
APPROXIMATION ALGORITHMS FOR LOCAL ALIGNMENTWITH LENGTH CONSTRAINTS�Abdullah N. Arslan and �Omer E�geio�gluDepartment of Computer SieneUniversity of California, Santa BarbaraSanta Barbara, CA 93106 USAfarslan; omerg�s:usb:eduABSTRACTThe loal sequene alignment problem is the detetion of similar subsequenes in twogiven sequenes of lengths n � m. Unfortunately the ommon notion of loal alignmentsu�ers from some well-known anomalies whih result from not taking into aount thelengths of the aligned subsequenes. We introdue the length restrited loal alignmentproblem whih inludes as a onstraint an upper limit T on the length of one of thesubsequenes to be aligned. Obvious extensions of dynami programming formulationsfor the solution of the length restrited loal alignment problem result in expensiveomputations: O(Tnm) time and O(Tm) spae. We propose an eÆient approximationalgorithm using whih we an �nd a solution satisfying the length bound, and whosesore is within di�erene � of the optimum sore for any given positive integer � in timeO(nmT=�) using O(mT=�) spae. We also introdue the yli loal alignment problemand show how our idea an be applied to this ase as well. This is a dual approah to thewell-known yli edit distane problem. These results generalize diretly to the ase ofaÆne gap penalties.Keywords: Loal sequene alignment, edit distane, yli edit distane, approximationalgorithm.1. IntrodutionThe loal sequene alignment problem in omputational moleular biology aimsto reveal similar regions in a given pair of sequenes X and Y whose lengths aren and m respetively with n � m. The Smith-Waterman algorithm �nds theloal alignment by searhing for two segments with maximum similarity sore bydisarding poorly onserved initial and terminal fragments. Sine it is not designedto exlude non-similar internal fragments, an alignment returned by the algorithmmay ontain a mosai of well-onserved fragments arti�ially onneted by poorlyonserved or even unrelated fragments. As a result, a loal alignment with sore1,000 and length 10,000 (long alignment) may be hosen over a loal alignment withsore 998 and length 1,000 (short alignment), although the latter one is probably�Supported in part by NSF Grant No. CCR{9821038. A preliminary version of this workwas presented at The Latin Amerian Theoretial Informatis Conferene (LATIN 2002), Can�un,M�exio, April 3{6, 2002. 1



more important biologially. This de�ieny auses two forms of anomalies: \mosaie�et" and \shadow e�et". Mosai e�et in an alignment is observed when a verypoor region is sandwihed between two regions with high similarity sores. Shadowe�et is observed when a biologially important short alignment is not detetedbeause it overlaps with a signi�antly longer yet biologially inadequate alignmentwith only a slightly higher sore.We onsider the length restrited loal alignment (LRLA) problem in whih wesearh for substrings I and J that maximize the sore s(I; J) among all substringsI and J with jJ j � T where T is a given upper limit on the length of J . This isyet another attempt to eliminate problems assoiated with loal alignment. Theobjetive is similar to that of normalized loal alignment algorithms [5℄, in that weaim to irumvent the undesirable mosai and the shadow e�ets. The degree offragmentation in this new problem is ontrolled by varying the bound T .Length restrited loal alignment an be solved by extending the dynami pro-gramming formulation of loal alignment problem. However the resulting timeomplexity is O(Tnm), whih may not be pratial for large values of n, m, and T .In this paper, we propose two approximation algorithms for LRLA. The �rst one isa simple 12 -approximation algorithm, and its omplexity is the same as that of theloal alignment problem (Algorithm HALF, setion 4). The seond algorithm (Al-gorithm APX-LRLA, setion 4) returns a sore guaranteed to be within di�erene2� of the optimum for a given � � 1. The time omplexity of this algorithm isO(nmT=�), with O(mT=�) spae. These two approximation algorithms an alsobe used to approximately solve the yli loal alignment problem (CLA) of maxi-mizing s(I; J) where I is a substring of X , and J is a substring of a yli shift ofY . Both algorithms an easily be implemented, without inreasing the omplexity,for the ase of aÆne gap penalties.The outline of this paper is as follows. In setion 2, we disuss related previouswork in the literature on algorithms for restrited versions of loal alignment, andyli edit distane. In setion 3 we present the requisite notions and give thenotation we use. Setion 4 ontains the desription of the approximation algorithmsHALF and APX-LRLA. Conlusions are presented in setion 5.2. Previous WorkThe anomalies of mosai e�et and shadow e�et that exist in the ordinary for-mulation of loal alignment and the Smith-Waterman algorithm lead to problems inomparison of long genomi sequenes and omparative gene predition, as reentlypointed out by Zhang et al., 1999 [20℄. They proposed to deompose a disoveredloal alignment into sub-alignments that avoid the mosai e�et. However, thepost-proessing approah may miss the alignments with the best degree of similar-ity if the Smith-Waterman algorithm missed them in the �rst plae. As a result,highly similar fragments may be ignored if they are not parts of longer alignmentsdominating other loal similarities. Another approah to �xing the problems withthe Smith-Waterman algorithm is based on the notion of X-drop, a region withinan alignment that sores below X . The alignments that ontain no X-drops are2



alled X-alignments. Although X-alignments are expensive to ompute in pratie,Altshul et al., 1997 [4℄ and Zhang et al., 1998 [19℄ used some heuristis for searhingdatabases with this approah.It is well-known that the statistial signi�ane of the loal alignment dependson both its sore and length (Altshul and Erikson, 1986 [2℄, 1988 [3℄). Alexandrovand Solovyev, 1998 [1℄ proposed to normalize the alignment sore by its length anddemonstrated that this new approah leads to better protein lassi�ation. Arslanet al., 2001 [5℄ de�ned the normalized loal alignment problem where the goal isto �nd substrings I and J that maximize s(I; J)=(jI j + jJ j) among all substringsI and J with jI j + jJ j � t, where s(I; J) is the sore, and t is a threshold for theminimal overall length of I and J . Beause of the ubi time omplexity of the exatalgorithm as an approximation to the original problem they proposed a solution tothe maximization of s(I; J)=(jI j + jJ j + L) for a given parameter L. This an bedone in time O(nm logn) and using O(m) spae [5℄.The length restrited loal alignment (LRLA) problem onsidered in this paperis essentially another attempt to eliminate problems assoiated with loal alignmentby an approximation algorithm that runs in reasonable time and whih allows fora ontrol over the length of the optimal loal alignment sought. The limit is plaedon only the substring J of Y . We believe that the underlying soring shemeshould limit the length of the other substring involved in an optimal alignmentautomatially, and therefore having two limits, one for jI j and another for jJ j isredundant.An appliation of length restrited loal alignment is the formulation of the yliloal alignment problem as a speial ase of LRLA. The yli loal alignment isthe problem of maximizing s(I; J) over all I and J , where I is a substring ofX , and J is a substring of a yli shift of Y . A yli shift of a string s is astring obtained by onatenating symbols of s in a irular fashion. For exampledab, dab are yli shifts of string abd. The yli loal alignment problemis the length restrited loal alignment problem with strings X and Y Y , and limitT = jY j. The approximation algorithms we develop an readily be used for thisproblem. Moreover it de�nes a dual approah to well-known yli edit distaneproblem whih aims to �nd the minimum edit distane between string X and ayli shift of Y over all possible yli shifts of Y .Cyli edit distane problem appears in many appliations, and there is extensiveliterature on the subjet. Bunke and B�uhler, 1993 [6℄ presented yli edit distaneas a method for two-dimensional shape reognition. Uliel et al., 1999 [15℄ suggestedusing it for deteting irular permutations in proteins. There are many algorithmsfor the problem. Fu and Lu [8℄ presented an O(nm2)-time algorithm extendingthe dynami programming edit distane algorithm of Wagner and Fisher, 1974 [16℄.Maes [13℄ proposed an algorithm with O(nm logm) time and O(nm) spae om-plexity, and desribed how to redue the spae omplexity to O((n + m) logm).There are also O(nm)-time suboptimal algorithms developed by Gorman et al.,1988 [9℄, Bunke and B�uhler, 1993 [6℄, and Uliel et al., 1999 [15℄. Gregor and Thoma-son, 1996 [10℄ presented an output-size sensitive algorithm whose time omplexity3



ranges from O(nm) to O(nm2). There are faster algorithms for the ase of unit-ost edit operations in whih eah edit operation has weight 1 exept for a math(substitution of the same symbol, or no operation) whose weight is 0. For thisase, Chung, 1998 [7℄ proposed an algorithm for a generalized version of the prob-lem alled banded yli string-to-string orretion problem whose time omplexityranges between O(nm) and O(nm logm) for yli edit distane omputation. Lan-daue et al., 1998 [12℄ desribed an algorithm for inremental string omparisonwhih an be used to solve yli edit distane problem with unit osts in timeO(m2).Sine yli loal alignment problem is a speial ase of length restrited loalalignment, the approximation algorithms we desribe in this paper an also be usedto solve the yli loal alignment problem with the same eÆieny. This makesyli loal alignment an alternative to yli edit distane in appliations usingyli string omparison. In addition, our algorithms an easily be implemented,without inreasing the omplexity, for the ase of aÆne gap penalties in whih totalost assoiated with eah blok (alled a gap) of indels (insertions or deletions) isa linear funtion of a gap open penalty and the number of individual indels in thegap.3. Preliminaries and De�nitionsGiven two strings X = x1x2 : : : xn and Y = y1y2 : : : ym with n � m, the align-ment graph GX;Y (Edit Graph in the ontext of string editing) is used to representall possible alignments between X and Y . It is a direted ayli graph having(n+1)(m+1) lattie points (u; v) as verties for 0 � u � n, and 0 � v � m (Figure1). An alignment path for substrings xi � � �xk, and yj � � � yl is a direted path fromthe vertex (i � 1; j � 1) to (k; l) in GX;Y where i � k and j � l. Horizontal andvertial ars orrespond to insert and delete operations respetively. The diagonalars orrespond to substitutions whih are either mathing (if the orrespondingsymbols are the same), or mismathing (otherwise). If we trae the ars of an align-ment path for substrings I and J and perform the indiated edit operations in thegiven order on I , we obtain J .The objetive of sequene alignment is to quantify the similarity between twostrings. There are various soring shemes for this purpose. In the basi soringsheme, the ars of GX;Y are assigned weights determined by non-negative reals Æ(mismath penalty) and � (indel or gap penalty). We assume that s(xi; yj) is thesimilarity sore between the symbols xi, and yj whih is normally 1 for a math(xi = yj) and �Æ for a mismath (xi 6= yj). We will use the terms alignment andalignment path interhangeably.The following is the lassial dynami programming formulation [17℄ to omputethe maximum loal alignment sore Si;j ending at eah vertex (i; j):Si;j = maxf0; Si�1;j � �; Si�1;j�1 + s(xi; yj); Si;j�1 � �g (1)for 1 � i � n, 1 � j � m, with the boundary onditions Si;j = 0 whenever i = 0 orj = 0. 4
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(m,n)Figure 1: Alignment graph GX;Y where xi � � �xk = ATTGT and yj � � � yl =AGGACAT . Mathing diagonal ars are drawn as solid lines while mismath-ing diagonal ars are shown by dashed lines. Dotted lines are used for horizontaland vertial ars. An example alignment path is shown. Labels of the ars on thispath are the orresponding edit operations where � denotes the null string.Let � indiate the substring relation. The loal alignment (LA) problem seeksfor substrings I � X and J � Y with the highest similarity sore. The optimalvalue LA�(X;Y ) for this problem is given byLA�(X;Y ) = maxfs(I; J) j I � X; J � Y g = maxi;j Si;j (2)where s(I; J) is the best alignment sore between I and J . LA� an be omputedusing the Smith-Waterman algorithm [14℄ in time O(nm). The spae omplexityis O(m) beause only O(m) entries of the dynami programming matrix need tobe stored at any given time. In what follows, for any optimization problem P ,we denote by P� its optimum value, and sometimes drop the parameters from thenotation when they are obvious from the ontext.As de�ned in [5℄, the objetive of the normalized loal alignment problem (NLAt)is: NLAt�(X;Y ) = maxfs(I; J)=(jI j+ jJ j) j I � X; J � Y; jI j+ jJ j � tg (3)Figure 2 inludes examples where optimal alignments for LA and NLAt may bedi�erent. In eah ase, the long alignment has the highest ordinary sore whereasthe shorter alignments have higher normalized sores. The normalized sore of analignment is obtained by dividing its sore by its length, whih is de�ned as the sumof the lengths of the substrings involved in the alignment. If we use ordinary soresas the similarity measure then the long alignments in Figure 2 are optimal. If we use5



normalized sores then the alignments returned depend on the value of t. For thealignments in Figure 2 t = 200 is a separating value in determining the optimalityof short and long alignments. The need to have ontrol over the alignment lengthsbeomes apparent when we use normalized sores. Without ontrolling the desiredalignment lengths, with normalized sores short alignments overshadow the truelong alignments ausing yet another anomaly. Arslan et al., 2001 [5℄ hanged theobjetive funtion to s(I; J)=(jI j+jJ j+L) by introduing parameter L whih gives adegree of ontrol over the total length of the optimal subsequenes. In this way, thelength onstraint an be dropped [5℄. This gave rise to an eÆient algorithm whihruns in time O(nm logn) and using O(m) spae. However an adequate ontrol overthe length through parameter L is diÆult to desribe.
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For the alignments in Figure 2, setting T = 100 or T = 300 hanges the optimalityof the short and long alignments when the ordinary sores are used.
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Figure 3: Candidates for I and J in the omputation of LRLA�(X;Y; T ).The yli edit distane (CED) between X and Y is the minimum edit distanebetween X and any yli shift of Y :CED�(X;Y ) = minfed(X; �k(Y )) j 0 � k < mg (5)where ed denotes the edit distane, and �k(Y ) is the yli shift of Y by k whih isde�ned as follows: �0(Y ) = Y , and for 0 < k < m, �k(Y ) = yk+1 : : : ymy1 : : : yk.Maes' algorithm [13℄ omputes CED�(X;Y ) in O(nm logm) steps. For any k,ed(X; �k(Y )) is the ost of the shortest (least-ost) path P (k) between the verties(0; k) and (n;m+ k) in GX;Y Y as shown in Figure 4. Maes' idea is to make use ofthe \non-rossing" property of shortest paths, whih restrits the andidate P (k)to be squeezed between P (i) and P (j) where i < k < j as illustrated in the �gure.However this idea annot be generalized to the ase of aÆne gap penalties in whihthe total ost of a gap of size a, i.e. a blok of a insertions (or deletions), is� + (a� 1)� where � is the gap open penalty. It an easily be seen that P (i) andP (j) may be rossing eah other in this ase.
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Note that CLA is a speial ase of LRLA. More spei�allyCLA�(X;Y ) = LRLA�(X;Y Y; jY j)To solve the LRLA problem, and onsequently the CLA problem, we an extendthe dynami programming formulation in (1) by adding another dimension to storeat eah entry of the dynami programming matrix optimum sores for all possiblehorizontal lengths up to T . However this inreases the time omplexity to O(Tnm)whih may be impratial.4. Approximation Algorithms for LRLAWe �rst give a simple 12 -approximation algorithm HALF for the LRLA problem.Clearly, we an assume T < m, for otherwise we an run the loal alignmentalgorithm without alteration on GX;Y and obtain the exat solution to LRLA intime O(nm). Let u = dm=T e and putYj = y(j�1)T+1 � � � yjTfor 1 � j < u with Yu = y(u�1)T+1 � � � ym. Thus Y = Y1Y2 � � �Yu, and the Yjpartition Y into bloks of length T eah (exept possibly for Yu, whih may beshorter). Let HALF� = max1�j<ufs(I; J) j I � X; J � YjYj+1g (7)Finding an optimal alignment a for HALF requires solving u � 1 ordinary loalalignment problems among strings X and YjYj+1 for 1 � j < u as shematiallydesribed in Figure 5 . Total time taken for this is O(nm), as eah Yj needs to beonsidered at most twie during the omputations. The spae omplexity of HALFis O(m).
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two halves of a that lie in Yj and Yj+1, respetively as shown in Figure 5. Withoutloss of generality, assume that a1 is the one with the higher sore, say bS. Then2bS � LRLA�, and therefore 12LRLA� � bS � LRLA�:Clearly the horizontal length of a1 is � T . The same approximation and omplexityresults hold for the ases of arbitrary soring matries and aÆne gap penalties. Tosolve the individual loal alignment problems, Algorithm HALF uses the existingalgorithms in the underlying soring sheme.We give next an approximation algorithm APX-LRLA, whih omputes a loalalignment sore bS � LRLA� within a presribed di�erene 2� from LRLA�, i.e.LRLA� � 2� � bS � LRLA�:If desired, the position of an alignment ahieving bS, and onsequently the substringsI � X and J � Y with jJ j � T ahieving this sore an also be identi�ed. Theomplexity of the algorithm is O(nmT=�) time and O(mT=�) spae.For simpliity, we assume a basi soring sheme: i.e. sore between the symbolsxi, and yj is 1 for a math (xi = yj) and �Æ for a mismath (xi 6= yj), and the indelsore is ��. We argue later that the algorithm an be easily modi�ed within thesame omplexity results for the ases of arbitrary soring matries, and also aÆnegap penalties.Our approximation idea is that instead of a single sore, we maintain at eahnode (i; j) of GX;Y , a list of sores with the property that for any given optimumsore ahieved by an alignment ending at (i; j) and starting within a past horizontalwindow of size T of (i; j) at least one element of the list lies within 2� of this sore.We show that the dynami programming formulation an be extended to preservethis property through the nodes. In partiular, an alignment with maximum sore bSin the list of sores omputed in one of the nodes (i; j) will be between LRLA��2�and LRLA�. We assume that � is integral, otherwise we use the largest integersmaller than the given value for �.Similar to the ase of HALF, we imagine the olumns of the graph GX;Y asgrouped into vertial slabs of �+1 olumns eah, starting with the leftmost olumn(i.e. j = 0). Two onseutive slabs share a olumn whih we all a boundary. Theleft and the right boundaries of the slabs are de�ned as the leftmost and rightmostolumn positions in the slab. We agree that a slab does not ontain the vertialedges among the verties on the left boundary. Now to a given olumn j in GX;Y ,we assoiate a number of slabs as follows. Let slab 0 with respet to j be the slabthat ontains olumn j. We order the onseutive slabs to the left of slab 0 withrespet to j as slab 1, slab 2, : : :. This orders the slabs weakly to the left of olumnj, with respet to j. In other words, slab k with respet to olumn j is the subgraphof GX;Y omposed of verties plaed inlusively between olumns bj=� and j ifk = 0, and between olumns (bj=� � k)� and (bj=� � k + 1)�, otherwise. Aslab ontains all the edges in GX;Y inident to the verties it ontains exept for9



the vertial edges on the left boundary whih belong to the preeding slab. Figure6 inludes sample slabs with respet to olumn j, and alignments ending at somenode (i; j) . From the dynami programming formulation (1), we note the followingobservation for optimal alignments with the basi soring sheme assumed: anyoptimal alignment (with positive sore) ending at a given node (i; j) has to startwith a math sine only the mathes have positive sores.
j /∆ -1 ∆ j /∆ ∆j /∆

. . .

(i,j)

. . .

. . .∆-k

slab k slab 1 slab 0

Figure 6: Slabs with respet to olumn j, and alignments ending at node (i; j)starting at di�erent slabs.Let Si;j;k for 0 � k � bT=�� 1 represent the optimum sore ahievable by anyalignment ending at node (i; j) and starting at slab k with respet to olumn j. ForLRLA, we are only interested in alignments with horizontal length not exeeding T .A single slab an ontribute at most � to the sore of any alignment. Consequently,we need to store at eah node at most bT=� sores Si;j;k, for 0 � k � bT=� � 1orresponding to the bT=� slabs that inlude (i; j) and span a past horizontalwindow of length not exeeding T . Figure 7 shows the steps of our approximationalgorithm APX-LRLA. The proessing is done row-by-row starting with the toprow (i = 0) of GX;Y .We an modify the Smith-Waterman algorithm suh that it breaks the ties insores by seleting alignments with smaller horizontal lengths. This modi�ed algo-rithm an be used in Step 1 to hek if the maximum sore over all the alignments isahieved by an alignment whose horizontal length does not exeed T . Step 2 of thealgorithm performs the initialization of the lists of the nodes in the top row (i = 0).Step 3 implements omputation of sores as ditated by the dynami programmingformulation in (1):� If the urrent node (i; j) is not on the �rst olumn after a boundary then nodes(i� 1; j), (i� 1; j� 1) and (i; j � 1) share the same slabs with node (i; j) . Inthis ase Si;j;k is alulated by using Si�1;j;k, Si�1;j�1;k, and Si;j�1;k asSi;j;k = maxf0;Si�1;j;k � �;Si�1;j�1;k � s(xi; yj);Si;j�1;k � �gwhere Si�1;j�1;k � s(xi; yj) = Si�1;j�1;k + s(xi; yj) if Si�1;j�1;k > 0 or k = 0;and 0 otherwise. This is beause, by de�nition, a loal alignment has a positivesore, and it is either a single math, or it is an extension of an alignment10



whose sore is positive. Therefore we do not let an alignment with no sorebe extended unless the resulting alignment is a single math in the urrentslab.� If the urrent node is on the �rst olumn following a boundary (i.e. j mod� = 1) then the slabs for the nodes involved in the omputations for node(i; j) di�er as shown in Figure 8. In this ase slab k for node (i; j) is slab k�1for the nodes at olumn j�1 . Moreover any alignment ending at (i; j) startingat slab 0 for (i; j) an either only inlude one of the edges ((i � 1; j); (i; j)),((i � 1; j � 1); (i; j)), or ((i; j � 1); (i; j)), or extend an alignment from node(i� 1; j). The edges ((i� 1; j); (i; j)) and ((i; j� 1); (i; j)) both have negativeweight �� . Therefore, Si;j;0 is set to maxf0; s(xi; yj);Si�1;j;0 � �g. For slabk > 0, Si;j;k is alulated bySi;j;k = maxf0;Si�1;j;k � �;Si�1;j�1;k�1 � s(xi; yj);Si;j�1;k�1 � �gDuring these omputations, the running maximum sore is also updated whenevera newly omputed sore Si;j;k is larger than the urrent maximum, and the �nalvalue is returned in Step 3. The alignment position ahieving this sore may also bedesired. This an be done by maintaining for eah optimal alignment its start andend positions besides its sore. In this ase in addition to the running maximumsore, the start and end positions of a maximal alignment should be stored andupdated.If there is an alignment with the maximum sore and with horizontal length notexeeding T then the algorithm returns this sore in Step 1. Otherwise, we �rstshow that for any node (i; j) and slab k, Si;j;k alulated by the algorithm is theoptimum sore ahievable over the set of all the alignments ending at node (i; j) andstarting at slab k with respet to olumn j . This laim is proved by indution. Ifwe assume that the laim is true for nodes (i� 1; j), (i� 1; j� 1) and (i; j� 1), andfor their slabs, then we an easily see by following Step 3 of the algorithm that thelaim holds for node (i; j) and its slabs. Consider the alignments with horizontallength at most T . If there is an optimal alignment with sore LRLA� and withlength at most T � 2�, then this alignment is aptured during the alulations atits right end point. In this ase, by the previous laim, the algorithm returns theoptimum sore LRLA� .If all optimal alignments with sore LRLA� have horizontal length > T�2�, weshow that during the omputations the algorithm observes a sore whih does notdi�er more than 2� from the optimum sore LRLA�. To see this, let an optimalalignment start at node (i0; j0) and end at node (i; j). We know that its horizontallength is larger than T � 2� . Let (i00; j00) be the node the alignment rosses at theboundary (bj=� � bT=�+1)�. This is the left boundary of slab k = bT=� � 1relative to olumn j as shown in Figure 9. Note that the sore of the part of thealignment between nodes (i0; j0) and (i00; j00) is at most 2� aording to our basisoring sheme. Sine (i00; j00) is one of the nodes in slab k relative to j Si;j;k islarger than or equal to the sore of the part of the given optimal alignment between11



Algorithm APX-LRLA(Æ; �)1: Run a modified Smith-Waterman algorithm. If the maximum sore isahieved within horizontal length � T then return this sore and exit2: Initialization:set LRLA� = 0set S0;j;k = 0 for all j; k, 0 � j � m, and 0 � k � bT=� � 13: Main omputations :for i = 1 to n do fset Si;0;k = 0 for all k, 0 � k � bT=� � 1for j = 1 to m do fif (j mod � = 1) thenfset Si;j;0 = maxf0; s(xi; yj);Si�1;j;0 � �gset LRLA� = maxfLRLA�;Si;j;0gfor k = 1 to bT=� � 1 do fset Si;j;k = maxf0;Si�1;j;k � �;Si�1;j�1;k�1 � s(xi; yj);Si;j�1;k�1 � �gset LRLA� = maxfLRLA�;Si;j;kggg elseffor k = 0 to bT=� � 1 do fset Si;j;k = maxf0;Si�1;j;k � �;Si�1;j�1;k � s(xi; yj);Si;j�1;k � �gset LRLA� = maxfLRLA�;Si;j;kggggg3: Return LRLA�Figure 7: Algorithm APX-LRLA whih approximates LRLA� within di�erene 2�.
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Figure 9: Orientation of an optimal alignment ending at node (i; j) when its hori-zontal length is larger than T � 2�.(i00; j00) and (i; j) by our previous laim on the optimality of Si;j;k . Thus Si;j;k doesnot di�er from LRLA� by more than 2�, i.e.LRLA� � 2� � Si;j;kNote that it is likely that a sore higher than the guaranteed lower boundLRLA� � 2� is returned frequently in pratie as the algorithm explores all thenodes as possible end points.Algorithm APX-LRLA essentially implements the dynami programming for-mulation (1). It is similar to the Smith-Waterman algorithm exept at eah nodeinstead of a single sore, bT=� sores are stored and manipulated. Therefore theresulting omplexity exeeds that of the Smith-Waterman algorithm by a fator ofbT=�. That is, the time omplexity of APX-LRLA is O(nmT=�). The algorithmrequires O(mT=�) spae sine we need the entries in the previous and the urrentrows to alulate the entries in the urrent row.For a given � we an obtain error bound � on the absolute di�erene fromthe optimum sore LRLA� by using maxf1; b�=2g as � in the algorithm withoutinreasing the asymptoti omplexity.Algorithm APX-LRLA an easily be generalized to other ommon soringshemes with simple modi�ations. For example, varying penalties (or sores) aneasily be inorporated for the omputation of optimum sores at eah node forarbitrary soring matries. For the approximation result to hold we assume thatthe maximum positive sore for any individual operation is at most 1. In the soringshemes we study in this paper this an be satis�ed by normalizing all the soresby dividing them by the maximum individual positive sore whih does not a�etthe optimality of the alignments. AÆne gap penalties require a slightly di�erentdynami programming formulation than the one given for basi soring sheme (1).It an be desribed as follows ([17℄) : Let Ei;j = Fi;j = Si;j = 0 when i or j is 0,and if � is the gap open penalty, then de�neEi;j = maxfSi;j�1 � �; Ei;j�1 � �g;13



Algorithm APX-LRLA-AFFINE(Æ; �; �)1: Run a modified Smith-Waterman algorithm. If the maximum sore isahieved within horizontal length � T then return this sore and exit2: Initialization:set LRLA� = 0set E0;j;k = F0;j;k = S0;j;k = 0 for all j; k, 0 � j � m, and 0 � k � bT=� � 13: Main omputations :for i = 1 to n do fEi;0;k = Fi;0;k = Si;0;k = 0 for all k, 0 � k � bT=� � 1for j = 1 to m do fif (j mod � = 1) thenfset Ei;j;0 = 0set Fi;j;0 = maxfSi�1;j;0 � �;Fi�1;j;0 � �gset Si;j;0 = maxf0; s(xi; yj);Fi;j;0gset LRLA� = maxfLRLA�;Si;j;0gfor k = 1 to bT=� � 1 do fset Ei;j;k = maxfSi;j�1;k�1 � �; Ei;j�1;k�1 � �gset Fi;j;k = maxfSi�1;j;k � �;Fi�1;j;k � �gset Si;j;k = maxf0;Si�1;j�1;k�1 � s(xi; yj); Ei;j;k;Fi;j;kgset LRLA� = maxfLRLA�;Si;j;kggg elseffor k = 0 to bT=� � 1 do fset Ei;j;k = maxfSi;j�1;k � �; Ei;j�1;k � �gset Fi;j;k = maxfSi�1;j;k � �;Fi�1;j;k � �gset Si;j;k = maxf0;Si�1;j�1;k � s(xi; yj); Ei;j;k;Fi;j;kgset LRLA� = maxfLRLA�;Si;j;kggggg3: Return LRLA�Figure 10: Algorithm APX-LRLA-AFFINE : Algorithm for aÆne gap penaltieswhih approximates LRLA� within di�erene 2�.
14



Fi;j = maxfSi�1;j � �; Fi�1;j � �g;Si;j = maxf0; Si�1;j�1 + s(xi; yj); Ei;j ; Fi;jg (8)AÆne gap penalties do not inrease the omplexity of the loal alignment prob-lem, i.e. the problem an be solved in time O(nm) and using O(m) spae. Figure10 shows algorithm APX-LRLA-AFFINE whih is a variation of our algorithmAPX-LRLA for aÆne gap penalties. It uses the same idea that at eah entry ofthe dynami programming matrix, instead of a single sore a number of sores aremaintained and manipulated as ditated by the above dynami programming for-mulation, and by using the tehnique employed in algorithm APX-LRLA.RemarksLet r be a positive real number. Suppose that we run Algorithm HALF �rst, andonsequently run Algorithm APX-LRLA with � = HALF�=(2r). Then12LRLA�=(2r) � � � LRLA�=(2r) ;and it is easy to verify that Algorithm APX-LRLA returns a sore at least as large as(1� 1r )LRLA� in time O(nmrT=LRLA�) and spae O(mrT=LRLA�) . This output-size sensitive omplexity result implies an ahievement of a good performane inpratie whenever we an set a relatively large lower limit S of sores for loalalignments of interest. For example, whenever the soring sheme is suh thatimportant loal alignments sought in the given pair of sequenes have better soresthan some bound S, where S � T for some positive real onstant , setting � =S=(2r) in APX-LRLA gives a sore� (1� 1r )LRLA� if LRLA� � S in time O(nmr)and spae O(mr) .In both algorithms HALF and APX-LRLA, the stated objetive is to omputethe best possible sore for a loal alignment with the assumed length onstraint. Ingeneral we may be interested in �nding many signi�ant loal alignments. The al-gorithms proposed by Waterman and Eggert [18℄, and by Huang and Miller [11℄ �ndbest k non-interseting alignments for a given k . The variations of these algorithmswhih are based on the omputations in APX-LRLA an be developed so that theresulting algorithms ompute approximations for the best k non-interseting align-ments whose horizontal lengths do not exeed T . We omit the details of theseonstrutions.5. ConlusionWe onsidered the length restrited loal alignment problem LRLA to irum-vent the undesirable mosai and the shadow e�ets of the ordinary loal alignmentalgorithm. In length restrited loal alignment we searh for substrings I and J thatmaximize the sore s(I; J) among all I � X and J � Y with jJ j � T . LRLA an besolved by extending the dynami programming formulation of loal alignment prob-lem. However the resulting time omplexity is O(Tnm), whih may not be pratialfor large values of n, m, and T . In this paper, we proposed two approximation algo-rithms for LRLA. The �rst algorithm is a simple 12 -approximation algorithm whih15
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