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Abstract
The pentagonal theorem for partitions is a consequence of the expansion of Euler’s
famous product (1−y)(1−y2)(1−y3)(1−y4)(1−y5) · · · We investigate the nature of
the coefficients of the series expansion of (1− y)(1− y2)(1− y3)(1− y5)(1− y8) · · · ,
in which the sequence of exponents is the Fibonacci numbers. As a part of the study
of the combinatorial properties of the development of this product, we show that the
series expansion coefficients are from {−1, 0, 1}, and their behavior is determined by
a monoid of twenty-five 2 × 2 matrices.

Keywords Euler’s product · Fibonacci number · Fibonacci exponents · series
expansion

1 Introduction

Once we interpret the famous product

(1 − y)(1 − y2)(1 − y3)(1 − y4)(1 − y5) · · · (1)

of Euler in the setting of integer partitions, the nature of the resulting series boils down
to relatively simple pairing of partitions in a sign-reversing manner, showing that the
series expansion has coefficients from {−1, 0, 1}. The proof is made even simpler
by the geometric representation of partitions using Ferrers’ diagrams, which makes
it clear which partitions cannot be paired, and provides an explicit formula for the
exponents of the terms with±1 coefficients. This of course is the beautiful pentagonal
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number theorem of Euler [8], and Fabian Franklin’s combinatorial proof of this result
[10].

The reciprocal of Euler’s product is the generating function of unrestricted integer
partitions, and the above determination of the coefficients gives the surprising recur-
sion for the partition function where the indices decrease by generalized pentagonal
numbers.

The starting point of the present paper is the consideration of the analogous product

(1 − y)(1 − y2)(1 − y3)(1 − y5)(1 − y8)(1 − y13) · · · , (2)

where the exponents run through the sequence of Fibonacci numbers (Fn)n≥2:
1, 2, 3, 5, 8, 13, . . . instead.

The main result of the paper is that the coefficients of the expansion of (2) are also
from {−1, 0, 1} (Theorem 9.1). They can be efficiently calculated, and straightforward
formulas can be obtained when various interesting sequences of integers are taken as
exponents.

There are some surprising properties of the expansion in (2). For one thing, the
indices of the so-called canonical Fibonacci representation of an exponent n play
a central role in the calculation of the corresponding expansion coefficient in the
development of (2). The canonical representation of n (also called the Zeckendorf
representation) is the unique representation n = Fk1 + Fk2 + · · · + Fkr where k j −
k j+1 ≥ 2 for j = 1, 2, . . . , r − 1 and kr ≥ 2. The partition associated to n is then
(k1 ≥ k2 ≥ · · · ≥ kr ) with parts differing by at least two, and the smallest part
≥ 2. For the analysis of the coefficients of the expansion of (2) the parts can be taken
to be remainders ki modulo 4; we show that the coefficient of yn in the expansion
only depends on the vector x = (x1, x2, . . . , xr ) of these remainders (Theorem 8.1).
Therefore, the expansion coefficients are determined by such vectors x, or equivalently
strings x = x1x2 · · · xr with xi ∈ {0, 1, 2, 3}. Also, there are conditions in terms of
forbidden subwords of the string x which guarantee that the associated expansion
coefficient vanishes (Theorem 13.2).

It is possible to compute the value of the coefficient of yn in (2) explicitly in various
special cases. For instance, if n has canonical representation n = Fk1 +Fk2 +· · ·+Fkr
with r ≥ 1, then closed form expressions can be found for r = 1, 2, 3 as given in
(21),(25) and (30), respectively. Another type of result gives that if for some fixed
p ∈ {0, 1, 2, 3}, ki ≡ p mod 4 for all i , then the coefficient of yn is given by 1,
− ⌊ p

2

⌋
,
⌊ p
2

⌋− 1, depending on whether r mod 3 is 0, 1, or 2, respectively (Theorem
12.1). Another result of this type is that the coefficient vanishes whenever r ≥ 2 and
k1 − k2 ≡ 3 mod 4 (Corollary 11.1).

There are other combinatorial aspects of the expansion (2). For example, the coef-
ficients ϑ(x) over all x (i.e., all positive integers) are completely determined by a
monoid of 25 matrices M1, M2 . . . , M25, each 2×2 matrix determining a formula for
the coefficients depending on the canonical representation of the exponent n (Theo-
rems 11.1, 13.1).

The monoid associated with these 25 matrices naturally defines a finite Markov
chain, and assuming that the elements of the vector of residues x are picked indepen-
dently and uniformly, asymptotic probabilities for the values of the coefficients can be
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determined as a function of the number of summands r of the canonical representation
of the exponent (Theorem 17.1).

2 RelatedWork

The interest in this subject was initiated by the work of Carlitz, especially by his
studies on Fibonacci representations [3, 4], and the properties of the product (1 +
y)(1 + y2)(1 + y3)(1 + y5) · · · , which is the expansion (2) studied here but with
plus signs. We make use of his idea of adding an auxiliary variable to the generating
function to derive the central recursions. Carlitz also proved a curious result on a
property of Fibonacci representations that we make use of repeatedly.

In addition to Carlitz, Klarner [14, 15] also studied the number of representations of
an integer in terms of Fibonacci numbers, compiling tables of data on these quantities.
Earlier work on Fibonacci representations can be found in Daykin [5], Hoggatt [11],
and Ferns [9], among many others. In fact, the fascination with the pretty numerical
properties of the Fibonacci sequence has produced a wealth of results which are too
numerous to be listed here.

3 Preliminaries

The well-known Fibonacci sequence is defined by F0 = 0, F1 = 1, and Fn =
Fn−1 + Fn−2 for n ≥ 2.

A monoid is a set with an associative operation having an identity element. The
freemonoid of a set � is the set �∗ of all finite sequences of zero or more elements of
�. We will also denote �∗ by 〈�〉 and refer to it as the monoid generated by �. The
elements of �∗ are called words or strings. The unique string in �∗ with no elements
is denoted by ε. A string u is a factor or a subword ofw if there exists strings x, y ∈ �∗
with w = xuy.

A partition λ of a positive integer n is a weakly decreasing sequence of positive
integers λ = (λ1 ≥ λ2 ≥ · · · ≥ λr ) with n = λ1 + λ2 + · · · + λr . Each λi is a part of
λ and r is the number of parts of λ.

A finite Markov chain is specified by a number of states s1, s2, . . . , sm , and a
sequence of steps through these states so that when the process is in state si , there
is a probability pi j that in the next step, it will be in state s j . The m × m matrix
P = [pi j ] is called the transition matrix of the chain. Its entries are nonnegative with
each rowsum 1. To specify the process completely, we provide P and a starting state.
The probability of moving from state si to s j in k steps is the i j th entry p(k)

i j of the

matrix Pk . A set of states communicate with each other if the process can move from
any state to any other in the set. If some power of the transition matrix has all positive
entries, then the chain is called regular. A state is absorbing if once entered, it cannot
be left. A chain is an absorbing chain if it has at least one absorbing state and if it is
possible to reach an absorbing state (possibly in many steps) from any state. We refer
the reader to [13] for details.
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4 Euler’s Expansion

Our starting point is the famous product of Euler [8]. A wonderful account of this
product and its impact can be found in Andrews [2].

The combinatorial interpretation of the coefficients of the power series expansion
of (3) and Franklin’s proof of it is a favorite topic in any introduction to combinatorics
course and can be found in many sources in the literature (see for example [1], [16],
[7]). Computing a few terms of the product, we obtain the following expansion.

∏

k≥1

(1 − yk)=1 − y−y2+y5+y7−y12−y15+y22+y26−y35−y40+y51 ± · · ·

(3)

Here, the coefficients lie in {−1, 0, 1} and show quite simple periodic behavior.
The exponents of the ±1 terms are the sequence of pentagonal and second pentago-
nal numbers. The pentagonal numbers are 1, 5, 12, 22, 35, . . ., given by the formula
1
2m(3m − 1), and the second pentagonal numbers are 2, 7, 15, 26, 40, . . ., given by
the formula 1

2m(3m + 1), both for m ≥ 1.
Euler’s pentagonal number theorem gives the expansion of the product in (3) in

terms of these numbers as shown in (4).

∏

k≥1

(1 − yk) = 1 +
∑

m≥1

(−1)m
(
y
1
2m(3m−1) + y

1
2m(3m+1)

)
. (4)

As is well known, the reciprocal of (3) is the generating function of the number
p(n) of unrestricted partitions, which in view of (4) gives Euler’s surprising recursion
for it.

5 TheMain Product

In analogy with Euler’s product where the exponents are 1, 2, 3, 4, . . ., we consider
the infinite product where the exponents run through the Fibonacci numbers (Fn)n≥2:
1, 2, 3, 5, 8, 13, . . . A few terms of this expansion are

∏

k≥2

(1 − yFk ) = 1 − y − y2 + y4 + y7 − y8 + y11 − y12 − y13 + y14 + y18 ± · · ·

(5)

Evidently the reciprocal of (5) is the generating function of integer partitions into parts
that are Fibonacci numbers F2, F3, F4, . . ..

Note that the Fibonacci number F1 = 1 is not used in (5) to avoid having two
different kinds of 1, as we already have F2 = 1. Coefficients of the powers yn in the
expansion for the first few values are as shown in Table 1. There seems to be no simple
periodic behavior of the location of the ±1 coefficients.
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Table 1 Partial list of exponents
in (5) for which the coefficient is
−1, 0, and 1, respectively

−1 1 2 8 12 13 19 20 24 30 31 38 39

0 3 5 6 9 10 15 16 17 21 25 26 27

1 0 4 7 11 14 18 22 23 29 33 36 40

We let v(n) denote the coefficient of yn in the series expansion in (5) and refer to
it as an expansion coefficient. Reading from the list in Table 1, we have v(0) = 1,
v(1) = −1, v(2) = −1, v(3) = 0, v(4) = 1, etc., with this notation.

5.1 Fibonacci Representations

Every positive integer n can be written in terms of Fibonacci numbers as a sum

n = Fk1 + Fk2 + · · · + Fkr , (6)

where k1 > k2 > · · · > kr ≥ 2 and r depends on n. We call (6) a Fibonacci
representation, or simply a representation of n. By a theorem of Zeckendorf [17], the
representation (6) is unique if we impose the conditions:

k j − k j+1 ≥ 2 ( j = 1, 2, . . . , r − 1), kr ≥ 2 . (7)

This unique Fibonacci representation of n will be called its canonical representation
(it is also referred to as the Zeckendorf representation in the literature). To aid in our
calculations, the following notation will be useful.

Given a vector of indices k satisfying (7), we let n(k) = n(k1, k2, . . . , kr ) =
Fk1 + Fk2 + · · · + Fkr . In the notation n = n(k, ki+1, . . . , kr ), k denotes the vector of
indices (k1, k2, . . . , ki ). Additionally, for a vector u = (u1, u2, . . . , us) and scalar ρ,
we set u − ρ = (u1 − ρ, u2 − ρ, . . . , us − ρ) .

Example 1 Take n = 117. Then n = F11 + F8 + F5 + F3 = n(u) where u =
(11, 8, 5, 3). We have n(u − 1) = F10 + F7 + F4 + F2 = 72. The vector u − 2 =
(9, 6, 3, 1) gives the representation of 45 = F9+F6+F3+F1, but this is not canonical
because of the presence of F1, and F9 + F6 + F3 + F2 is not canonical either because
of the presence of consecutive indices. We write 45 = n(9, 6, 4).

Example 2 There are a total of five Fibonacci representations of n = 106 as given
below, the first being the canonical representation.

F11 + F7 + F4 + F2
F11 + F6 + F5 + F4 + F2
F10 + F9 + F7 + F4 + F2
F10 + F9 + F6 + F5 + F4 + F2
F10 + F8 + F7 + F6 + F5 + F4 + F2 .
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Table 2 Fibonacci representations of 1, 2, . . . , 12, with the canonical representation given in boldface red

n Even Odd Digits v(n)

1 − F2 1 −1

2 − F3 10 −1

3 F3 + F2 F4 100, 11 0

4 F4 + F2 − 101 1

5 F4 + F3 F5 110, 1000 0

6 F5 + F2 F4 + F3 + F2 1001, 111 0

7 F5 + F3 − 1010 1

8 F5 + F4 F6 , F5 + F3 + F2 1100, 10000, 1011 −1

9 F6 + F2 F5 + F4 + F2 10001, 1101 −1

10 F6 + F3 F5 + F4 + F3 10010, 1110 0

11 F6 + F4, F5 + F4 + F3 + F2 F6 + F3 + F2 10100, 1111, 10011 1

12 − F6 + F4 + F2 10101 −1

The first and the second columns list the representations of n into an even and an odd number of Fibonacci
summands, respectively. The corresponding expansion coefficients v(n) of the product (5) are given in the
last column

It is also common to use binary strings to encode such representations by using
their Fibonacci indicator “digits," where the rightmost digit corresponds to F2. For
the above five representations of 106, these strings are 1000100101, 1000011101,
110100101, 110011101, and 101111101, respectively. The encoding of a canonical
representation is called a Fibonacci string. Fibonacci strings of a given length form
the vertices of a Fibonacci cube. Fibonacci cubes form a family of networks which
has many interesting combinatorial properties [6, 12].

Table 2 is a list of all Fibonacci representations of the integers 1, 2, . . . , 12. As
examples, for n = 3, there is a single representation with an even and a single rep-
resentation with an odd number of terms, and therefore the coefficient of y3 in (5)
is 0. For n = 8, there are two representations with an odd number of terms and one
representation with an even number of terms, so the coefficient of y8 in (5) is −1.

If n has a Fibonacci representation as given in (6), thenwe use the following notation
due to Carlitz:

e(n) = Fk1−1 + Fk2−1 + · · · + Fkr−1 , (8)

with e(0) = 0.
If n = n(k1, k2, . . . , kr ) = n(k, kr ) is the canonical representation of n we see that

e(n) =
{
n(k − 1, kr − 1) if kr > 2,

n(k − 1) + 1 if kr = 2 .

Carlitz [3] proved the following interesting result, which justifies the use of an
arbitrary Fibonacci representation in (8).

Theorem 5.1 (Carlitz) The value e(n) is independent of the Fibonacci representation
in (6) chosen for n.
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6 Recursion à la Carlitz

Following along the lines of an idea by Carlitz, let

�(x, y) =
∏

s≥1

(1 − x Fs yFs+1) =
∑

m,n≥0

α(m, n)xm yn . (9)

Then

�(y, xy) =
∏

s≥1

(1 − x Fs+1 yFs+2) = �(x, y)

1 − xy
.

Equating coefficients in the resulting identity (1− xy)�(y, xy) = �(x, y) we obtain

α(m, n) = α(n − m,m) − α(n − m,m − 1) (10)

where α(0, 0) = 1, and α(m, n) = 0 if either argument is negative.
Note that the expansion of the product (9) can be written in the form:

1 +
∑

k1>k2>···>kr≥2

(−1)r x Fk1−1+Fk2−1+···+Fkr−1 yFk1+Fk2+···+Fkr (11)

over all r ≥ 1. Therefore, if the exponent of y in a summand in (11) above is n, then
the exponent of the corresponding x of that term is e(n).

Remark 1 For any given n, α(m, n) = 0 unlessm = e(n). Wewill use this observation
repeatedly.

Using Carlitz’s theorem, we can write

�(x, y) =
∑

n≥0

v(n)xe(n)yn ,

where ∏

s≥2

(1 − yFs ) =
∑

n≥0

v(n)yn (12)

with v(0) = 1. Therefore

v(n) = α(e(n), n) = α(n − e(n), e(n)) − α(n − e(n), e(n) − 1) , (13)

in which the second equality is a consequence of (10) with m = e(n).
We prove a sequence of three lemmas and collect the partial results together as

Proposition 6.1.

Lemma 6.1 Suppose n = n(k, kr ) with kr = 2t + 1. Then v(n) = v(e(n)).
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Proof In viewof (13), it suffices to show that n−e(n) = e(e(n)) andα(n−e(n), e(n)−
1) = 0. We have

e(n) = Fk1−1 + Fk2−1 + · · · + Fkr−1,

n − e(n) = Fk1−2 + Fk2−2 + · · · + Fkr−2 .

Since kr ≥ 3, it follows that
n − e(n) = e(e(n)) . (14)

To prove that α(n−e(n), e(n)−1) = 0, we start with the standard Fibonacci identities

F2t−1 + · · · + F5 + F3 = F2t − 1 , (15)

F2t−2 + · · · + F4 + F2 = F2t−1 − 1 . (16)

Identity (15) implies that

e(n) − 1 = Fk1−1 + Fk2−1 + · · · + Fkr−1−1 + (F2t−1 + · · · + F5 + F3).

Since this is a Fibonacci representation, Carlitz’s theorem with identity (16) imply
that

e(e(n) − 1) = Fk1−2 + Fk2−2 + · · · + Fkr−1−2 + (F2t−2 + · · · + F4 + F2)

= Fk1−2 + Fk2−2 + · · · + Fkr−1−2 + F2t−1 − 1

= Fk1−2 + Fk2−2 + · · · + Fkr−1−2 + Fkr−2 − 1

= n − e(n) − 1 .

Therefore, the first argument in α(n − e(n), e(n) − 1) is not equal to e(e(n) − 1) and
it must vanish.

The following useful lemma is another consequence of the pair of Fibonacci identities
in (15) and (16).

Lemma 6.2 For t ≥ 1,

e(F2t+1 − 1) = F2t (17)

e(F2t − 1) = F2t−1 − 1 . (18)

Next, we consider the case in which kr is even.

Lemma 6.3 Suppose n = n(k, kr ) with kr = 2t . Put n1 = n(k). Then

v(n) =
{

v(e(n)) − v(e(n) − 1) if 2t > 2

−v(e(n1)) if 2t = 2 .
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Proof For 2t > 2, (14) holds as before. Using the two identities (15) and (16) one
more time, we have

e(n) − 1 = Fk1−1 + Fk2−1 + · · · + Fkr−1−1 + F2t−1 − 1

= Fk1−1 + Fk2−1 + · · · + Fkr−1−1 + (F2t−2 + · · · + F4 + F2) ,

(19)

e(e(n) − 1) = Fk1−2 + Fk2−2 + · · · + Fkr−1−2 + (F2t−3 + · · · + F3 + F1)

= Fk1−2 + Fk2−2 + · · · + Fkr−1−2 + F2t−2 . (20)

Therefore, e(e(n) − 1) = e(e(n)) . The proof of the case 2t > 2 then follows by
recursion (13). For kr = 2t = 2,

n − e(n) = Fk1−2 + Fk2−2 + · · · + Fkr−1−2 = e(e(n1)) ,

e(n) − 1 = Fk1−1 + Fk2−1 + · · · + Fkr−1−1 = e(n1) .

Also, since

e(n) = Fk1−1 + Fk2−1 + · · · + Fkr−1−1 + F2 ,

we have

e(e(n)) = Fk1−2 + Fk2−2 + · · · + Fkr−1−2 + F1 = n − e(n) + 1 .

From (10) we conclude that for kr = 2, v(n) = −v(e(n1)).

We collect these results in Proposition 6.1.

Proposition 6.1 Let n have the canonical Fibonacci representation n = Fk1 + Fk2 +
· · · + Fkr . Then

v(n) =

⎧
⎪⎨

⎪⎩

v(e(n)) if kr = 2t + 1

v(e(n)) − v(e(n) − 1) if kr = 2t > 2

−v(e(n1)) if kr = 2t = 2 .

where n1 = Fk1 + Fk2 + · · · + Fkr−1 and e is the operator defined in (8).

6.1 A Special Case: r = 1

It is possible to we give an explicit formula for the expansion coefficients for r = 1,
i.e., when the exponent n = Fk1 is a Fibonacci number.

Lemma 6.4 Let x1 = k1 mod 4, so that x1 ∈ {0, 1, 2, 3}. Then

v(Fk1) = −
⌊ x1
2

⌋
. (21)
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Proof We have

v(F2k+1) = α(F2k, F2k+1)

= α(F2k−1, F2k) − α(F2k−1, F2k − 1)

= v(F2k) − α(F2k−1, F2k − 1)

by (13). From (18), e(F2k − 1) = F2k−1 − 1, and therefore, α(F2k−1, F2k − 1) = 0,
the first parameter not being the e of the second. Thus, v(F2k+1) = v(F2k) . Since
v(F2) = −1 and v(F4) = 0 directly from (5), the lemma follows.

Remark 2 Proposition 6.1 together with Lemma 6.4 provide a recursive algorithm to
compute v(n). As an example, for n = 18 = F7 + F5,

v(18) = ϑ(7, 5) = ϑ(6, 4) = ϑ(5, 3) − ϑ(5, 2)

= ϑ(4, 2) + ϑ(4) = −ϑ(3) + 0 = 1 .

However, this approach to compute v(n) is not very illuminating.

Suppose that e is defined as in (8). We recursively define its powers for t ≥ 0 by
setting et (n) = e(et−1(n)) with e0(n) = n. Additionally, given a vector of indices k
satisfying (7), we let E(k) = e(n) where n = n(k) = Fk1 + Fk2 + · · · + Fkr . In the
notation E(k, ki+1, . . . , kr ), k will denote the vector of indices (k1, k2, . . . , ki ).

6.2 A Lemma on Staircases

We need a result on the expansion coefficients where the canonical representation of
n ends with a “staircase." This result is used in the proof of the main recursion for the
coefficients, given as Proposition 7.1 in the next section.

Lemma 6.5 For s ≥ 1, ϑ(k, 2s, 2s − 2, . . . , 4, 2) = (−1)sϑ(E2s−1(k)) .

Proof For s = 1, we need to show ϑ(k, 2) = −ϑ(E(k)), but this is precisely the case
kr = 2t = 2 of Proposition 6.1. For s > 1, again by Proposition 6.1 we can write

ϑ(k, 2s, 2s − 2, . . . , 4, 2) = −ϑ(E(k, 2s, 2s − 2, . . . , 4))

= −ϑ(k − 1, 2s − 1, . . . , 5, 3)

= −ϑ(k − 2, 2s − 2, . . . , 4, 2) .

By induction on s,

ϑ(k − 2, 2s − 2, . . . , 4, 2) = (−1)s−1ϑ(E2s−3(k − 2))

= (−1)s−1ϑ(E2s−1(k))

and the lemma follows.
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7 Main Recursion for the Expansion Coefficients

Proposition 7.1 Suppose n = n(k1, k2, . . . , kr ). Then for kr = 2t ,

v(n) = ϑ(k, kr ) =
{

−ϑ(E2t−1(k)) if t is odd,

ϑ(E2t−2(k)) − ϑ(E2t−1(k)) if t is even,

and for kr = 2t + 1,

v(n) = ϑ(k, kr ) =
{

−ϑ(E2t (k)) if t is odd,

ϑ(E2t−1(k)) − ϑ(E2t (k)) if t is even.

Proof If kr = 2t = 2, then the conclusion is the third case of Proposition 6.1. If
2t > 2, then the second case of Proposition 6.1 and the expression (19) for e(n) − 1
imply that

ϑ(k, kr ) = ϑ(e(k), 2t − 1) − ϑ(e(k), 2t − 2, , . . . , 4, 2) .

Using Lemma 6.5 with s = t − 1,

ϑ(k, kr ) = ϑ(e(k), 2t − 1) + (−1)tϑ(e2t−2(k))

= ϑ(e2(k), 2t − 2) + (−1)tϑ(e2t−2(k))

where the last equality is a consequence of the first part of Proposition 6.1. If 2t−2 > 2,
we can apply to same expansion to the first term above to obtain

ϑ(e2(k), 2t − 2) = ϑ(e3(k), 2t − 3) + (−1)t−1ϑ(e2(t−1)−3(e3(k)))

and therefore,

ϑ(k, kr ) = ϑ(e3(k), 2t − 3) + (−1)t−1ϑ(e2t−2(k)) + (−1)tϑ(e2t−2(k))

= ϑ(e3(k), 2t − 3) .

Continuing this way, there is a cancelation for t odd; therefore, for t odd, we obtain

ϑ(k, kr ) = ϑ(e2t−3(k), 3) .

Using the first and the third parts of Proposition 6.1, this gives

ϑ(k, kr ) = ϑ(e2t−2(k), 2) = −ϑ(e2t−1(k))

for kr = 2t , t odd. When kr = 2t and t is even,

ϑ(k, kr ) = ϑ(e2t−2(k), 2) + ϑ(e2t−2(k))
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= −ϑ(e2t−1(k)) + ϑ(e2t−2(k)) .

For kr = 2t + 1, the first part of Proposition 6.1 implies that

ϑ(k, kr ) = ϑ(e(k), 2t)

and the result follows from the kr = 2t part of the proof with e(k) playing the part of
k.

The different cases in Proposition 7.1 depend on the value of kr modulo 4. They can
be combined to write the recursion for v(n) in the form

v(n) = ϑ(k, kr ) =
{

ϑ(Ekr−2(k)) − ϑ(Ekr−1(k)) if kr ≡ 0, 1 mod 4 ,

−ϑ(Ekr−1(k)) if kr ≡ 2, 3 mod 4 .

There is even a simpler formulation if we allow ourselves some further notation by
setting xi = ki mod 4 for every index i . Using also the notation used in Example 1,
we record this as a proposition in the following form.

Proposition 7.2 The expansion coefficients in (5) satisfy

v(n) = ϑ(k, kr ) =
(
1 −

⌊ xr
2

⌋)
ϑ(Ekr−2(k)) − ϑ(Ekr−1(k))

=
(
1 −

⌊ xr
2

⌋)
ϑ(k − kr + 2) − ϑ(k − kr + 1) .

8 InvarianceModulo 4

A surprising application of Proposition 7.2 is the following result.

Theorem 8.1 Suppose n has the canonical representation n = Fk1 + Fk2 + · · · + Fkr .
Then v(n) depends only on the values of k1, k2, . . . , kr modulo 4.

Proof This is clearly so if r = 1 because of the formula (21) for this case. The
formula given in Proposition 7.2 for r > 1 depends on xr ≡ kr mod 4, and values
for numbers represented by Ekr−2(k) and Ekr−1(k). These numbers have k1 values in
their canonical representation that are smaller than that of n, and the proof follows by
induction.

Remark 3 This result means that if n = Fk1 + Fk2 + · · · + Fkr and n
′ = Fk′

1
+ Fk′

2
+

· · · + Fk′
r
with ki ≡ k′

i mod 4 for all i , then v(n) = v(n′).

Since v(n) only depends on the vector of remainders x = (x1, x2, . . . , xr ) of the
canonical representation n = Fk1 + Fk2 + · · · + Fkr with xi ≡ ki mod 4, 1 ≤ i ≤ r ,
we denote v(n) by ϑ(x1, x2, . . . , xr ) or equivalently by ϑ(x). Similarly, we denote n
by n(x). Of course, given a vector x = (x1, x2, . . . , xr ) with xi ∈ {0, 1, 2, 3}, there
are infinitely many integers n whose canonical representation indices modulo 4 are
the given xi , i.e., infinitely many n = n(x).

123



La Matematica

Remark 4 From now on arithmetic operations involving parameters xi and vector x
are understood to be modulo 4 to avoid cumbersome notation. For instance, when we
write x1 − x2 − 2, we mean (x1 − x2 − 2)mod 4. As another example, the notation⌊
x2−x3−1

2

⌋
is a shorthand for

⌊
(x2−x3−1)mod 4

2

⌋
.

9 Expansion Coefficients Lie in {−1, 0, 1}
Since the expansion coefficients only depend on the remainder of the indices of the
canonical representation modulo 4, the recursion of Proposition 7.2 can be restated as
follows.

ϑ(x, xr ) =
(
1 −

⌊ xr
2

⌋)
ϑ(E xr−2(x)) − ϑ(E xr−1(x)) (22)

=
(
1 −

⌊ xr
2

⌋)
ϑ(x − xr − 2) − ϑ(x − xr − 3) , (23)

where x = (x1, x2, . . . , xr−1). This can be split into four recursions depending on the
value of xr :

ϑ(x, 0) = ϑ(E2(x)) − ϑ(E3(x)) = ϑ(x + 2) − ϑ(x + 1)

ϑ(x, 1) = ϑ(E3(x)) − ϑ(x) = ϑ(x + 1) − ϑ(x) (24)

ϑ(x, 2) = −ϑ(E(x)) = −ϑ(x + 3)

ϑ(x, 3) = −ϑ(E2(x)) = −ϑ(x + 2) .

Next,weprove that the expansion coefficients lie in {−1, 0, 1}. To do thiswe strengthen
the induction hypothesis and prove the following result.

Theorem 9.1 The expansion coefficients v(n) lie in {−1, 0, 1}. Furthermore,ϑ(x) and
ϑ(E(x)) = ϑ(x − 1) never have opposite signs.

Proof This is the case for r = 1 given in Lemma 6.4. For r > 1, from (24) we have

ϑ(x, 0) = ϑ(x + 2) − ϑ(E(x + 2))

ϑ(x, 1) = ϑ(x + 1) − ϑ(E(x + 1)) .

These differences are in {−1, 0, 1}, since the summands in each do not have opposite
signs and they are in {−1, 0, 1} by the induction hypothesis. This holds for the last two
cases in (24) also. To complete the induction proof, we need to show that a = ϑ(x, xr )
and b = ϑ(E(x, xr )) never have opposite signs, i.e., ab 
= −1. For xr = 0, we have
a = ϑ(x, 0) and b = ϑ(E(x, 0)) = ϑ(x − 1, 3). From (24)

a = ϑ(x + 2) − ϑ(E(x + 2)),

b = −ϑ(E(x + 2))
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so that ab = ϑ(E(x + 2))2 − ϑ(E(x + 2))ϑ(x + 2) 
= −1. For xr = 3,

a = ϑ(x, 3) = −ϑ(E2(x)),

b = ϑ(E(x, 3)) = ϑ(x − 1, 2) = −ϑ(E2(x)),

we have ab = ϑ(E2(x))2 
= −1. The proofs of the other cases are similar.

10 Another Special Case: r = 2

When r = 2, n is equal to the sum of two nonzero, nonadjacent Fibonacci numbers.

Proposition 10.1 For r = 2, the expansion coefficients are given by

ϑ(x1, x2) =
(
1 −

⌊ x2
2

⌋)
ϑ(x1 − x2 − 2) − ϑ(x1 − x2 − 3)

=
(⌊ x2

2

⌋
− 1

)⌊ x1 − x2 − 2

2

⌋
+
⌊
x1 − x2 − 3

2

⌋
. (25)

Proof The formula follows from (23) and (21), keeping in mind that the operations
involving the xi are performed modulo 4.

Example 3 For n = F12+F8, x1 = x2 = 0 and v(n) = ϑ(0, 0) = − ⌊ 22
⌋+⌊ 12

⌋ = −1;
for n = F13 + F6, x1 = 1, x2 = 2 and v(n) = ϑ(1, 2) = ⌊ 0

2

⌋ = 0; and for
n = F15 + F9, x1 = 3, x2 = 1 and v(n) = ϑ(3, 1) = − ⌊ 02

⌋+ ⌊ 3
2

⌋ = 1.

Remark 5 Note that for r = 2, the expansion coefficients for x1 − x2 = 3 are all zero
as a consequence of (25). We will prove (Corollary 11.1) that this holds for arbitrary
r ≥ 2.

11 TheMatrix Recursion

When we have a linear homogeneous recursion, it is usually helpful to formulate it
as a matrix recursion. For constant coefficients, we then use linear algebra techniques
to compute the powers of the matrix and obtain Binet-like formulas for the n-th term
of the sequence. When the coefficients are not constant, the matrices involved need
to have special properties if we are to have any hope of writing the resulting matrix
product in a simple form.

For 2 ≤ i ≤ r − 1, define the 2 × 2 integer matrices

Bi =
[� xi−xi+1

2 � � xi−xi+1−1
2 �

−1 −1

]
, (26)

where the arithmetic operations involving the xi ’s are done modulo 4 as before.
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Theorem 11.1 Given (x, xr ) = (x1, x2, . . . , xr−1, xr ) with r ≥ 2 and xi ∈
{0, 1, 2, 3}, set

M(x, xr ) = B2B3 · · · Br−1 (27)

where the empty product for r = 2 is taken to be the 2 × 2 identity matrix. Then
the value of the expansion coefficient ϑ(x, xr ) is given by the vector–matrix–vector
product

ϑ(x, xr ) = [
ϑ(x1 − x2 − 2),ϑ(x1 − x2 − 3)

]
M(x, xr )

[
1 − ⌊ xr

2

⌋

−1

]
. (28)

Proof For r = 2, from formula (25) and Lemma 6.4 we obtain the following expres-
sion.

ϑ(x1, x2) =
(⌊ x2

2

⌋
− 1

)⌊ x1 − x2 − 2

2

⌋
+
⌊
x1 − x2 − 3

2

⌋

= [
ϑ(x1 − x2 − 2),ϑ(x1 − x2 − 3)

] [1 − ⌊ x2
2

⌋

−1

]
.

Let v1 = ϑ(x1 − x2 − 2) and v2 = ϑ(x1 − x2 − 3). For r > 2 by induction

ϑ(x) = [v1, v2]M(x)

[
1 − ⌊ xr−1

2

⌋

−1

]
. (29)

Using recursion (23),

ϑ(x, xr ) =
(
1 −

⌊ xr
2

⌋)
[v1, v2]M(x − xr − 2)

[
1 − � xr−1−xr−2

2 �
−1

]

−[v1, v2]M(x − xr − 3)

[
1 − � xr−1−xr−3

2 �
−1

]

= [v1, v2]M(x)

((
1 −

⌊ xr
2

⌋) [
1 − � xr−1−xr−2

2 �
−1

]
−
[
1 − � xr−1−xr−3

2 �
−1

])
.

Therefore, our proof obligation is to show that

Br−1

[
1 − � xr

2 �
−1

]
=
(
1 −

⌊ xr
2

⌋) [
1 − � xr−1−xr−2

2 �
−1

]
−
[
1 − � xr−1−xr−3

2 �
−1

]
.

The above identity is immediately verified using Mathematica to check the equality
of both sides for the sixteen possible values of xr−1 and xr modulo 4.

An immediate consequence of Theorem 11.1 is the following corollary.

Corollary 11.1 If n has canonical representation n = Fk1 +Fk2 +· · ·+Fkr with r ≥ 2
and k1 − k2 ≡ 3 mod 4, then v(n) = 0.

Proof Since both v1 = ϑ(x1−x2−2) and v2 = ϑ(x1−x2−3) vanish for x1−x2 = 3
the corollary follows from (28).
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11.1 Formula for r = 3

For r = 3, the matrix formulation gives

M(x1, x2, x3) =
[⌊ x2−x3

2

⌋ ⌊ x2−x3−1
2

⌋

−1 −1

]

.

Therefore, the formula for the expansion coefficient ϑ(x1, x2, x3) is

ϑ(x1, x2, x3) =
⌊
x1 − x2 − 2

2

⌋(⌊
x2 − x3

2

⌋(⌊ x3
2

⌋
− 1

)
+
⌊
x2 − x3 − 1

2

⌋)

−
⌊ x3
2

⌋⌊ x2 − x3 − 3

2

⌋
. (30)

The formulas (21), (25) and (30) provide closed form expressions for the expansion
coefficients for r = 1, 2, 3. Evidently, these formulas get unwieldy very quickly.

12 The A-Matrices and a Special Case

Among all possible 2× 2 matrices Bi , there are only four distinct ones, depending on
the value of the difference xi − xi+1 modulo 4. We will refer to these four matrices
indexed by the possible remainders 0, 1, 2, 3 as the A-matrices. They are given in (31).

A0 =
[
0 1

−1 −1

]
, A1 =

[
0 0

−1 −1

]
, A2 =

[
1 0

−1 −1

]
, A3 =

[
1 1

−1 −1

]
. (31)

We can use the matrix recursion formulation to obtain formulas for the expansion
coefficients explicitly in certain other special cases. Suppose in x = (x1, x2, . . . , xr )
with r ≥ 3, all digits have the same remainder p modulo 4, for some p ∈ {0, 1, 2, 3}.
In this case each A-matrix that is a factor of M(x) is equal to A0 as given in (31), and
the expansion coefficient is given by

[
−
⌊
x1−x2−2

2

⌋
,−
⌊
x1−x2−3

2

⌋]
Ar−2
0

[
1 − ⌊ xr

2
⌋

−1

]
= [−1, 0]Ar−2

0

[
1 − ⌊ p

2
⌋

−1

]
. (32)

We calculate that for m ≥ 0,

Am
0 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[
1 0
0 1

]
if m = 0, 3, 6, . . .

[
0 1

−1 −1

]
if m = 1, 4, 7, . . .

[−1 −1
1 0

]
if m = 2, 5, 8, . . .

(33)

This gives the following result.
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Table 3 The 25 elements of the monoid of M-matrices generated by the four A-matrices

M1 =
[−1 −1
0 0

]
, M2 =

[−1 −1
0 1

]
, M3 =

[−1 −1
1 0

]
, M4 =

[−1 −1
1 1

]
, M5 =

[−1 0
0 0

]
,

M6 =
[−1 0
1 0

]
, M7 =

[
0 −1
0 0

]
, M8 =

[
0 −1
0 1

]
, M9 =

[
0 0

−1 −1

]
, M10 =

[
0 0

−1 0

]
,

M11 =
[
0 0
0 −1

]
, M12 =

[
0 0
0 0

]
, M13 =

[
0 0
0 1

]
, M14 =

[
0 0
1 0

]
, M15 =

[
0 0
1 1

]
,

M16 =
[
0 1

−1 −1

]
, M17 =

[
0 1
0 −1

]
, M18 =

[
0 1
0 0

]
, M19 =

[
0 1
1 0

]
, M20 =

[
1 0

−1 −1

]
,

M21 =
[
1 0

−1 0

]
, M22 =

[
1 0
0 0

]
, M23 =

[
1 0
0 1

]
, M24 =

[
1 1

−1 −1

]
, M25 =

[
1 1
0 0

]
.

Note that M23 = I , M12 = 0, and M16, M9, M20, M24 are A0, A1, A2, and A3, respectively

Theorem 12.1 Suppose n has canonical representation n = Fk1 +Fk2 +· · ·+Fkr with
r ≥ 1 where for some fixed p ∈ {0, 1, 2, 3}, ki ≡ p mod 4, for all i = 1, 2, . . . , r .
Then the expansion coefficient ϑ(x) is given by

ϑ(x) =

⎧
⎪⎨

⎪⎩

1 if r = 3k,

− ⌊ p
2

⌋
if r = 3k + 1,

⌊ p
2

⌋− 1 if r = 3k + 2,

(34)

for k ≥ 0.

Proof For r ≥ 3, the proof is immediate from the vector–matrix–vector product in
(32) and the expression for the powers of A0 in (33).We check that the values for r = 1
and r = 2 already obtained for x1 = p (Lemma 6.4) and x1 = x2 = p (Proposition
10.1) are also accounted for by the formula in (34).

13 TheMonoid ofM-Matrices

The four A-matrices A0, A1, A2, A3 defined in (31) generate a monoid

〈A0, A1, A2, A3〉 = {Ai1 Ai2 · · · Air | 0 ≤ i1, i2, . . . , ir ≤ 3, r ≥ 0} (35)

where the empty product is taken to be the 2 × 2 identity matrix I . Elements of
this monoid coincide with the possible matrices M(x) that appear in (29) for the
computation of the expansion coefficients. We will refer to them as the M-matrices.
The set of M-matrices was determined by experimentation with products of the A-
matrices in (31) using Mathematica. Once determined, it is straightforward to prove
that they are indeed themonoid 〈A0, A1, A2, A3〉. It is interesting that there are exactly
25 M-matrices. These are labeled M1 through M25 as shown in Table 3.

Theorem 13.1 The monoid generated by the A-matrices consists of the 25 matrices
M1 through M25 of Table 3.
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Proof The proof is in two parts. In the first part we show that each matrix Mi is a
product of A-matrices. This is shown in the last column of Table 4, which gives the
lexicographically smallest representation of the M-matrix in that row as a product of
A-matrices. The proof is completed by showing that the M1 through M25 are closed
under multiplication from the right by the A-matrices. This is shown in the columns
labeled A0 through A3 in Table 4. The verification of these computations was carried
out on Mathematica.

Remark 6 For any given integer n = n(x), the matrix M(x) that determines its expan-
sion coefficient via (28) is one of the matrices M1, M2, . . . , M25. So positive integers
are partitioned into 25 equivalence classes determined by their canonical representa-
tion and the resulting M-matrices calculated through (26) and (27). For r ≤ 2, this
matrix is the identity matrix.

A few identities immediately derived from (31) are

A1A3 = A3A3 = 0 , (36)

aswell as A2A2 = I , A1A1 = A2A1, and A0A1 = A3A1. Of particular interest are the
products of the A-matrices that vanish, which guarantees that the associated expansion
coefficient is zero. For example, the fact that A1A3 = 0 means that if x = x1x2 · · · xr
is the string of residues of the indices of the canonical representation modulo 4 and
if x2x3 · · · xr contains a subword xi xi+1xi+2 which is one of 030, 101, 212, or 323,
then the expansion coefficient is zero. Similarly, since A3A3 = 0, in view of Corollary
11.1 which covers the case in which x1 − x2 = 3, the existence of a subword of x
which is one of 012, 123, 230, or 301 implies that the expansion coefficient is zero.
Therefore, we have the following theorem.

Theorem 13.2 Suppose n has canonical representation n = Fk1 +Fk2 +· · ·+Fkr and
x = x1x2 · · · xr is the string of residues of the indices modulo 4. If x2x3 · · · xr contains
any one of the subwords 101, 212, 323, 030, or if x contains any of the subwords 012,
123, 230, 301 then v(n) = 0.

Any vanishing product of A-matrices can be turned into a property of the expansion
coefficients. For example, we compute that A1A0A1 = 0 and A3A0A1 = 0 also hold.
These are immediately obtained from the identity A0A1 = A3A1 along with the pair
of vanishing products in (36). So if the string of residues x2x3 · · · xr of the indices
of the canonical representation modulo 4 contains a subword which is one of 0332,
1003, 2110, 3221; or 0110, 1221, 2332 or 3003, then the expansion coefficient is zero.

There are more examples like this. For instance, the following are products of some
A-matrices of length 4 that evaluate to the zero matrix:

A1A2A2A3, A1A2A0A3, A1A0A2A1, A3A2A2A3, A3A2A0A3, A3A0A2A1 .

Remark 7 In general the identities satisfied by the A-matrices are useful as subwords
when looking at the string of residues if x2x3 · · · xr of the indices of the canonical
representation modulo 4, which excludes x1. This is because the product of the A-
matrices that make up M(x) is independent of x1. This can be seen from (27).
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Table 4 The table of
M-matrices and the effect of
right multiplication of the Mi by
the four A-matrices

State/Matrix A0 A1 A2 A3 Representative

M1 M22 M25 M18 M12 A0A3
M2 M20 M24 M16 M9 A0A2
M3 M23 M25 M19 M15 A0A0
M4 M21 M24 M17 M12 A0A1
M5 M7 M12 M5 M1 A2A3A0
M6 M8 M12 M6 M4 A3A0
M7 M25 M25 M25 M25 A2A3A2
M8 M24 M24 M24 M24 A3A2
M9 M14 M15 M13 M12 A1
M10 M11 M12 M10 M9 A1A1A0
M11 M15 M15 M15 M15 A1A1A2
M12 M12 M12 M12 M12 A1A3
M13 M9 M9 M9 M9 A1A2
M14 M13 M12 M14 M15 A1A0
M15 M10 M9 M11 M12 A1A1
M16 M3 M4 M2 M1 A0
M17 M4 M4 M4 M4 A0A1A2
M18 M1 M1 M1 M1 A0A3A2
M19 M2 M1 M3 M4 A2A0
M20 M19 M15 M23 M25 A2
M21 M17 M12 M21 M24 A0A1A0
M22 M18 M12 M22 M25 A0A3A0
M23 M16 M9 M20 M24 ε

M24 M6 M4 M8 M12 A3
M25 M5 M1 M7 M12 A2A3

For example, M6A0 = M8 and M6A1 = M12. The last column is
the lexicographically smallest word (product) in A0, A1, A2, A3 that
is equal to the Mi in that row. The null word ε in row 23 corresponds
to the identity matrix I

Incidentally, Table 4 gives a straightforward algorithm to solve the problem
of finding the word in the last column to which a given element of the monoid
〈A0, A1, A2, A3〉 is equal. For example given the word w = A2A1A0A3A0A0, we
process from left to right to find ε → M20 → M15 → M10 → M9 → M14 → M13.
Therefore, A2A1A0A3A0A0 is equal to A1A2.

14 The Exact Distribution of the Expansion Coefficients

Since the values of the expansion coefficients are determined by their residues x =
x1x2 · · · xr for an integer n = n(x) with r summands in its canonical representation,
we can use the explicit formulas for the r = 1 and r = 2 cases from Lemma 6.4
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Table 5 The exact distribution of the values−1, 0, 1 of the expansion coefficients among the 4r possibilities
x = x1x2 · · · xr for 1 ≤ r ≤ 11

r 1 2 3 4 5 6 7 8 9 10 11

ϑ(x) = −1 2 2 12 56 80 608 1600 4480 22784 54784 214016

ϑ(x) = 0 2 8 40 176 736 3136 13184 54528 224768 922624 3766272

ϑ(x) = 1 0 6 12 24 208 352 1600 6528 14592 71168 214016

Fig. 1 The plot of the probabilities of the −1, 0, 1 expansion coefficients as a function of the number of
parts r = 1, 2, . . . , 13

and Proposition 10.1, and for r > 2, use the vector–matrix–vector formula of (28)
to compute the distribution of the −1, 0, 1 values for the expansion coefficients as a
function of r . These brute-force computed values are given as Table 5.

If we plot the values of exact values of these probabilities, we see that the values
for −1 and 1 expansions oscillate around a common value (Fig. 1).

Let ur denote the empirical probability that the expansion coefficient is nonzero
(this is the sum of the green and the blue lines in Fig. 1). To get an idea of how this
ratio decreases using the available numerical data, we compute the values of ur+1/ur
for r = 1, 2, . . . , 12. This gives the sequence of ratios

1,
3

4
,
5

6
,

9

10
,
5

6
,
5

6
,
43

50
,
73

86
,
123

146
,
209

246
,
355

418
,
601

710
.

The decimal expansion of the last three ratios are about 0.8495, 0.8492, 0.8464. We
will show in Theorem 17.1 that both −1 and 1 probabilities go to zero as 2+�

10

(
�
2

)r
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Fig. 2 The Markov chain (M-chain) defined by the matrices M1, M2, . . . , M25 as states. The start state is
M23; M12 is the absorbing state. The probability is 1

4 for each transition

as r goes to infinity, where � = (1 + √
5)/2 is the golden ratio. For this we turn the

M-matrices into a Markov chain.

15 M-Matrices as a Finite Markov Chain

We assume that modulo 4 remainders of integers n = n(x) are distributed uniformly
and independently. Thus, for a given r , the components xi ∈ {0, 1, 2, 3} of x =
(x1, x2, . . . , xr ) are each picked independently with probability 1

4 . The Markov chain
we construct has as its states M1 through M25. There is a transition from state Mi to
state Mj if Mi Ak = Mj according to Table 4, where Ak is one of A0, A1, A2, A3.
The probability of each transition is 1

4 . We refer to the resulting finite Markov chain as
the M-chain. The underlying state diagram of the M-chain (without the probabilities
labeled) is given in Fig. 2. Since all transitions from M12 are back to itself, M12 is
absorbing. The process starts at state M23.
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Fig. 3 Sketch of the structure of
the M-chain with the
communicating classes C1, C2,
C3, C4 and C5 as given in (37)

15.1 The Nature of theM-Chain

The M-chain decomposes into strongly connected components (communicating
states) which consist of the classes given in (37).

C1 = {M12}
C2 = {M1, M5, M7, M18, M22, M25}
C3 = {M9, M10, M11, M13, M14, M15} (37)

C4 = {M4, M6, M8, M17, M21, M24}
C5 = {M2, M3, M16, M19, M20, M23} .

The restriction of the chain to each of the classes is regular in that the transition
matrix of the chain restricted to the elements of the class has a matrix power whose
elements are all positive. For example, the cubes of the restricted matrices for the
classes C2,C3,C4 are identical and is given by the matrix on the left in (38); whereas
the cube of the restricted transition matrix for C5 is the one on the right in (38).
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1
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1
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1
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1
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1
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1
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1
64

1
32
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⎤
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⎦

. (38)

The schematic of the patterns of communication between these classes is as shown in
Fig. 3.
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16 Eigenvalues and Expansion Coefficient Probabilities

If we are in state Mi of the Markov chain with remainders x = x1x2 · · · xr with r ≥ 3,
then the coefficient is given by

[
−
⌊
x1 − x2 − 2

2

⌋
,−
⌊
x1 − x2 − 3

2

⌋]
Mi

[
1 − � xr−1−xr−2

2 �
−1

]
.

For example for i = 2, this value is

−
⌊ xr
2

⌋⌊ x1 − x2 − 2

2

⌋
+
⌊
x1 − x2 − 3

2

⌋
. (39)

Assuming that the xi are equally likely and counting the frequency of the values
−1, 0, 1 taken by (39) for 0 ≤ x1, x2, xr ≤ 3, we find that the probability of that
the value of the expansion coefficient at M2 is −1, 0, 1 is 1

8 ,
1
2 ,

3
8 , respectively. A

similar calculation for the M-matrix M3 gives the probabilities of −1, 0, 1 as 1
2 ,

1
2 , 0.

Calculating these probabilities for each Mi by Mathematica, we obtain three 25-
dimensional vectors V−1, V0, V1, whose i-th coordinate gives the probability of the
coefficient being −1, 0, and1, respectively at that state.

V−1 = [ 1
4 ,

1
8 ,

1
2 ,

1
8 , 0,

1
8 ,

1
2 ,

1
4 ,

1
4 , 0,

1
2 , 0, 0,

1
4 , 0,

1
8 ,

1
4 , 0,

1
8 ,

1
2 ,

1
8 ,

1
4 ,

1
8 ,

1
8 , 0

]

V0 = [ 3
4 ,

1
2 ,

1
2 ,

3
4 ,

3
4 ,

3
4 ,

1
2 ,

1
2 ,

3
4 ,

3
4 ,

1
2 , 1,

1
2 ,

3
4 ,

3
4 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

3
4 ,

3
4 ,

1
2 ,

3
4 ,

3
4

]

V1 = [
0, 3

8 , 0,
1
8 ,

1
4 ,

1
8 , 0,

1
4 , 0,

1
4 , 0, 0,

1
2 , 0,

1
4 ,

3
8 ,

1
4 ,

1
2 ,

3
8 , 0,

1
8 , 0,

3
8 ,

1
8 ,

1
4

]

We let V−1(i), V0(i) and V1(i) denote the i-th coordinate of these vectors for 1 ≤ i ≤
25. The spectrum of the transition matrix P of the M-chain is as follows.

Spec (P) =
(
1 1

4

(
1 + √

5
)

1
2 0 − 1

4
1
4

(
1 − √

5
)

− 1
2

1 3 4 9 2 3 3

)

,

where the first row is the list of eigenvalues of P in decreasing magnitude and the
second row are the multiplicities. The minimal polynomial of P is found to be

1
64 (x − 1)x(2x − 1)(2x + 1)(4x + 1)

(
4x2 − 2x − 1

)
.

Since the roots of the minimal polynomial are distinct, P is diagonalizable and can
be written in form P = QDQ−1 where D is diagonal. Using Mathematica to do this
calculation, we compute the 25 × 25 basis change matrix Q and the diagonal matrix
D. The eigenvalues in D are

− 1
2 ,− 1

2 , − 1
2 , − 1

4 , − 1
4 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

2 , 1
2 , 1

2 , 1
2 , 1,

1
4

(
1 − √

5
)

, 1
4

(
1 − √

5
)

, 1
4

(
1 − √

5
)

, 1
4

(
1 + √

5
)

, 1
4

(
1 + √

5
)

, 1
4

(
1 + √

5
)

.
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This ordering of the eigenvalues down the diagonal is provided by Mathematica 9
when the command JordanDecomposition is used to find D and Q.

17 Asymptotic Expansions

Using the fact that the k-step probabilities of the chain are given by Pk = QDkQ−1,
we calculate the exact entries in row 23 of Pk , which corresponds to the start state
M23. The elements p(k)

1 , p(k)
2 , . . . , p(k)

25 of the 23rd row of Pk from the first column to
the 25th are found to be

p(k)
1 = p(k)

25 = 4−k

24

(
−2
(
8(−1)k + 2k

)
+ 3

(
3 − √

5
) (

1 + √
5
)k

+3
(
3 + √

5
) (

1 − √
5
)k)

p(k)
2 = p(k)

3 = p(k)
19 = p(k)

23 = 4−k

6

(
2(−1)k + 2k

)

p(k)
4 = p(k)

15 = 4−k

8

(
3(−2)k − 2k −

(
1 + √

5
) (

1 − √
5
)k

−
(
1 − √

5
) (

1 + √
5
)k)

p(k)
5 = p(k)

7 = p(k)
18 = p(k)

22 = 4−k

120

(
10
(
4(−1)k − 2k

)
− 3

(
5 + 3

√
5
) (

1 − √
5
)k

−3
(
5 − 3

√
5
) (

1 + √
5
)k)

p(k)
6 = p(k)

8 = p(k)
13 = p(k)

14 = 4−k

120

(
5
(
3(−2)k − 8(−1)k − 2k

)
+ 3

(
5 − √

5
) (

1 + √
5
)k

+3
(
5 + √

5
) (

1 − √
5
)k)

p(k)
9 = p(k)

24 = 4−k

24

(
−9(−2)k + 16(−1)k − 2k − 3

(
1 + √

5
) (

1 − √
5
)k

−3
(
1 − √

5
) (

1 + √
5
)k)

p(k)
10 = p(k)

11 = p(k)
17 = p(k)

21 = 4−k

40

(
−5
(
(−2)k + 2k

)
+
(
5 − √

5
) (

1 + √
5
)k

+
(
5 + √

5
) (

1 − √
5
)k)

p(k)
12 = 4−k

20

(
5 2k+1

(
2k+1 + 1

)
−
(
15 + 7

√
5
) (

1 + √
5
)k

−
(
15 − 7

√
5
) (

1 − √
5
)k)

p(k)
16 = p(k)

20 = 4−k

6

(
2k − 4(−1)k

)
.

For any i , the probability that starting in state M23, the M-chain is in state Mi

after k steps is p(k)
i . In state Mi , the probability that the expansion coefficient is −1 is
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V−1(i). Summing the contribution over i , the probability that after a k-step walk on
the M-chain starting at M23, the coefficient will equal −1 is found to be

25∑

i=1

V−1(i)p
(k)
i = 4−k

40

((
5 + 2

√
5
) (

1 + √
5
)k +

(
5 − 2

√
5
) (

1 − √
5
)k − 5(−2)k

)
,

after the simplifications made by Mathematica. Similarly, the probability that after a
k-step walk on the M-chain the coefficient will be 1 is

25∑

i=1

V1(i)p
(k)
i = 4−k

40

((
5 + 2

√
5
) (

1 + √
5
)k +

(
5 − 2

√
5
) (

1 − √
5
)k + 5(−2)k

)
,

and the probability that after a k-step walk on the M-chain the coefficient will be 0 is

25∑

i=1

V0(i)p
(k)
i = 1 − 4−k

20

((
5 + 2

√
5
) (

1 + √
5
)k +

(
5 − 2

√
5
) (

1 − √
5
)k)

.

Next, we look at these expressions in terms of the number of summands of the canon-
ical representation r = k + 2. Making the substitution and simplifying, we obtain
the following expressions for the probability as a function of r , that the expansion
coefficient is −1, 1, and 0, respectively:

4−r

20

((
5 + √

5
) (

1 + √
5
)r +

(
5 − √

5
) (

1 − √
5
)r − 10(−2)r

)
, (40)

4−r

20

((
5 + √

5
) (

1 + √
5
)r +

(
5 − √

5
) (

1 − √
5
)r + 10(−2)r

)
, (41)

1 − 4−r

10

((
5 + √

5
) (

1 + √
5
)r +

(
5 − √

5
) (

1 − √
5
)r)

. (42)

The above expressions yield the following theorem in which the asymptotic prob-
abilities are written in terms of the golden ratio.

Theorem 17.1 Theasymptotic probability that the expansion coefficient of an exponent
with canonical representation with r summands is −1 or 1 is both 2+�

10

(
�
2

)r
, and the

asymptotic probability that it is 0 is 1 − 2+�
5

(
�
2

)r
, where � is the golden ratio.

Remark 8 In Theorem 17.1, one important point is that the probability is defined as
the density of the canonical representation of the integers in terms of the Fibonacci
numbers.

18 Recursions

From the form of the expression in (40), (41) and (42), we can work backwards from
the Binet formula for recursions by means of the roots of the characteristic equation,
and figure out the corresponding recurrence relation that gave rise to it. Keeping the
denominator as the total number of possibilities 4r in each expression, the numerators
are found to satisfy the following recursions for r ≥ 3:
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mr = 8mr−2 + 8mr−3 (m0 = 0,m1 = 2,m2 = 2),
or = 8or−2 + 8or−3 (o0 = 1, o1 = 0, o2 = 6),
zr = 6zr−1 − 4zr−2 − 16zr−3 (z0 = 0, z1 = 2, z2 = 8),

for the number mr , or , zr of −1, 1, and 0 coefficients, respectively, as a function of r .

Remark 9 The interesting point about these three recursions is that even though they
have been obtained from probabilistic considerations by looking at the behavior of the
Markov chain of M-matrices, they hold for the actual values computed by brute force
and represented in Table 5. There is probably a simpler combinatorial explanation.

19 Conclusions and Remarks

The main result presented here is that the coefficients of the expansion of (2) are from
{−1, 0, 1}, as is the case in the expansion of Euler’s product (1).

The coefficients in the development of (2) can be efficiently calculated, and explicit
formulas can be obtained when various interesting sequences of integers are taken
as exponents. However, a result like the pentagonal number theorem with explicit
identification of the ±1 coefficients, and a simple combinatorial proof of by using
Ferrers’ diagramswith Fibonacci numbers as parts seems difficult. Instead of partitions
with distinct parts that occur in the case of the combinatorial interpretation of the
expansion of (1), the relevant partitions for this problem seem to be integer partitions
formed by the indices of the canonical Fibonacci representation of n.

There are conditions in terms of forbidden subwords of the string x , whose letters
are the modulo 4 remainders of the indices of canonical representation of an exponent,
which guarantee that the associated expansion coefficient vanishes.

Amore extensive formal language oriented study of the properties of the coefficients
is made possible by the construction of a deterministic finite automaton over the
alphabet � = {A0, A1, A2, A3} which has as its states the states of the M-chain in
Fig. 2, and where the transitions are labeled with the letters of � as indicated by right
multiplication in Table 4.

Various submonoids of the M-matrices give results on the coefficients of subse-
quences of exponents. We have considered the case of 〈A0〉 in Sect. 12. The analysis
of this submonoid gives the result in Theorem 12.1 in which the parts in the canonical
representation of the exponent are all equivalent to the same remainder p modulo
4. Study of various other submonoids gives results of a similar nature from which
asymptotic expressions can also be obtained. The simplification of the analysis in
these cases is made possible by making use of the relations satisfied by the A-matrices
as discussed briefly in Sect. 13.

An example of a result based on the study of submonoids and the uniqueness of the
canonical representation is Proposition 19.1, which we state here without proof.

Proposition 19.1 Writing the product in (2) as

∏

k≥2

(1 − yFk ) =
∏

k≥1

(1 − yF4k )
∏

k≥1

(1 − yF4k+1)
∏

k≥0

(1 − yF4k+2)
∏

k≥0

(1 − yF4k+3) ,
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the power series expansion of any product, or a pair of products on the right have
coefficients that lie in {−1, 0, 1}.
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