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ien
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s:u
sb:eduABSTRACTThe lo
al sequen
e alignment problem is the dete
tion of similar subsequen
es in twogiven sequen
es of lengths n � m. Unfortunately the 
ommon notion of lo
al alignmentsu�ers from some well-known anomalies whi
h result from not taking into a

ount thelengths of the aligned subsequen
es. We introdu
e the length restri
ted lo
al alignmentproblem whi
h in
ludes as a 
onstraint an upper limit T on the length of one of thesubsequen
es to be aligned. Obvious extensions of dynami
 programming formulationsfor the solution of the length restri
ted lo
al alignment problem result in expensive
omputations: O(Tnm) time and O(Tm) spa
e. We propose an eÆ
ient approximationalgorithm using whi
h we 
an �nd a solution satisfying the length bound, and whoses
ore is within di�eren
e � of the optimum s
ore for any given positive integer � in timeO(nmT=�) using O(mT=�) spa
e. We also introdu
e the 
y
li
 lo
al alignment problemand show how our idea 
an be applied to this 
ase as well. This is a dual approa
h to thewell-known 
y
li
 edit distan
e problem. These results generalize dire
tly to the 
ase ofaÆne gap penalties.Keywords: Lo
al sequen
e alignment, edit distan
e, 
y
li
 edit distan
e, approximationalgorithm.1. Introdu
tionThe lo
al sequen
e alignment problem in 
omputational mole
ular biology aimsto reveal similar regions in a given pair of sequen
es X and Y whose lengths aren and m respe
tively with n � m. The Smith-Waterman algorithm �nds thelo
al alignment by sear
hing for two segments with maximum similarity s
ore bydis
arding poorly 
onserved initial and terminal fragments. Sin
e it is not designedto ex
lude non-similar internal fragments, an alignment returned by the algorithmmay 
ontain a mosai
 of well-
onserved fragments arti�
ially 
onne
ted by poorly
onserved or even unrelated fragments. As a result, a lo
al alignment with s
ore1,000 and length 10,000 (long alignment) may be 
hosen over a lo
al alignment withs
ore 998 and length 1,000 (short alignment), although the latter one is probably�Supported in part by NSF Grant No. CCR{9821038. A preliminary version of this workwas presented at The Latin Ameri
an Theoreti
al Informati
s Conferen
e (LATIN 2002), Can
�un,M�exi
o, April 3{6, 2002. 1



more important biologi
ally. This de�
ien
y 
auses two forms of anomalies: \mosai
e�e
t" and \shadow e�e
t". Mosai
 e�e
t in an alignment is observed when a verypoor region is sandwi
hed between two regions with high similarity s
ores. Shadowe�e
t is observed when a biologi
ally important short alignment is not dete
tedbe
ause it overlaps with a signi�
antly longer yet biologi
ally inadequate alignmentwith only a slightly higher s
ore.We 
onsider the length restri
ted lo
al alignment (LRLA) problem in whi
h wesear
h for substrings I and J that maximize the s
ore s(I; J) among all substringsI and J with jJ j � T where T is a given upper limit on the length of J . This isyet another attempt to eliminate problems asso
iated with lo
al alignment. Theobje
tive is similar to that of normalized lo
al alignment algorithms [5℄, in that weaim to 
ir
umvent the undesirable mosai
 and the shadow e�e
ts. The degree offragmentation in this new problem is 
ontrolled by varying the bound T .Length restri
ted lo
al alignment 
an be solved by extending the dynami
 pro-gramming formulation of lo
al alignment problem. However the resulting time
omplexity is O(Tnm), whi
h may not be pra
ti
al for large values of n, m, and T .In this paper, we propose two approximation algorithms for LRLA. The �rst one isa simple 12 -approximation algorithm, and its 
omplexity is the same as that of thelo
al alignment problem (Algorithm HALF, se
tion 4). The se
ond algorithm (Al-gorithm APX-LRLA, se
tion 4) returns a s
ore guaranteed to be within di�eren
e2� of the optimum for a given � � 1. The time 
omplexity of this algorithm isO(nmT=�), with O(mT=�) spa
e. These two approximation algorithms 
an alsobe used to approximately solve the 
y
li
 lo
al alignment problem (CLA) of maxi-mizing s(I; J) where I is a substring of X , and J is a substring of a 
y
li
 shift ofY . Both algorithms 
an easily be implemented, without in
reasing the 
omplexity,for the 
ase of aÆne gap penalties.The outline of this paper is as follows. In se
tion 2, we dis
uss related previouswork in the literature on algorithms for restri
ted versions of lo
al alignment, and
y
li
 edit distan
e. In se
tion 3 we present the requisite notions and give thenotation we use. Se
tion 4 
ontains the des
ription of the approximation algorithmsHALF and APX-LRLA. Con
lusions are presented in se
tion 5.2. Previous WorkThe anomalies of mosai
 e�e
t and shadow e�e
t that exist in the ordinary for-mulation of lo
al alignment and the Smith-Waterman algorithm lead to problems in
omparison of long genomi
 sequen
es and 
omparative gene predi
tion, as re
entlypointed out by Zhang et al., 1999 [20℄. They proposed to de
ompose a dis
overedlo
al alignment into sub-alignments that avoid the mosai
 e�e
t. However, thepost-pro
essing approa
h may miss the alignments with the best degree of similar-ity if the Smith-Waterman algorithm missed them in the �rst pla
e. As a result,highly similar fragments may be ignored if they are not parts of longer alignmentsdominating other lo
al similarities. Another approa
h to �xing the problems withthe Smith-Waterman algorithm is based on the notion of X-drop, a region withinan alignment that s
ores below X . The alignments that 
ontain no X-drops are2




alled X-alignments. Although X-alignments are expensive to 
ompute in pra
ti
e,Alts
hul et al., 1997 [4℄ and Zhang et al., 1998 [19℄ used some heuristi
s for sear
hingdatabases with this approa
h.It is well-known that the statisti
al signi�
an
e of the lo
al alignment dependson both its s
ore and length (Alts
hul and Eri
kson, 1986 [2℄, 1988 [3℄). Alexandrovand Solovyev, 1998 [1℄ proposed to normalize the alignment s
ore by its length anddemonstrated that this new approa
h leads to better protein 
lassi�
ation. Arslanet al., 2001 [5℄ de�ned the normalized lo
al alignment problem where the goal isto �nd substrings I and J that maximize s(I; J)=(jI j + jJ j) among all substringsI and J with jI j + jJ j � t, where s(I; J) is the s
ore, and t is a threshold for theminimal overall length of I and J . Be
ause of the 
ubi
 time 
omplexity of the exa
talgorithm as an approximation to the original problem they proposed a solution tothe maximization of s(I; J)=(jI j + jJ j + L) for a given parameter L. This 
an bedone in time O(nm logn) and using O(m) spa
e [5℄.The length restri
ted lo
al alignment (LRLA) problem 
onsidered in this paperis essentially another attempt to eliminate problems asso
iated with lo
al alignmentby an approximation algorithm that runs in reasonable time and whi
h allows fora 
ontrol over the length of the optimal lo
al alignment sought. The limit is pla
edon only the substring J of Y . We believe that the underlying s
oring s
hemeshould limit the length of the other substring involved in an optimal alignmentautomati
ally, and therefore having two limits, one for jI j and another for jJ j isredundant.An appli
ation of length restri
ted lo
al alignment is the formulation of the 
y
li
lo
al alignment problem as a spe
ial 
ase of LRLA. The 
y
li
 lo
al alignment isthe problem of maximizing s(I; J) over all I and J , where I is a substring ofX , and J is a substring of a 
y
li
 shift of Y . A 
y
li
 shift of a string s is astring obtained by 
on
atenating symbols of s in a 
ir
ular fashion. For example

dab, 
dab
 are 
y
li
 shifts of string ab

d. The 
y
li
 lo
al alignment problemis the length restri
ted lo
al alignment problem with strings X and Y Y , and limitT = jY j. The approximation algorithms we develop 
an readily be used for thisproblem. Moreover it de�nes a dual approa
h to well-known 
y
li
 edit distan
eproblem whi
h aims to �nd the minimum edit distan
e between string X and a
y
li
 shift of Y over all possible 
y
li
 shifts of Y .Cy
li
 edit distan
e problem appears in many appli
ations, and there is extensiveliterature on the subje
t. Bunke and B�uhler, 1993 [6℄ presented 
y
li
 edit distan
eas a method for two-dimensional shape re
ognition. Uliel et al., 1999 [15℄ suggestedusing it for dete
ting 
ir
ular permutations in proteins. There are many algorithmsfor the problem. Fu and Lu [8℄ presented an O(nm2)-time algorithm extendingthe dynami
 programming edit distan
e algorithm of Wagner and Fisher, 1974 [16℄.Maes [13℄ proposed an algorithm with O(nm logm) time and O(nm) spa
e 
om-plexity, and des
ribed how to redu
e the spa
e 
omplexity to O((n + m) logm).There are also O(nm)-time suboptimal algorithms developed by Gorman et al.,1988 [9℄, Bunke and B�uhler, 1993 [6℄, and Uliel et al., 1999 [15℄. Gregor and Thoma-son, 1996 [10℄ presented an output-size sensitive algorithm whose time 
omplexity3



ranges from O(nm) to O(nm2). There are faster algorithms for the 
ase of unit-
ost edit operations in whi
h ea
h edit operation has weight 1 ex
ept for a mat
h(substitution of the same symbol, or no operation) whose weight is 0. For this
ase, Chung, 1998 [7℄ proposed an algorithm for a generalized version of the prob-lem 
alled banded 
y
li
 string-to-string 
orre
tion problem whose time 
omplexityranges between O(nm) and O(nm logm) for 
y
li
 edit distan
e 
omputation. Lan-daue et al., 1998 [12℄ des
ribed an algorithm for in
remental string 
omparisonwhi
h 
an be used to solve 
y
li
 edit distan
e problem with unit 
osts in timeO(m2).Sin
e 
y
li
 lo
al alignment problem is a spe
ial 
ase of length restri
ted lo
alalignment, the approximation algorithms we des
ribe in this paper 
an also be usedto solve the 
y
li
 lo
al alignment problem with the same eÆ
ien
y. This makes
y
li
 lo
al alignment an alternative to 
y
li
 edit distan
e in appli
ations using
y
li
 string 
omparison. In addition, our algorithms 
an easily be implemented,without in
reasing the 
omplexity, for the 
ase of aÆne gap penalties in whi
h total
ost asso
iated with ea
h blo
k (
alled a gap) of indels (insertions or deletions) isa linear fun
tion of a gap open penalty and the number of individual indels in thegap.3. Preliminaries and De�nitionsGiven two strings X = x1x2 : : : xn and Y = y1y2 : : : ym with n � m, the align-ment graph GX;Y (Edit Graph in the 
ontext of string editing) is used to representall possible alignments between X and Y . It is a dire
ted a
y
li
 graph having(n+1)(m+1) latti
e points (u; v) as verti
es for 0 � u � n, and 0 � v � m (Figure1). An alignment path for substrings xi � � �xk, and yj � � � yl is a dire
ted path fromthe vertex (i � 1; j � 1) to (k; l) in GX;Y where i � k and j � l. Horizontal andverti
al ar
s 
orrespond to insert and delete operations respe
tively. The diagonalar
s 
orrespond to substitutions whi
h are either mat
hing (if the 
orrespondingsymbols are the same), or mismat
hing (otherwise). If we tra
e the ar
s of an align-ment path for substrings I and J and perform the indi
ated edit operations in thegiven order on I , we obtain J .The obje
tive of sequen
e alignment is to quantify the similarity between twostrings. There are various s
oring s
hemes for this purpose. In the basi
 s
orings
heme, the ar
s of GX;Y are assigned weights determined by non-negative reals Æ(mismat
h penalty) and � (indel or gap penalty). We assume that s(xi; yj) is thesimilarity s
ore between the symbols xi, and yj whi
h is normally 1 for a mat
h(xi = yj) and �Æ for a mismat
h (xi 6= yj). We will use the terms alignment andalignment path inter
hangeably.The following is the 
lassi
al dynami
 programming formulation [17℄ to 
omputethe maximum lo
al alignment s
ore Si;j ending at ea
h vertex (i; j):Si;j = maxf0; Si�1;j � �; Si�1;j�1 + s(xi; yj); Si;j�1 � �g (1)for 1 � i � n, 1 � j � m, with the boundary 
onditions Si;j = 0 whenever i = 0 orj = 0. 4
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(m,n)Figure 1: Alignment graph GX;Y where xi � � �xk = ATTGT and yj � � � yl =AGGACAT . Mat
hing diagonal ar
s are drawn as solid lines while mismat
h-ing diagonal ar
s are shown by dashed lines. Dotted lines are used for horizontaland verti
al ar
s. An example alignment path is shown. Labels of the ar
s on thispath are the 
orresponding edit operations where � denotes the null string.Let � indi
ate the substring relation. The lo
al alignment (LA) problem seeksfor substrings I � X and J � Y with the highest similarity s
ore. The optimalvalue LA�(X;Y ) for this problem is given byLA�(X;Y ) = maxfs(I; J) j I � X; J � Y g = maxi;j Si;j (2)where s(I; J) is the best alignment s
ore between I and J . LA� 
an be 
omputedusing the Smith-Waterman algorithm [14℄ in time O(nm). The spa
e 
omplexityis O(m) be
ause only O(m) entries of the dynami
 programming matrix need tobe stored at any given time. In what follows, for any optimization problem P ,we denote by P� its optimum value, and sometimes drop the parameters from thenotation when they are obvious from the 
ontext.As de�ned in [5℄, the obje
tive of the normalized lo
al alignment problem (NLAt)is: NLAt�(X;Y ) = maxfs(I; J)=(jI j+ jJ j) j I � X; J � Y; jI j+ jJ j � tg (3)Figure 2 in
ludes examples where optimal alignments for LA and NLAt may bedi�erent. In ea
h 
ase, the long alignment has the highest ordinary s
ore whereasthe shorter alignments have higher normalized s
ores. The normalized s
ore of analignment is obtained by dividing its s
ore by its length, whi
h is de�ned as the sumof the lengths of the substrings involved in the alignment. If we use ordinary s
oresas the similarity measure then the long alignments in Figure 2 are optimal. If we use5



normalized s
ores then the alignments returned depend on the value of t. For thealignments in Figure 2 t = 200 is a separating value in determining the optimalityof short and long alignments. The need to have 
ontrol over the alignment lengthsbe
omes apparent when we use normalized s
ores. Without 
ontrolling the desiredalignment lengths, with normalized s
ores short alignments overshadow the truelong alignments 
ausing yet another anomaly. Arslan et al., 2001 [5℄ 
hanged theobje
tive fun
tion to s(I; J)=(jI j+jJ j+L) by introdu
ing parameter L whi
h gives adegree of 
ontrol over the total length of the optimal subsequen
es. In this way, thelength 
onstraint 
an be dropped [5℄. This gave rise to an eÆ
ient algorithm whi
hruns in time O(nm logn) and using O(m) spa
e. However an adequate 
ontrol overthe length through parameter L is diÆ
ult to des
ribe.
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Figure 2: Some example alignments. The numbers written in itali
 are the ordi-nary s
ores of the alignments. The normalized s
ore of the shorter alignment(s) is80=200 = 0:4 while that of the longer alignment is 120=600 = 0:2 .Given a limit T , we de�ne the length restri
ted lo
al alignment (LRLA) s
orebetween X and Y asLRLA�(X;Y; T ) = maxfs(I; J) j I � X; J � Y; and jJ j � Tg (4)Figure 3 illustrates the length 
onstraint s
hemati
ally. In LRLA problem, thehorizontal lengths of the resulting alignments are 
ontrolled by upper limit T on oneof the substrings, whi
h in pra
ti
e will be determined by biologi
al 
onsiderations.6



For the alignments in Figure 2, setting T = 100 or T = 300 
hanges the optimalityof the short and long alignments when the ordinary s
ores are used.
J| | <T

I

J

X

Y

Figure 3: Candidates for I and J in the 
omputation of LRLA�(X;Y; T ).The 
y
li
 edit distan
e (CED) between X and Y is the minimum edit distan
ebetween X and any 
y
li
 shift of Y :CED�(X;Y ) = minfed(X; �k(Y )) j 0 � k < mg (5)where ed denotes the edit distan
e, and �k(Y ) is the 
y
li
 shift of Y by k whi
h isde�ned as follows: �0(Y ) = Y , and for 0 < k < m, �k(Y ) = yk+1 : : : ymy1 : : : yk.Maes' algorithm [13℄ 
omputes CED�(X;Y ) in O(nm logm) steps. For any k,ed(X; �k(Y )) is the 
ost of the shortest (least-
ost) path P (k) between the verti
es(0; k) and (n;m+ k) in GX;Y Y as shown in Figure 4. Maes' idea is to make use ofthe \non-
rossing" property of shortest paths, whi
h restri
ts the 
andidate P (k)to be squeezed between P (i) and P (j) where i < k < j as illustrated in the �gure.However this idea 
annot be generalized to the 
ase of aÆne gap penalties in whi
hthe total 
ost of a gap of size a, i.e. a blo
k of a insertions (or deletions), is� + (a� 1)� where � is the gap open penalty. It 
an easily be seen that P (i) andP (j) may be 
rossing ea
h other in this 
ase.
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(n,m+i) (n,m+j)Figure 4: Finding P (k) between P (i) and P (j) as a step toward the 
omputationof CED�(X;Y ).As a dual approa
h to CED we de�ne 
y
li
 lo
al alignment (CLA) problem byexpressing its obje
tive in the formCLA�(X;Y ) = maxfs(I; J) j I � X; J � �k(Y ) for some k; 0 � k < mg (6)7



Note that CLA is a spe
ial 
ase of LRLA. More spe
i�
allyCLA�(X;Y ) = LRLA�(X;Y Y; jY j)To solve the LRLA problem, and 
onsequently the CLA problem, we 
an extendthe dynami
 programming formulation in (1) by adding another dimension to storeat ea
h entry of the dynami
 programming matrix optimum s
ores for all possiblehorizontal lengths up to T . However this in
reases the time 
omplexity to O(Tnm)whi
h may be impra
ti
al.4. Approximation Algorithms for LRLAWe �rst give a simple 12 -approximation algorithm HALF for the LRLA problem.Clearly, we 
an assume T < m, for otherwise we 
an run the lo
al alignmentalgorithm without alteration on GX;Y and obtain the exa
t solution to LRLA intime O(nm). Let u = dm=T e and putYj = y(j�1)T+1 � � � yjTfor 1 � j < u with Yu = y(u�1)T+1 � � � ym. Thus Y = Y1Y2 � � �Yu, and the Yjpartition Y into blo
ks of length T ea
h (ex
ept possibly for Yu, whi
h may beshorter). Let HALF� = max1�j<ufs(I; J) j I � X; J � YjYj+1g (7)Finding an optimal alignment a for HALF requires solving u � 1 ordinary lo
alalignment problems among strings X and YjYj+1 for 1 � j < u as s
hemati
allydes
ribed in Figure 5 . Total time taken for this is O(nm), as ea
h Yj needs to be
onsidered at most twi
e during the 
omputations. The spa
e 
omplexity of HALFis O(m).
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Figure 5: Regions of alignment graph explored in 
omputing HALF�, and parts a1and a2 of an optimal alignment a.Let a be an optimal alignment found by HALF. We obtain an approximationto LRLA� from a as follows. Suppose a � YjYj+1 for some j. Let a1; a2 denote the8



two halves of a that lie in Yj and Yj+1, respe
tively as shown in Figure 5. Withoutloss of generality, assume that a1 is the one with the higher s
ore, say bS. Then2bS � LRLA�, and therefore 12LRLA� � bS � LRLA�:Clearly the horizontal length of a1 is � T . The same approximation and 
omplexityresults hold for the 
ases of arbitrary s
oring matri
es and aÆne gap penalties. Tosolve the individual lo
al alignment problems, Algorithm HALF uses the existingalgorithms in the underlying s
oring s
heme.We give next an approximation algorithm APX-LRLA, whi
h 
omputes a lo
alalignment s
ore bS � LRLA� within a pres
ribed di�eren
e 2� from LRLA�, i.e.LRLA� � 2� � bS � LRLA�:If desired, the position of an alignment a
hieving bS, and 
onsequently the substringsI � X and J � Y with jJ j � T a
hieving this s
ore 
an also be identi�ed. The
omplexity of the algorithm is O(nmT=�) time and O(mT=�) spa
e.For simpli
ity, we assume a basi
 s
oring s
heme: i.e. s
ore between the symbolsxi, and yj is 1 for a mat
h (xi = yj) and �Æ for a mismat
h (xi 6= yj), and the indels
ore is ��. We argue later that the algorithm 
an be easily modi�ed within thesame 
omplexity results for the 
ases of arbitrary s
oring matri
es, and also aÆnegap penalties.Our approximation idea is that instead of a single s
ore, we maintain at ea
hnode (i; j) of GX;Y , a list of s
ores with the property that for any given optimums
ore a
hieved by an alignment ending at (i; j) and starting within a past horizontalwindow of size T of (i; j) at least one element of the list lies within 2� of this s
ore.We show that the dynami
 programming formulation 
an be extended to preservethis property through the nodes. In parti
ular, an alignment with maximum s
ore bSin the list of s
ores 
omputed in one of the nodes (i; j) will be between LRLA��2�and LRLA�. We assume that � is integral, otherwise we use the largest integersmaller than the given value for �.Similar to the 
ase of HALF, we imagine the 
olumns of the graph GX;Y asgrouped into verti
al slabs of �+1 
olumns ea
h, starting with the leftmost 
olumn(i.e. j = 0). Two 
onse
utive slabs share a 
olumn whi
h we 
all a boundary. Theleft and the right boundaries of the slabs are de�ned as the leftmost and rightmost
olumn positions in the slab. We agree that a slab does not 
ontain the verti
aledges among the verti
es on the left boundary. Now to a given 
olumn j in GX;Y ,we asso
iate a number of slabs as follows. Let slab 0 with respe
t to j be the slabthat 
ontains 
olumn j. We order the 
onse
utive slabs to the left of slab 0 withrespe
t to j as slab 1, slab 2, : : :. This orders the slabs weakly to the left of 
olumnj, with respe
t to j. In other words, slab k with respe
t to 
olumn j is the subgraphof GX;Y 
omposed of verti
es pla
ed in
lusively between 
olumns bj=�
 and j ifk = 0, and between 
olumns (bj=�
 � k)� and (bj=�
 � k + 1)�, otherwise. Aslab 
ontains all the edges in GX;Y in
ident to the verti
es it 
ontains ex
ept for9



the verti
al edges on the left boundary whi
h belong to the pre
eding slab. Figure6 in
ludes sample slabs with respe
t to 
olumn j, and alignments ending at somenode (i; j) . From the dynami
 programming formulation (1), we note the followingobservation for optimal alignments with the basi
 s
oring s
heme assumed: anyoptimal alignment (with positive s
ore) ending at a given node (i; j) has to startwith a mat
h sin
e only the mat
hes have positive s
ores.
j /∆ -1 ∆ j /∆ ∆j /∆

. . .

(i,j)

. . .

. . .∆-k

slab k slab 1 slab 0

Figure 6: Slabs with respe
t to 
olumn j, and alignments ending at node (i; j)starting at di�erent slabs.Let Si;j;k for 0 � k � bT=�
� 1 represent the optimum s
ore a
hievable by anyalignment ending at node (i; j) and starting at slab k with respe
t to 
olumn j. ForLRLA, we are only interested in alignments with horizontal length not ex
eeding T .A single slab 
an 
ontribute at most � to the s
ore of any alignment. Consequently,we need to store at ea
h node at most bT=�
 s
ores Si;j;k, for 0 � k � bT=�
 � 1
orresponding to the bT=�
 slabs that in
lude (i; j) and span a past horizontalwindow of length not ex
eeding T . Figure 7 shows the steps of our approximationalgorithm APX-LRLA. The pro
essing is done row-by-row starting with the toprow (i = 0) of GX;Y .We 
an modify the Smith-Waterman algorithm su
h that it breaks the ties ins
ores by sele
ting alignments with smaller horizontal lengths. This modi�ed algo-rithm 
an be used in Step 1 to 
he
k if the maximum s
ore over all the alignments isa
hieved by an alignment whose horizontal length does not ex
eed T . Step 2 of thealgorithm performs the initialization of the lists of the nodes in the top row (i = 0).Step 3 implements 
omputation of s
ores as di
tated by the dynami
 programmingformulation in (1):� If the 
urrent node (i; j) is not on the �rst 
olumn after a boundary then nodes(i� 1; j), (i� 1; j� 1) and (i; j � 1) share the same slabs with node (i; j) . Inthis 
ase Si;j;k is 
al
ulated by using Si�1;j;k, Si�1;j�1;k, and Si;j�1;k asSi;j;k = maxf0;Si�1;j;k � �;Si�1;j�1;k � s(xi; yj);Si;j�1;k � �gwhere Si�1;j�1;k � s(xi; yj) = Si�1;j�1;k + s(xi; yj) if Si�1;j�1;k > 0 or k = 0;and 0 otherwise. This is be
ause, by de�nition, a lo
al alignment has a positives
ore, and it is either a single mat
h, or it is an extension of an alignment10



whose s
ore is positive. Therefore we do not let an alignment with no s
orebe extended unless the resulting alignment is a single mat
h in the 
urrentslab.� If the 
urrent node is on the �rst 
olumn following a boundary (i.e. j mod� = 1) then the slabs for the nodes involved in the 
omputations for node(i; j) di�er as shown in Figure 8. In this 
ase slab k for node (i; j) is slab k�1for the nodes at 
olumn j�1 . Moreover any alignment ending at (i; j) startingat slab 0 for (i; j) 
an either only in
lude one of the edges ((i � 1; j); (i; j)),((i � 1; j � 1); (i; j)), or ((i; j � 1); (i; j)), or extend an alignment from node(i� 1; j). The edges ((i� 1; j); (i; j)) and ((i; j� 1); (i; j)) both have negativeweight �� . Therefore, Si;j;0 is set to maxf0; s(xi; yj);Si�1;j;0 � �g. For slabk > 0, Si;j;k is 
al
ulated bySi;j;k = maxf0;Si�1;j;k � �;Si�1;j�1;k�1 � s(xi; yj);Si;j�1;k�1 � �gDuring these 
omputations, the running maximum s
ore is also updated whenevera newly 
omputed s
ore Si;j;k is larger than the 
urrent maximum, and the �nalvalue is returned in Step 3. The alignment position a
hieving this s
ore may also bedesired. This 
an be done by maintaining for ea
h optimal alignment its start andend positions besides its s
ore. In this 
ase in addition to the running maximums
ore, the start and end positions of a maximal alignment should be stored andupdated.If there is an alignment with the maximum s
ore and with horizontal length notex
eeding T then the algorithm returns this s
ore in Step 1. Otherwise, we �rstshow that for any node (i; j) and slab k, Si;j;k 
al
ulated by the algorithm is theoptimum s
ore a
hievable over the set of all the alignments ending at node (i; j) andstarting at slab k with respe
t to 
olumn j . This 
laim is proved by indu
tion. Ifwe assume that the 
laim is true for nodes (i� 1; j), (i� 1; j� 1) and (i; j� 1), andfor their slabs, then we 
an easily see by following Step 3 of the algorithm that the
laim holds for node (i; j) and its slabs. Consider the alignments with horizontallength at most T . If there is an optimal alignment with s
ore LRLA� and withlength at most T � 2�, then this alignment is 
aptured during the 
al
ulations atits right end point. In this 
ase, by the previous 
laim, the algorithm returns theoptimum s
ore LRLA� .If all optimal alignments with s
ore LRLA� have horizontal length > T�2�, weshow that during the 
omputations the algorithm observes a s
ore whi
h does notdi�er more than 2� from the optimum s
ore LRLA�. To see this, let an optimalalignment start at node (i0; j0) and end at node (i; j). We know that its horizontallength is larger than T � 2� . Let (i00; j00) be the node the alignment 
rosses at theboundary (bj=�
 � bT=�
+1)�. This is the left boundary of slab k = bT=�
 � 1relative to 
olumn j as shown in Figure 9. Note that the s
ore of the part of thealignment between nodes (i0; j0) and (i00; j00) is at most 2� a

ording to our basi
s
oring s
heme. Sin
e (i00; j00) is one of the nodes in slab k relative to j Si;j;k islarger than or equal to the s
ore of the part of the given optimal alignment between11



Algorithm APX-LRLA(Æ; �)1: Run a modified Smith-Waterman algorithm. If the maximum s
ore isa
hieved within horizontal length � T then return this s
ore and exit2: Initialization:set LRLA� = 0set S0;j;k = 0 for all j; k, 0 � j � m, and 0 � k � bT=�
 � 13: Main 
omputations :for i = 1 to n do fset Si;0;k = 0 for all k, 0 � k � bT=�
 � 1for j = 1 to m do fif (j mod � = 1) thenfset Si;j;0 = maxf0; s(xi; yj);Si�1;j;0 � �gset LRLA� = maxfLRLA�;Si;j;0gfor k = 1 to bT=�
 � 1 do fset Si;j;k = maxf0;Si�1;j;k � �;Si�1;j�1;k�1 � s(xi; yj);Si;j�1;k�1 � �gset LRLA� = maxfLRLA�;Si;j;kggg elseffor k = 0 to bT=�
 � 1 do fset Si;j;k = maxf0;Si�1;j;k � �;Si�1;j�1;k � s(xi; yj);Si;j�1;k � �gset LRLA� = maxfLRLA�;Si;j;kggggg3: Return LRLA�Figure 7: Algorithm APX-LRLA whi
h approximates LRLA� within di�eren
e 2�.
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Figure 9: Orientation of an optimal alignment ending at node (i; j) when its hori-zontal length is larger than T � 2�.(i00; j00) and (i; j) by our previous 
laim on the optimality of Si;j;k . Thus Si;j;k doesnot di�er from LRLA� by more than 2�, i.e.LRLA� � 2� � Si;j;kNote that it is likely that a s
ore higher than the guaranteed lower boundLRLA� � 2� is returned frequently in pra
ti
e as the algorithm explores all thenodes as possible end points.Algorithm APX-LRLA essentially implements the dynami
 programming for-mulation (1). It is similar to the Smith-Waterman algorithm ex
ept at ea
h nodeinstead of a single s
ore, bT=�
 s
ores are stored and manipulated. Therefore theresulting 
omplexity ex
eeds that of the Smith-Waterman algorithm by a fa
tor ofbT=�
. That is, the time 
omplexity of APX-LRLA is O(nmT=�). The algorithmrequires O(mT=�) spa
e sin
e we need the entries in the previous and the 
urrentrows to 
al
ulate the entries in the 
urrent row.For a given � we 
an obtain error bound � on the absolute di�eren
e fromthe optimum s
ore LRLA� by using maxf1; b�=2
g as � in the algorithm withoutin
reasing the asymptoti
 
omplexity.Algorithm APX-LRLA 
an easily be generalized to other 
ommon s
orings
hemes with simple modi�
ations. For example, varying penalties (or s
ores) 
aneasily be in
orporated for the 
omputation of optimum s
ores at ea
h node forarbitrary s
oring matri
es. For the approximation result to hold we assume thatthe maximum positive s
ore for any individual operation is at most 1. In the s
orings
hemes we study in this paper this 
an be satis�ed by normalizing all the s
oresby dividing them by the maximum individual positive s
ore whi
h does not a�e
tthe optimality of the alignments. AÆne gap penalties require a slightly di�erentdynami
 programming formulation than the one given for basi
 s
oring s
heme (1).It 
an be des
ribed as follows ([17℄) : Let Ei;j = Fi;j = Si;j = 0 when i or j is 0,and if � is the gap open penalty, then de�neEi;j = maxfSi;j�1 � �; Ei;j�1 � �g;13



Algorithm APX-LRLA-AFFINE(Æ; �; �)1: Run a modified Smith-Waterman algorithm. If the maximum s
ore isa
hieved within horizontal length � T then return this s
ore and exit2: Initialization:set LRLA� = 0set E0;j;k = F0;j;k = S0;j;k = 0 for all j; k, 0 � j � m, and 0 � k � bT=�
 � 13: Main 
omputations :for i = 1 to n do fEi;0;k = Fi;0;k = Si;0;k = 0 for all k, 0 � k � bT=�
 � 1for j = 1 to m do fif (j mod � = 1) thenfset Ei;j;0 = 0set Fi;j;0 = maxfSi�1;j;0 � �;Fi�1;j;0 � �gset Si;j;0 = maxf0; s(xi; yj);Fi;j;0gset LRLA� = maxfLRLA�;Si;j;0gfor k = 1 to bT=�
 � 1 do fset Ei;j;k = maxfSi;j�1;k�1 � �; Ei;j�1;k�1 � �gset Fi;j;k = maxfSi�1;j;k � �;Fi�1;j;k � �gset Si;j;k = maxf0;Si�1;j�1;k�1 � s(xi; yj); Ei;j;k;Fi;j;kgset LRLA� = maxfLRLA�;Si;j;kggg elseffor k = 0 to bT=�
 � 1 do fset Ei;j;k = maxfSi;j�1;k � �; Ei;j�1;k � �gset Fi;j;k = maxfSi�1;j;k � �;Fi�1;j;k � �gset Si;j;k = maxf0;Si�1;j�1;k � s(xi; yj); Ei;j;k;Fi;j;kgset LRLA� = maxfLRLA�;Si;j;kggggg3: Return LRLA�Figure 10: Algorithm APX-LRLA-AFFINE : Algorithm for aÆne gap penaltieswhi
h approximates LRLA� within di�eren
e 2�.
14



Fi;j = maxfSi�1;j � �; Fi�1;j � �g;Si;j = maxf0; Si�1;j�1 + s(xi; yj); Ei;j ; Fi;jg (8)AÆne gap penalties do not in
rease the 
omplexity of the lo
al alignment prob-lem, i.e. the problem 
an be solved in time O(nm) and using O(m) spa
e. Figure10 shows algorithm APX-LRLA-AFFINE whi
h is a variation of our algorithmAPX-LRLA for aÆne gap penalties. It uses the same idea that at ea
h entry ofthe dynami
 programming matrix, instead of a single s
ore a number of s
ores aremaintained and manipulated as di
tated by the above dynami
 programming for-mulation, and by using the te
hnique employed in algorithm APX-LRLA.RemarksLet r be a positive real number. Suppose that we run Algorithm HALF �rst, and
onsequently run Algorithm APX-LRLA with � = HALF�=(2r). Then12LRLA�=(2r) � � � LRLA�=(2r) ;and it is easy to verify that Algorithm APX-LRLA returns a s
ore at least as large as(1� 1r )LRLA� in time O(nmrT=LRLA�) and spa
e O(mrT=LRLA�) . This output-size sensitive 
omplexity result implies an a
hievement of a good performan
e inpra
ti
e whenever we 
an set a relatively large lower limit S of s
ores for lo
alalignments of interest. For example, whenever the s
oring s
heme is su
h thatimportant lo
al alignments sought in the given pair of sequen
es have better s
oresthan some bound S, where S � 
T for some positive real 
onstant 
, setting � =S=(2r) in APX-LRLA gives a s
ore� (1� 1r )LRLA� if LRLA� � S in time O(nmr)and spa
e O(mr) .In both algorithms HALF and APX-LRLA, the stated obje
tive is to 
omputethe best possible s
ore for a lo
al alignment with the assumed length 
onstraint. Ingeneral we may be interested in �nding many signi�
ant lo
al alignments. The al-gorithms proposed by Waterman and Eggert [18℄, and by Huang and Miller [11℄ �ndbest k non-interse
ting alignments for a given k . The variations of these algorithmswhi
h are based on the 
omputations in APX-LRLA 
an be developed so that theresulting algorithms 
ompute approximations for the best k non-interse
ting align-ments whose horizontal lengths do not ex
eed T . We omit the details of these
onstru
tions.5. Con
lusionWe 
onsidered the length restri
ted lo
al alignment problem LRLA to 
ir
um-vent the undesirable mosai
 and the shadow e�e
ts of the ordinary lo
al alignmentalgorithm. In length restri
ted lo
al alignment we sear
h for substrings I and J thatmaximize the s
ore s(I; J) among all I � X and J � Y with jJ j � T . LRLA 
an besolved by extending the dynami
 programming formulation of lo
al alignment prob-lem. However the resulting time 
omplexity is O(Tnm), whi
h may not be pra
ti
alfor large values of n, m, and T . In this paper, we proposed two approximation algo-rithms for LRLA. The �rst algorithm is a simple 12 -approximation algorithm whi
h15



has the same time and spa
e 
omplexity as the ordinary lo
al alignment algorithm.The se
ond algorithm APX-LRLA obtains a s
ore within di�eren
e 2� from theoptimum for any given positive integer �, and runs in time O(nmT=�).A spe
ial 
ase of the length restri
ted lo
al alignment problem is 
y
li
 lo
alalignment. This gives rise to a dual approa
h to the 
y
li
 edit distan
e problem.Within the same 
omplexity bounds of our algorithms and the same approximationguarantee, we 
an 
omputeCLA�(X;Y ) = max0�k<mfs(I; J) j I � X; J � yk+1 : : : ymy1 : : : yk g:The algorithms 
an be generalized to the more 
ommon s
oring s
heme of aÆnegap penalties whi
h is widely used in pra
ti
e. We present an algorithm APX-LRLA-AFFINE whi
h generalizes LRLA to the aÆne 
ase with the same perfor-man
e guarantee as LRLA.The algorithms are simple to implement and provably eÆ
ient. The degree ofapproximation 
an be 
ontrolled with a reasonable trade-o� of optimality versustime and spa
e. There is also reason to believe that the approximate s
ore returnedis on the average mu
h 
loser to the a
tual optimum than the worst 
ase errorbound of 2�.A
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