. By

direct inspection, first few m(Ln, x) are as follows:

m(L1, x) = 1,

m(L2, x) = 2x,

m(L3, x) = 3x,

m(L4, x) = x+ 2x2,

m(L5, x) = 5x2.

Since the decomposition of Γn and Ln follow the same pattern, we have the

recurrence relation in Proposition 16. This recurrence relation can be proved along

the same lines as the proof of [15, Corollary 2.11].

Proposition 16. For n ≥ 4, m(Ln, x) satisfies

m(Ln, x) = x(m(Ln−2, x) +m(Ln−3, x))

with m(L1, x) = 1, m(L2, x) = 2x and m(L3, x) = 3x. Furthermore, the generating

function of m(Ln, x) is ∑
n≥1

m(Ln, x)tn =
t+ 2xt2(1 + t)

1− xt2(1 + t)
.

Remark 17. Note that although the recursive relations for Ln, Λn and Γn are the

same for the maximal hypercubes, the initial conditions are different, and conse-

quently the enumerator polynomials are not the same.

5. Irregularity Polynomial of Alternate Lucas Cubes

A local measure of irregularity called imbalance imbG(e) of an edge e = uv ∈ E(G)

is defined as

imbG(e) = |degG(u)− degG(v)|.

This quantity was transferred to a global irregularity measure by Albertson [1], who

considered

irr(G) =
∑

uv∈E(G)

|degG(u)− degG(v)|.
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We define the irregularity polynomial IG(x) of G by

IG(x) =
∑

uv∈E(G)

x|degG(u)−degG(v)|.

With this definition |E(G)| = IG(1), irr(G) = d
dxIG(x) evaluated at x = 1, and the

coefficient of xr in IG(x) is the number of edges e ∈ G with imbG(e) = r. In the

rest of this section we determine the irregularity of alternate Lucas cubes using this

polynomial.

Using (3) we can write

Ln = 0Ln−1 + 10Ln−2 (19)

= (00Ln−2 + 010Ln−3) + 10Ln−2 (20)

= ((000Ln−3 + 0010Ln−4) + 010Ln−3) + (100Ln−3 + 1010Ln−4) (21)

where there are perfect matchings (see Fig. 6) between

• 10Ln−2 and 00Ln−2 ⊂ 0Ln−1 in (19),

• 10Ln−2 and 00Ln−2; 010Ln−3 and 000Ln−3 ⊂ 00Ln−2 in (20),

• 010Ln−3 and 000Ln−3; 100Ln−3 and 000Ln−3; 1010Ln−4 and 0010Ln−4;

0010Ln−4 and 0000Ln−4 ⊂ 000Ln−3; 1010Ln−4 and 1000Ln−4 ⊂ 100Ln−3
in (21).

Let In(x) = ILn
(x) denote the irregularity polynomial of Ln. Then we have the

following result.

Theorem 18. The irregularity polynomial of Ln satisfies

In(x) = 2In−1(x) + In−2(x)− 2In−3(x)− In−4(x) (22)

Fig. 6. Fundamental decomposition and perfect matchings in the alternate Lucas cube Ln, n ≥ 4.
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for n ≥ 6, where I1(x) = 0, I2(x) = 2x, I3(x) = 3x2, I4(x) = x3 + 2x2 + 3x + 2

and I5(x) = x3 + 6x2 + 7x+ 1.

Proof. The values of In(x) for n ≤ 5 can be directly obtained from the definition

of Ln. Using the fundamental decomposition (19) of Ln we need to consider the

following three cases:

(1) Assume that e ∈ 10Ln−2. The irregularity polynomial of Ln−2 is In−2(x) and

the degrees of vertices of all e ∈ 10Ln−2 increase by one in Ln. Consequently,

there will be no change in the imbalance of such edges. Therefore, these edges

contribute In−2(x) to In(x).

(2) Assume that e = uv ∈ Ln such that u ∈ 10Ln−2 and v ∈ 0Ln−1 (in particu-

lar, v ∈ 00Ln−2). From (20) we know that there is perfect matching between

00Ln−2 and 10Ln−2, which means that the number of neighbors of u and v

in 00Ln−2 and 10Ln−2 are the same. The only difference for the degrees of

such vertices happens if there exists a neighbor of v in 010Ln−3 due to the

perfect matching between 010Ln−3 and 000Ln−3 ⊂ 00Ln−2. In total, we have

Ln−3 edges each of which contributes x to In(x) for a total of Ln−3x, and

there are Ln−2 − Ln−3 = Ln−4 edges each of which contributes x0 to In(x),

for a total contribution of Ln−4x
0. Therefore, these edges together contribute

Ln−3x+ Ln−4 to In(x).

(3) Assume that e ∈ 0Ln−1. Since 0Ln−1 = 00Ln−2 + 010Ln−3 we have three

subcases to consider here.

(a) Assume that e ∈ 010Ln−3. The degrees of vertices of all of these edges

increase by one in Ln, and therefore they contribute In−3(x) to In(x).

(b) Assume that e = uv ∈ 0Ln−1 such that u ∈ 010Ln−3 and v ∈ 00Ln−2.

As in Case (2) above, the contribution of these edges to In−1(x) is

Ln−4x + Ln−5. Since there is a perfect matching between 00Ln−2 and

10Ln−2, the degrees of all such vertices v must increase by 1 in Ln. There-

fore, the total contribution of these edges to In(x) is x · (Ln−4x+Ln−5) =

Ln−4x
2 + Ln−5x.

(c) Assume that e ∈ 00Ln−2. These edges are the ones in 0Ln−1 that are not

in 010Ln−3 and that are not created during the connection of 00Ln−2 and

010Ln−3. Furthermore, the degree of the vertices of each of these edges

increases by 1 due to the perfect matching between 00Ln−2 and 10Ln−2,

which does not change the contribution of these edges to In(x). Therefore,

their contribution to In(x) is In−1(x)− In−3(x)− (Ln−4x+ Ln−5).

Summing up all the above contributions we obtain that

In(x) = In−1(x) + In−2(x) + Ln−4x
2 + 2Ln−5x+ Ln−6. (23)

By using the recursion for Lucas numbers in (23) we can eliminate the terms which

involve Lucas numbers and obtain the desired result.
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Let En denote the number of edges in E(Γn). It is shown in [16] that

En =
1

5
(nFn+1 + 2(n+ 1)Fn) (24)

with generating function ∑
n≥0

Eny
n =

y

(1− y − y2)2
. (25)

Ln has the same number of edges as Λn. Putting en = |E(Λn)| = |E(Ln)|, we have

en = nFn−1. (26)

Define the generating function of the irregularity polynomials In(x) of Ln by

I(x, y) =
∑
n≥1

In(x)yn = 2xy2 + 3x2y3 + (x3 + 2x2 + 3x+ 2)y4 + · · · .

Using Theorem 18, we obtain a closed form for I(x, y) and consequently for the

polynomials In(x) themselves. We then use the relationship between this function

and the generating function of the number of edges in Γn to obtain further results.

Corollary 19. The generating function of the irregularity polynomials In(x) of Ln

is

I(x, y) =
∑
n≥1

In(x)yn =
y(c1(x)y + c2(x)y2 + c3(x)y3 + c4(x)y4)

(1− y − y2)2
(27)

where

c1(x) = 2x

c2(x) = x(3x− 4)

c3(x) = x3 − 4x2 + x+ 2

c4(x) = −x3 − x2 + 5x− 3.

Proof. We multiply identity (22) of Theorem 18 by yn and sum for n ≥ 6. Using

the first few polynomials as given in Theorem 18 and with some algebra, we obtain

an identity satisfied by I(x, y) which is then solved and simplified to obtain the

expression in (27). We omit the details.

Corollary 20. The irregularity polynomial and the irregularity of the alternate

Lucas cube Ln for n ≥ 2 are given by

In(x) = nFn−1 + 2(Fn−1 + (n− 1)Fn−2)(x− 1)

+ ((n+ 1)Fn−3 + 3Fn−4)(x− 1)2

+
1

5
(nFn−4 + (2n− 3)Fn−5)(x− 1)3, (28)

irr(Ln) = 2(Fn−1 + (n− 1)Fn−2) = 2en−1 + 2Fn−1. (29)
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Proof. Combining the generating functions in (27) and (25), we have

I(x, y) =

∑
n≥0

Eny
n

 (c1(x)y + c2(x)y2 + c3(x)y3 + c4(x)y4)

where the coefficient polynomials are as they appear in Corollary 19. Comparing

coefficients of yn on both sides gives

In(x) = c1(x)En−1 + c2(x)En−2 + c3(x)En−3 + c4(x)En−4

= 2En−3 − 3En−4 + (2En−1 − 4En−2 + En−3 + 5En−4)x

+ (3En−2 − 4En−3 − En−4)x2 + (En−3 − En−4)x3, (30)

where En is the number of edges of Γn as given in (24). Expanding (30) in powers

of x − 1 and simplifying the coefficients, we obtain (28), which holds for n ≥ 2 as

written. Taking the derivative of In(x) and evaluating at x = 1 gives (29).

In Table 2 we present the irregularity polynomials of the Fibonacci, Lucas and

alternate Lucas cubes for n ≤ 12.

From the expansion of In(x) as given in (30), we can obtain the higher moments

of |degLn
(u)− degLn

(v)| over uv ∈ E(Ln) as∑
uv∈E(Ln)

|degLn
(u)− degLn

(v)|m

= (2En−1 − 4En−2 + En−3 + 5En−4) + (3En−2 − 4En−3 − En−4)2m

+ (En−3 − En−4)3m. (31)

Table 2. The irregularity polynomials of the Fibonacci, Lucas and alternate Lucas cubes
for 1 ≤ n ≤ 12.

n IΓn (x) [7] IΛn (x) [7] ILn (x)

1 1 0 0

2 2x 2x 2x

3 x2 + 2x + 2 3x2 3x2

4 2x2 + 6x + 2 4x2 + 4 x3 + 2x2 + 3x + 2

5 5x2 + 10x + 5 5x2 + 10x x3 + 6x2 + 7x + 1

6 10x2 + 20x + 8 12x2 + 12x + 6 3x3 + 8x2 + 15x + 4

7 20x2 + 36x + 15 21x2 + 28x + 7 5x3 + 15x2 + 31x + 5

8 38x2 + 66x + 26 40x2 + 48x + 16 10x3 + 24x2 + 60x + 10

9 71x2 + 118x + 46 72x2 + 90x + 27 18x3 + 41x2 + 114x + 16

10 130x2 + 210x + 80 130x2 + 160x + 50 33x3 + 68x2 + 211x + 28

11 235x2 + 370x + 139 231x2 + 286x + 88 59x3 + 114x2 + 385x + 47

12 420x2 + 648x + 240 408x2 + 504x + 156 105x3 + 190x2 + 693x + 80
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Calculating from (31) and (24), we find in particular that the second moment is

given by ∑
uv∈E(Ln)

|degLn
(u)− degLn

(v)|2 = 2En−1 + 8En−2 − 6En−3 − 8En−4

= (2n− 2)Fn−1 + 8Fn−2.

The irregularity of Λn was computed in [7] (the same was also done for Fibonacci

cubes in [2, 7]). For comparison, we have

irr(Λn) = 2nFn−2, irr(Ln) = 2Fn−1 + 2(n− 1)Fn−2,

so that

irr(Ln) = irr(Λn) + 2Fn−3.

In conjunction with (26), the asymptotic average imbalance of Λn and Ln are both

found to be
√

5− 1.

6. Hamiltonicity

A graph G is bipartite when the vertex set can be decomposed into two disjoint

nonempty independent subsets X and Y . Here, (X,Y ) is called a bipartition of G.

Since Qn (or Γn) is bipartite, alternate Lucas cubes Ln are bipartite. Hence, they

can have a Hamiltonian cycle only when the number or vertices Ln is even. Since

the Lucas numbers are even only for indices of the form 3k, the only possibility

for having a Hamiltonian cycle is for the graphs L3k. We first show that the vertex

parity difference in this case rules out Hamiltonian cycles for alternate Lucas cubes.

Proposition 21. Ln never has a Hamiltonian cycle.

Proof. As we remarked, Ln cannot have a Hamiltonian cycle unless n is of the form

n = 3k. Let V e
n and V o

n denote the number of vertices of even and odd Hamming

weight in Ln. Then from the fundamental decomposition

V e
n = V e

n−1 + V o
n−2

V o
n = V o

n−1 + V e
n−2

for n ≥ 3 with initial values V e
1 = V e

2 = 1, V o
1 = 0, V o

2 = 2. We easily find that the

vertex parity difference ∆n = V o
n − V e

n satisfies

∆n = ∆n−1 −∆n−2

with ∆1 = −1,∆2 = 1. Thus

|∆n| =

{
1 if n ≡ 1, 2 (mod 3),

2 if n ≡ 0 (mod 3).

Therefore, Ln cannot have a Hamiltonian path when n = 3k and the proposition

follows.
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Proposition 21 leaves open the possibility that the alternate Lucas cubes of the

form L3k+1 and L3k+2 can possibly have Hamiltonian paths. For these we need to

skip over the graphs with index 3k in the fundamental decomposition. For instance

we decompose L4 as

L4 = 0L3 + 10L2

= 00L2 + 010L1 + 10L2.

One possible Hamiltonian path in L4 is

(0100), 0000, 0001, (1001, 1000, 1010), 0010

where the portion in the first parentheses is from L1 and the second parenthesis is a

copy of a Hamiltonian path in L2. This Hamiltonian path is inserted inside the other

Hamiltonian path copy from L2, namely after the second vertex in 0000, 0001, 0010.

So this suggests a construction of the following type for L7 (in general L3k+1)

010L4 → part1(00L5)→ 10L5 → part2(00L5)

for the Hamiltonian path. We need to find canonical vertices where these chains are

glued together, for instance 010L4 can end at the all 0 vertex and picked up from

there by part1(00L5), etc.

If we can locate/guess these breakpoints for both types of graphs L3k+1 and

L3k+2, we can construct Hamiltonian paths for these indices and prove all by

induction.

Proposition 22. Ln has a Hamiltonian path if and only if n is not divisible by 3.

Proof. We know that any Fibonacci cube Γn has a Hamiltonian path and Γn has

a Hamiltonian cycle if n ≡ 1 mod 3 except Γ1 [22]. Furthermore, in the proof

[22, Theorem 3.3] a Hamiltonian cycle using a Gray code is constructed for Γn and

also in [5, Lemma 1], a Hamiltonian path using a Gray code is presented for Γn.

In these Hamiltonian paths and Hamiltonian cycles one can observe that the two

vertices (0 . . . 0) and (0 . . . 010) are adjacent vertices. For n ≥ 3 we can decompose

Ln as

Ln = Γn−10 + Γn−3001

and there is a perfect matching between Γn−3001 and Γn−3000 ⊆ Γn−10. First we

consider the case when n = 3k + 1 for some positive integer k. We can write

L3k+1 = Γ3k0 + Γ3k−2001.

Since Γ3k−2 is Hamiltonian and Γ3k has a Hamiltonian path we can obtain a Hamil-

tonian path for L3k+1 as follows:

(1) Consider the Hamiltonian path in Γ3k ⊆ Γ3k0 and follow this path all the way to

the vertex with label (0 . . . 0000) or (0 . . . 010000) (assume we reach to (0 . . . 0)).
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(2) Then use the perfect matching between Γ3k0 and Γ3k−2001 and pass to the

vertex with label (0 . . . 0001) ∈ Γ3k−2001.

(3) Then use the Hamiltonian cycle in Γ3k−2 ⊆ Γ3k−2001 and traverse through all

vertices in Γ3k−2001 until the last vertex with label (0 . . . 010001) ∈ Γ3k−2001

which corresponds to the vertex (0 . . . 010) ∈ Γ3k−2 and it is neighbor of

(0 . . . 0) ∈ Γ3k−2.

(4) Following this, use the perfect matching between Γ3k0 and Γ3k−2001 and pass

to the vertex with label (0 . . . 010000) ∈ Γ3k0.

(5) Use the Hamiltonian path in Γ3k ⊆ Γ3k0 and pass through all the remaining

vertices in Γ3k0.

Similarly, if n is of the form n = 3k + 2, we use the decomposition

L3k+2 = Γ3k+10 + Γ3k−1001.

In this decomposition Γ3k+1 is Hamiltonian and Γ3k−1 has a Hamiltonian path. We

then use the above argument for n = 3k + 1 to construct a Hamiltonian path for

L3k+2.

Example 23. We give the details for the construction of the Hamiltonian path for

L7 described in the proof of Proposition 22. Let CR denote the reverse sequence

of the sequence C. If Cn−1 and Cn−2 denote the Gray codes for Γn−1 and Γn−2
respectively, then the Gray code sequence Cn = {0CR

n−1, 10CR
n−2} gives a Hamil-

tonian path for Γn [5] in conjunction with the fundamental decomposition (1).

Since the reverse of a Fibonacci string is also a Fibonacci string and consequently

Γn = Γn−10 + Γn−201, we observe that the sequence Dn = {CR
n−10, CR

n−201} is also

a Hamiltonian path for Γn. We know that

C4 = {0010, 0000, 0100, 0101, 0001, 1001, 1000, 1010}

is a Hamiltonian cycle for Γ4 and

C5 = {01010, 01000, 01001, 00001, 00101, 00100, 00000, 00010,

10010, 10000, 10100, 10101, 10001}

is a Hamiltonian path for Γ5. Then we get the Hamiltonian paths for Γ6 as

C6 = {0CR
5 , 10CR

4 }

= {010001, 010101, 010100, 010000, 010010, 000010, 000000,

000100, 000101, 000001, 001001, 001000, 001010,

101010, 101000, 101001, 100001, 100101, 100100, 100000, 100010}

and

D6 = {CR
5 0, CR

4 01}

= {100010, 101010, 101000, 100000, 100100, 000100, 000000,
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001000, 001010, 000010, 010010, 010000, 010100,

101001, 100001, 100101, 000101, 010101, 010001, 000001, 001001}.

For n = 7, using C4001, D60 and the above algorithm we observe that

part1(D60)→ C4001→ part2(D60)

gives a Hamiltonian path in L7, which is

1000100, 1010100, 1010000, 1000000, 1001000, 0001000, 0000000,

0000001, 0100001, 0101001, 0001001, 1001001, 1000001, 1010001, 0010001,

0010000, 0010100, 0000100, 0100100, 0100000, 0101000,

1010010, 1000010, 1001010, 0001010, 0101010, 0100010, 0000010, 0010010.

Proposition 22 in particular implies the following result on the independence

number of Ln.

Corollary 24. For any integer n ≥ 1 not divisible by 3, the independence number

α(Ln) of Ln is equal to dLn

2 e.

Proof. The proof mimics the proof of [13, Corollary 3.2]. As Ln has a Hamiltonian

path, α(Ln) ≤ dV (Ln)/2e = dLn/2e. On the other hand, letX+Y be the bipartition

of Ln. Then α(Ln) ≥ max{|X|, |Y |} ≥ dLn/2e since the vertex parity difference

satisfies |∆n| = 1.

7. Further Properties

For a connected graph G, let dG(u, v) denote the length of the shortest path between

the vertices u and v in G. We know that in Qn, Γn and Ln this distance is the

Hamming distance. Let eccG(u) denotes the eccentricity of a vertex u ∈ G, defined

as the greatest distance between u and any other vertex v in G. The radius rad(G)

and the diameter diam(G) of G are the minimum and maximum eccentricity among

the vertices of G, respectively. The center Z(G) of G is defined as the set of vertices

with eccentricity equal to the radius of G. In [16] the center, diameter and radius of

Λn is determined. Related properties for the Fibonacci cubes can be found in [13].

For alternate Lucas cubes, we have the following results.

Proposition 25. For any integer n ≥ 3, alternate Lucas cube Ln satisfies

(1) diam(Ln) = n− 1,

(2) rad(Ln) =
⌊
n
2

⌋
,

(3) Z(Ln) =

{
{0n} if n is odd,

{0n, 10n−1} if n is even.

Proof. For part (1), we know that diam(Ln) ≤ diam(Qn) = n. For any u ∈ V (Ln),

if eccLn
(u) = ecc(u) = n then there exist a v ∈ V (Ln) such that d(u, v) = n.
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But this is impossible for Ln since if u ends with 000, 001, 010, 100, then v

must end with 111, 110, 101, 011, respectively. Furthermore, for n = 2m we have

d((10)m, (01)m−100) = n−1 and for n = 2m+1 we have d((10)m0, (01)m0) = n−1,

which completes the proof. For the results (2) and (3), we follow the lines of the

proof of [16, Theorem 1].

Remark 26. If n > 2 is even, then diam(Λn) = n and Z(Λn) = {0n} which are

different from the corresponding quantities for Ln.

The boundary enumerator polynomial of hypercubes, as defined and studied

in [21] for the class of Fibonacci cubes, can also be determined for the family

of alternate Lucas cubes Ln. This is work in progress and will be reported in a

subsequent paper [8].
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[2] Y. Alizadeh, E. Deutsch and S. Klavžar, On the irregularity of π-permutation graphs,

Fibonacci cubes, and trees, Bull. Malays. Math. Sci. Soc. 43 (2020) 4443–4456.
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