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ABSTRACT

The local sequence alignment problem is the detection of similar subsequences in two
given sequences of lengths n > m. Unfortunately the common notion of local alignment
suffers from some well-known anomalies which result from not taking into account the
lengths of the aligned subsequences. We introduce the length restricted local alignment
problem which includes as a constraint an upper limit T" on the length of one of the
subsequences to be aligned. Obvious extensions of dynamic programming formulations
for the solution of the length restricted local alignment problem result in expensive
computations: O(Tnm) time and O(T'm) space. We propose an efficient approximation
algorithm using which we can find a solution satisfying the length bound, and whose
score is within difference A of the optimum score for any given positive integer A in time
O(nmT/A) using O(mT/A) space. We also introduce the cyclic local alignment problem
and show how our idea can be applied to this case as well. This is a dual approach to the
well-known cyclic edit distance problem. These results generalize directly to the case of
affine gap penalties.

Keywords: Local sequence alignment, edit distance, cyclic edit distance, approximation
algorithm.

1. Introduction

The local sequence alignment problem in computational molecular biology aims
to reveal similar regions in a given pair of sequences X and Y whose lengths are
n and m respectively with n > m. The Smith-Waterman algorithm finds the
local alignment by searching for two segments with maximum similarity score by
discarding poorly conserved initial and terminal fragments. Since it is not designed
to exclude non-similar internal fragments, an alignment returned by the algorithm
may contain a mosaic of well-conserved fragments artificially connected by poorly
conserved or even unrelated fragments. As a result, a local alignment with score
1,000 and length 10,000 (long alignment) may be chosen over a local alignment with
score 998 and length 1,000 (short alignment), although the latter one is probably
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more important biologically. This deficiency causes two forms of anomalies: “mosaic
effect” and “shadow effect”. Mosaic effect in an alignment is observed when a very
poor region is sandwiched between two regions with high similarity scores. Shadow
effect is observed when a biologically important short alignment is not detected
because it overlaps with a significantly longer yet biologically inadequate alignment
with only a slightly higher score.

We consider the length restricted local alignment (LRLA) problem in which we
search for substrings I and .J that maximize the score s(I,.J) among all substrings
I and J with
yet another attempt to eliminate problems associated with local alignment. The

J| < T where T is a given upper limit on the length of J. This is

objective is similar to that of normalized local alignment algorithms [5], in that we
aim to circumvent the undesirable mosaic and the shadow effects. The degree of
fragmentation in this new problem is controlled by varying the bound 7.

Length restricted local alignment can be solved by extending the dynamic pro-
gramming formulation of local alignment problem. However the resulting time
complexity is O(Tnm), which may not be practical for large values of n, m, and T
In this paper, we propose two approximation algorithms for LRLA. The first one is
1
local aligément problem (Algorithm HALF, section 4). The second algorithm (Al-
gorithm APX-LRLA, section 4) returns a score guaranteed to be within difference
2A of the optimum for a given A > 1. The time complexity of this algorithm is
O(nmT/A), with O(mT/A) space. These two approximation algorithms can also
be used to approximately solve the cyclic local alignment problem (CLA) of maxi-
mizing s(I,J) where I is a substring of X, and J is a substring of a cyclic shift of
Y. Both algorithms can easily be implemented, without increasing the complexity,
for the case of affine gap penalties.

The outline of this paper is as follows. In section 2, we discuss related previous

a simple s-approximation algorithm, and its complexity is the same as that of the

work in the literature on algorithms for restricted versions of local alignment, and
cyclic edit distance. In section 3 we present the requisite notions and give the
notation we use. Section 4 contains the description of the approximation algorithms
HALF and APX-LRLA. Conclusions are presented in section 5.

2. Previous Work

The anomalies of mosaic effect and shadow effect that exist in the ordinary for-
mulation of local alignment and the Smith-Waterman algorithm lead to problems in
comparison of long genomic sequences and comparative gene prediction, as recently
pointed out by Zhang et al., 1999 [20]. They proposed to decompose a discovered
local alignment into sub-alignments that avoid the mosaic effect. However, the
post-processing approach may miss the alignments with the best degree of similar-
ity if the Smith-Waterman algorithm missed them in the first place. As a result,
highly similar fragments may be ignored if they are not parts of longer alignments
dominating other local similarities. Another approach to fixing the problems with
the Smith-Waterman algorithm is based on the notion of X-drop, a region within
an alignment that scores below X. The alignments that contain no X-drops are



called X-alignments. Although X-alignments are expensive to compute in practice,
Altschul et al., 1997 [4] and Zhang et al., 1998 [19] used some heuristics for searching
databases with this approach.

It is well-known that the statistical significance of the local alignment depends
on both its score and length (Altschul and Erickson, 1986 [2], 1988 [3]). Alexandrov
and Solovyev, 1998 [1] proposed to normalize the alignment score by its length and
demonstrated that this new approach leads to better protein classification. Arslan
et al., 2001 [5] defined the normalized local alignment problem where the goal is
to find substrings I and J that maximize s(I,J)/(|I] + |J|) among all substrings
I and J with [I| + |J] > t, where s(I,J) is the score, and ¢ is a threshold for the
minimal overall length of I and .J. Because of the cubic time complexity of the exact
algorithm as an approximation to the original problem they proposed a solution to
the maximization of s(I,J)/(|I| + |J| + L) for a given parameter L. This can be
done in time O(nmlogn) and using O(m) space [5].

The length restricted local alignment (LRLA) problem considered in this paper
is essentially another attempt to eliminate problems associated with local alignment,
by an approximation algorithm that runs in reasonable time and which allows for
a control over the length of the optimal local alignment sought. The limit is placed
on only the substring J of Y. We believe that the underlying scoring scheme
should limit the length of the other substring involved in an optimal alignment
automatically, and therefore having two limits, one for |I| and another for |J| is
redundant.

An application of length restricted local alignment is the formulation of the cyclic
local alignment problem as a special case of LRLA. The cyclic local alignment is
the problem of maximizing s(I,J) over all I and J, where I is a substring of
X, and J is a substring of a cyclic shift of Y. A cyclic shift of a string s is a
string obtained by concatenating symbols of s in a circular fashion. For example
ccdab, cdabe are cyclic shifts of string abced. The cyclic local alignment problem
is the length restricted local alignment problem with strings X and Y'Y, and limit
T = |Y|. The approximation algorithms we develop can readily be used for this
problem. Moreover it defines a dual approach to well-known cyclic edit distance
problem which aims to find the minimum edit distance between string X and a
cyclic shift of Y over all possible cyclic shifts of Y.

Cyclic edit distance problem appears in many applications, and there is extensive
literature on the subject. Bunke and Biihler, 1993 [6] presented cyclic edit distance
as a method for two-dimensional shape recognition. Uliel et al., 1999 [15] suggested
using it for detecting circular permutations in proteins. There are many algorithms
for the problem. Fu and Lu [8] presented an O(nm?)-time algorithm extending
the dynamic programming edit distance algorithm of Wagner and Fisher, 1974 [16].
Maes [13] proposed an algorithm with O(nmlogm) time and O(nm) space com-
plexity, and described how to reduce the space complexity to O((n + m)logm).
There are also O(nm)-time suboptimal algorithms developed by Gorman et al.,
1988 [9], Bunke and Biihler, 1993 [6], and Uliel et al., 1999 [15]. Gregor and Thoma-
son, 1996 [10] presented an output-size sensitive algorithm whose time complexity



ranges from O(nm) to O(nm?). There are faster algorithms for the case of unit-
cost edit operations in which each edit operation has weight 1 except for a match
(substitution of the same symbol, or no operation) whose weight is 0. For this
case, Chung, 1998 [7] proposed an algorithm for a generalized version of the prob-
lem called banded cyclic string-to-string correction problem whose time complexity
ranges between O(nm) and O(nmlogm) for cyclic edit distance computation. Lan-
daue et al., 1998 [12] described an algorithm for incremental string comparison
which can be used to solve cyclic edit distance problem with unit costs in time
O(m?).

Since cyclic local alignment problem is a special case of length restricted local
alignment, the approximation algorithms we describe in this paper can also be used
to solve the cyclic local alignment problem with the same efficiency. This makes
cyclic local alignment an alternative to cyclic edit distance in applications using
cyclic string comparison. In addition, our algorithms can easily be implemented,
without increasing the complexity, for the case of affine gap penalties in which total
cost associated with each block (called a gap) of indels (insertions or deletions) is
a linear function of a gap open penalty and the number of individual indels in the

gap-

3. Preliminaries and Definitions

Given two strings X = z1z2...x, and Y = y1ys ...y, with n > m, the align-
ment graph Gxy (Edit Graph in the context of string editing) is used to represent
all possible alignments between X and Y. It is a directed acyclic graph having
(n+1)(m+1) lattice points (u,v) as vertices for 0 < u < n, and 0 < v < m (Figure
1). An alignment path for substrings z; - - -y, and y; - - - y; is a directed path from
the vertex (i — 1,5 — 1) to (k,l) in Gx,y where i < k and j < I. Horizontal and
vertical arcs correspond to insert and delete operations respectively. The diagonal
arcs correspond to substitutions which are either matching (if the corresponding
symbols are the same), or mismatching (otherwise). If we trace the arcs of an align-
ment path for substrings I and J and perform the indicated edit operations in the
given order on I, we obtain J.

The objective of sequence alignment is to quantify the similarity between two
strings. There are various scoring schemes for this purpose. In the basic scoring
scheme, the arcs of Gx,y are assigned weights determined by non-negative reals &
(mismatch penalty) and p (indel or gap penalty). We assume that s(z;,y;) is the
similarity score between the symbols z;, and y; which is normally 1 for a match
(x; = y;) and —J for a mismatch (z; # y;). We will use the terms alignment and
alignment path interchangeably.

The following is the classical dynamic programming formulation [17] to compute
the maximum local alignment score S; ; ending at each vertex (i, j):

Sij =max{0, Si—1; — p, Si—1j-1 +s(wi,y;), Sij—1 — p} (1)

for 1 <i<n,1<j<m, with the boundary conditions S; ; = 0 whenever ¢ =0 or
j=0.
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Figure 1: Alignment graph Gxy where z;-- -2y = ATTGT and y;---y =
AGGACAT . Matching diagonal arcs are drawn as solid lines while mismatch-
ing diagonal arcs are shown by dashed lines. Dotted lines are used for horizontal
and vertical arcs. An example alignment path is shown. Labels of the arcs on this
path are the corresponding edit operations where € denotes the null string.

Let C indicate the substring relation. The local alignment (L A) problem seeks
for substrings I C X and J C Y with the highest similarity score. The optimal
value LA*(X,Y) for this problem is given by

LA*(X,)Y) =max{s(I,J) | I C X,J CY}=maxS;; (2)
irj

where s(I,.J) is the best alignment score between I and J. LA* can be computed
using the Smith-Waterman algorithm [14] in time O(nm). The space complexity
is O(m) because only O(m) entries of the dynamic programming matrix need to
be stored at any given time. In what follows, for any optimization problem P,
we denote by P* its optimum value, and sometimes drop the parameters from the
notation when they are obvious from the context.
As defined in [5], the objective of the normalized local alignment problem (NLAt)
is:
NLA®(X,Y) = max{s(L, J)/(I|+ |J)) | I C X,J CY,|I|+|J| >t} (3)

Figure 2 includes examples where optimal alignments for LA and NLAt may be
different. In each case, the long alignment has the highest ordinary score whereas
the shorter alignments have higher normalized scores. The normalized score of an
alignment is obtained by dividing its score by its length, which is defined as the sum
of the lengths of the substrings involved in the alignment. If we use ordinary scores
as the similarity measure then the long alignments in Figure 2 are optimal. If we use



normalized scores then the alignments returned depend on the value of ¢. For the
alignments in Figure 2 ¢ = 200 is a separating value in determining the optimality
of short and long alignments. The need to have control over the alignment lengths
becomes apparent when we use normalized scores. Without controlling the desired
alignment lengths, with normalized scores short alignments overshadow the true
long alignments causing yet another anomaly. Arslan et al., 2001 [5] changed the
objective function to s(I, J)/(|I|+|.J
degree of control over the total length of the optimal subsequences. In this way, the

+ L) by introducing parameter L which gives a

length constraint can be dropped [5]. This gave rise to an efficient algorithm which
runs in time O(nmlogn) and using O(m) space. However an adequate control over
the length through parameter L is difficult to describe.
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Figure 2: Some example alignments. The numbers written in italic are the ordi-
nary scores of the alignments. The normalized score of the shorter alignment(s) is
80/200 = 0.4 while that of the longer alignment is 120/600 = 0.2 .

Given a limit T', we define the length restricted local alignment (LRLA) score
between X and Y as

LRLA*(X,Y,T) =max{s(I,J) | I C X,J CY, and |J| < T} (4)

Figure 3 illustrates the length constraint schematically. In LRLA problem, the
horizontal lengths of the resulting alignments are controlled by upper limit 7" on one
of the substrings, which in practice will be determined by biological considerations.



For the alignments in Figure 2, setting 7' = 100 or 7" = 300 changes the optimality
of the short and long alignments when the ordinary scores are used.

Y
J

I <T

Figure 3: Candidates for I and .J in the computation of LRLA*(X,Y,T).

The cyclic edit distance (CED) between X and Y is the minimum edit distance
between X and any cyclic shift of Y:

CED*(X,Y) = min{ed(X,c*(Y)) | 0 < k < m} (5)

where ed denotes the edit distance, and o*(Y) is the cyclic shift of Y by k which is
defined as follows: 6°(Y) =Y, and for 0 < k <m, o*(Y) = ygs1 - Ym¥1 - - - Yi-

Maes’ algorithm [13] computes CED*(X,Y") in O(nmlogm) steps. For any k,
ed(X,o"(Y)) is the cost of the shortest (least-cost) path P(k) between the vertices
(0,k) and (n,m + k) in Gx,yy as shown in Figure 4. Maes’ idea is to make use of
the “non-crossing” property of shortest paths, which restricts the candidate P(k)
to be squeezed between P(i) and P(j) where i < k < j as illustrated in the figure.
However this idea cannot be generalized to the case of affine gap penalties in which
the total cost of a gap of size a, i.e. a block of a insertions (or deletions), is
a + (a — 1)u where « is the gap open penalty. It can easily be seen that P(i) and
P(j) may be crossing each other in this case.

J=o"(Y) YY
(00) @) (0K  (0))

Figure 4: Finding P(k) between P(i) and P(j) as a step toward the computation
of CED*(X,Y).

As a dual approach to CED we define cyclic local alignment (CLA) problem by
expressing its objective in the form

CLA*(X,Y) =max{s(I,.J) | I C X, JCo"(V) for some k, 0 <k <m} (6)



Note that CLA is a special case of LRLA. More specifically
CLA*(X,Y) = LRLA*(X,YY,|Y|)

To solve the LRLA problem, and consequently the CLA problem, we can extend
the dynamic programming formulation in (1) by adding another dimension to store
at each entry of the dynamic programming matrix optimum scores for all possible
horizontal lengths up to T'. However this increases the time complexity to O(T'nm)
which may be impractical.

4. Approximation Algorithms for LRLA

We first give a simple %—approximation algorithm HALF for the LRLA problem.
Clearly, we can assume 7" < m, for otherwise we can run the local alignment
algorithm without alteration on Gx y and obtain the exact solution to LRLA in
time O(nm). Let u = [m/T] and put

Y}' =YG-0)T+1 " YiT

for 1 < j < u with Y, = Y(u—1)T+1 """ Ym- Thus ¥ = Y1Y5---Y,, and the Yj
partition Y into blocks of length T each (except possibly for Y,, which may be
shorter). Let

HALF* = max {s(I,J) | ICX, JCY;Yj11} (7)

1<j<u
Finding an optimal alignment a for HALF requires solving u — 1 ordinary local
alignment problems among strings X and Y;Yj41 for 1 < j < u as schematically
described in Figure 5 . Total time taken for this is O(nm), as each Y; needs to be
considered at most twice during the computations. The space complexity of HALF

is O(m).

Y
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Figure 5: Regions of alignment graph explored in computing HALF*, and parts a;
and ay of an optimal alignment a.

Let a be an optimal alignment found by HALF. We obtain an approximation
to LRLA™ from a as follows. Suppose a C Y;Yj14 for some j. Let ai,as denote the



two halves of a that lie in Y} and Y} 11, respectively as shown in Figure 5. Without

loss of generality, assume that a; is the one with the higher score, say S. Then
2S > LRLA", and therefore

LLRLA* < § < LRLA*.

Clearly the horizontal length of a1 is < T'. The same approximation and complexity
results hold for the cases of arbitrary scoring matrices and affine gap penalties. To
solve the individual local alignment problems, Algorithm HALF uses the existing
algorithms in the underlying scoring scheme.

We give next an approximation algorithm APX-LRLA, which computes a local
alignment score S < LRLA" within a prescribed difference 2A from LRLA", i.e.

LRLA* —2A < S < LRLA*.

If desired, the position of an alignment achieving §, and consequently the substrings
I C X and J C Y with |J| < T achieving this score can also be identified. The
complexity of the algorithm is O(nmT/A) time and O(mT/A) space.

For simplicity, we assume a basic scoring scheme: i.e. score between the symbols

x;, and y; is 1 for a match (z; = y;) and —6 for a mismatch (z; # y;), and the indel
score is —p. We argue later that the algorithm can be easily modified within the
same complexity results for the cases of arbitrary scoring matrices, and also affine
gap penalties.

Our approximation idea is that instead of a single score, we maintain at each
node (i,7) of Gx y, a list of scores with the property that for any given optimum
score achieved by an alignment ending at (i, j) and starting within a past horizontal
window of size T of (i, j) at least one element of the list lies within 2A of this score.
We show that the dynamic programming formulation can be extended to preserve
this property through the nodes. In particular, an alignment with maximum score S
in the list of scores computed in one of the nodes (7, j) will be between LRLA* —2A
and LRLA*. We assume that A is integral, otherwise we use the largest integer
smaller than the given value for A.

Similar to the case of HALF, we imagine the columns of the graph Gxy as
grouped into vertical slabs of A +1 columns each, starting with the leftmost column
(i.e. j = 0). Two consecutive slabs share a column which we call a boundary. The
left and the right boundaries of the slabs are defined as the leftmost and rightmost
column positions in the slab. We agree that a slab does not contain the vertical
edges among the vertices on the left boundary. Now to a given column j in Gx v,
we associate a number of slabs as follows. Let slab 0 with respect to j be the slab
that contains column j. We order the consecutive slabs to the left of slab 0 with
respect to j as slab 1, slab 2, .... This orders the slabs weakly to the left of column
j, with respect to 7. In other words, slab k with respect to column j is the subgraph
of Gx,y composed of vertices placed inclusively between columns [j/A| and j if
k = 0, and between columns (|j/A] — k)A and (|j/A] — k + 1)A, otherwise. A
slab contains all the edges in G x,y incident to the vertices it contains except for



the vertical edges on the left boundary which belong to the preceding slab. Figure
6 includes sample slabs with respect to column j, and alignments ending at some
node (i,7) . From the dynamic programming formulation (1), we note the following
observation for optimal alignments with the basic scoring scheme assumed: any
optimal alignment (with positive score) ending at a given node (i,j) has to start
with a match since only the matches have positive scores.

<Lj/AJ-k>A <U/AJ-1>A jiala
sabk dab1 | a0

X

Figure 6: Slabs with respect to column j, and alignments ending at node (i, j)
starting at different slabs.

Let S; j 1 for 0 < k < |T/A| — 1 represent the optimum score achievable by any
alignment ending at node (7, j) and starting at slab k with respect to column j. For
LRLA, we are only interested in alignments with horizontal length not exceeding T'.
A single slab can contribute at most A to the score of any alignment. Consequently,
we need to store at each node at most |T/A] scores S; j 5, for 0 < k < |T/A] -1
corresponding to the |T'/A| slabs that include (i,j) and span a past horizontal
window of length not exceeding 7T'. Figure 7 shows the steps of our approximation
algorithm APX-LRLA. The processing is done row-by-row starting with the top
row (7 = O) of GX’y.

We can modify the Smith-Waterman algorithm such that it breaks the ties in
scores by selecting alignments with smaller horizontal lengths. This modified algo-
rithm can be used in Step 1 to check if the maximum score over all the alignments is
achieved by an alignment whose horizontal length does not exceed 7" . Step 2 of the
algorithm performs the initialization of the lists of the nodes in the top row (i = 0).
Step 3 implements computation of scores as dictated by the dynamic programming
formulation in (1):

e If the current node (i, 7) is not on the first column after a boundary then nodes
(1—1,7), (i—1,7—1) and (i,j — 1) share the same slabs with node (i,7) . In
this case S; ;1 is calculated by using S;—1 j x, Si—1,j—1.k, and S; j_1.1 as

Sijk = max{0,S;—1 jk — p: Sim1,j-1,k B (T4, Yj). Sij—1,6 — H}

where Sifl,jfl,k © S(.’L‘i,yj) = 51;17];11]“ + S(.Tj,yj) if Sifl,jfl,k >0or k= 0;
and 0 otherwise. This is because, by definition, a local alignment has a positive
score, and it is either a single match, or it is an extension of an alignment
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whose score is positive. Therefore we do not let an alignment with no score
be extended unless the resulting alignment is a single match in the current
slab.

e If the current node is on the first column following a boundary (i.e. j mod
A = 1) then the slabs for the nodes involved in the computations for node
(i, 7) differ as shown in Figure 8. In this case slab k for node (i, j) is slab £ — 1
for the nodes at column j—1 . Moreover any alignment ending at (i, j) starting
at slab 0 for (i,7) can either only include one of the edges ((i — 1,7), (i,7)),
(i = 1,5 —1),(i,5)), or ((4,45 —1),(¢,5)), or extend an alignment from node
(i —1,j). The edges ((i —1,j), (i,7)) and ((i,j — 1), (4, 7)) both have negative
weight —p . Therefore, S; o is set to max{0, s(z;,y;),Si—1,0 — }. For slab
k>0, S;; is calculated by

Sije =max{0,Si—1jk — 1, Si—1,j—1.6—1 B s(xi,y;), Sij—1,6—1 — 1}

During these computations, the running maximum score is also updated whenever
a newly computed score S; ; is larger than the current maximum, and the final
value is returned in Step 3. The alignment position achieving this score may also be
desired. This can be done by maintaining for each optimal alignment its start and
end positions besides its score. In this case in addition to the running maximum
score, the start and end positions of a maximal alignment should be stored and
updated.

If there is an alignment with the maximum score and with horizontal length not
exceeding T then the algorithm returns this score in Step 1. Otherwise, we first
show that for any node (4, j) and slab k, S; ;1 calculated by the algorithm is the
optimum score achievable over the set of all the alignments ending at node (7, j) and
starting at slab k& with respect to column j . This claim is proved by induction. If
we assume that the claim is true for nodes (i —1,5), (i — 1,7 —1) and (i,j — 1), and
for their slabs, then we can easily see by following Step 3 of the algorithm that the
claim holds for node (i, ) and its slabs. Consider the alignments with horizontal
length at most T'. If there is an optimal alignment with score LRLA* and with
length at most T — 2A, then this alignment is captured during the calculations at
its right end point. In this case, by the previous claim, the algorithm returns the
optimum score LRLA* .

If all optimal alignments with score LRLA" have horizontal length > T —2A, we
show that during the computations the algorithm observes a score which does not
differ more than 2A from the optimum score LRLA*. To see this, let an optimal
alignment start at node (i’, ') and end at node (i,7). We know that its horizontal
length is larger than T'— 2A . Let (i”, ;") be the node the alignment crosses at the
boundary (|j/A] — |T/A| + 1)A. This is the left boundary of slab k = [T/A| -1
relative to column j as shown in Figure 9. Note that the score of the part of the
alignment between nodes (i',5') and (i", ") is at most 2A according to our basic
scoring scheme. Since (i”, ") is one of the nodes in slab k relative to j S, is
larger than or equal to the score of the part of the given optimal alignment between

11



Algorithm APX-LRLA(4, )

1. Run a modified Smith-Waterman algorithm. If the maximum score is

achieved within horizontal length < 7T then return this score and exit
2. Initialization:

set LRLA* =0
set Sojr =0 for all jok, 0<j<m, and 0 <k < |T/A| -1
3. Main computations :
for i=1 to n do {
set S; 0% =0 for all k, 0 <k < |T/A|-1
for j=1 to m do {
if (j mod A =1) then
{
set Sij0 = max{0, s(zi,y;),Si-1,.0 — p}
set LRLA" = max{LRLA*,Si o}
for k=1 to |[T/A] -1 do {
set Sijx = max{0,8i—1k =, Si—1,5-1,k—1 D (i, yj), Sirj—1,6—1 — 1}
set LRLA™ = max{LRLA*,S,;,j,k}
}
} else
{
for k=0 to |T/A] -1 do {
set Si,j,k = maX{O,Si,l,j,k. — /L,Siijfl,k &) s(a:i,yj),Si,j,l,k — /,L}
set LRLA* = max{LRLA",S; ; .}
}
}
}

}
3. Return LRLA~"

Figure 7: Algorithm APX-LRLA which approximates LRLA* within difference 2A.

i/ala

slab k slab 1 slab0
for column j for column j for column j
& &
slab k-1 slab

0
for column j-1 for column j-1

(-1j-1) (-1j)

(.j-1) ()

Figure 8: Left boundary of slab 0 with respect to column j, and numbering of slabs
with respect to columns j and j — 1.
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Figure 9: Orientation of an optimal alignment ending at node (i, j) when its hori-
zontal length is larger than T — 2A.

(¢",7") and (¢, j) by our previous claim on the optimality of S; j » . Thus S; j x does

not differ from LRLA™ by more than 2A, i.e.
LRLA* —2A < S &

Note that it is likely that a score higher than the guaranteed lower bound
LRLA* — 2A is returned frequently in practice as the algorithm explores all the
nodes as possible end points.

Algorithm APX-LRLA essentially implements the dynamic programming for-
mulation (1). It is similar to the Smith-Waterman algorithm except at each node
instead of a single score, |T'/A| scores are stored and manipulated. Therefore the
resulting complexity exceeds that of the Smith-Waterman algorithm by a factor of
|T/A]. That is, the time complexity of APX-LRLA is O(nmT/A). The algorithm
requires O(mT'/A) space since we need the entries in the previous and the current
rows to calculate the entries in the current row.

For a given A we can obtain error bound A on the absolute difference from
the optimum score LRLA* by using max{1,|A/2]} as A in the algorithm without
increasing the asymptotic complexity.

Algorithm APX-LRLA can easily be generalized to other common scoring
schemes with simple modifications. For example, varying penalties (or scores) can
easily be incorporated for the computation of optimum scores at each node for
arbitrary scoring matrices. For the approximation result to hold we assume that
the maximum positive score for any individual operation is at most 1. In the scoring
schemes we study in this paper this can be satisfied by normalizing all the scores
by dividing them by the maximum individual positive score which does not affect
the optimality of the alignments. Affine gap penalties require a slightly different
dynamic programming formulation than the one given for basic scoring scheme (1).
It can be described as follows ([17]) : Let & ; = F;; = Si; = 0 when i or j is 0,
and if « is the gap open penalty, then define

Eij =max{Si;j 1 —a, & j1 —p},
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Algorithm APX-LRLA-AFFINE (), )

1. Run a modified Smith-Waterman algorithm. If the maximum score is
achieved within horizontal length < 7T then return this score and exit
2. Initialization:
set LRLA™ =0
set & ik = Foj,k = S0,k =0 for all j,k, 0<j<m, and 0<Ek<|[T/A] -1
3. Main computations :
for i=1 to n do {
Eiok=2Fiok=8ior=0 for all k, 0 <k < |T/A|-1
for j=1 to m do {
if (j mod A =1) then
{
set Si,j,o =0
set Fij0 =max{Si—1j0 —a, Fi—150 — pu}
set Sijo = max{0, s(zi,y;), Fi,jo}
set LRLA* = maX{LRLA*,Si,jqo}
for k=1 to |[T/A] -1 do {
set & = max{Sij—1k-1 — @, j_1,6—1 — p}
set Fi,j,k = max{Si,w,k — Ox,]‘—,‘f],j,k — /L}
set Sijx = max{0,8; 1 111D s(xi,y;), gk, Fijr}
set LRLA" = max{LRLA",S; .}

}
} else
{
for k=0 to [T/A] —1 do {
set gi,j,k = max{Si,j,lqk —Q, gi,j*Lk — /L}
set .7:7;,5,1“ = maX{Sifl,j,k — a,}ﬂ;,l,j,k — /,L}
set Sijn = max{0,Si—1;-1.6 D (i, ¥5), gk, Fijn}
set LRLA® = max{LRLA*,Si,j,k}
}
}
}
}

3. Return LRLA~"

Figure 10: Algorithm APX-LRLA-AFFINE : Algorithm for affine gap penalties
which approximates LRLA* within difference 2A.
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.7:7;’]- = max{S,;,Lj —Q, ‘7:7-/717]4 — ,U},
Sij = max{0, Si-1,;-1 + s(xi,y;), Eij, Fij} (8)

Affine gap penalties do not increase the complexity of the local alignment prob-
lem, i.e. the problem can be solved in time O(nm) and using O(m) space. Figure
10 shows algorithm APX-LRLA-AFFINE which is a variation of our algorithm
APX-LRLA for affine gap penalties. It uses the same idea that at each entry of
the dynamic programming matrix, instead of a single score a number of scores are
maintained and manipulated as dictated by the above dynamic programming for-
mulation, and by using the technique employed in algorithm APX-LRLA.

Remarks
Let r be a positive real number. Suppose that we run Algorithm HALF first, and
consequently run Algorithm APX-LRLA with A = HALF*/(2r). Then

LLRLA*/(2r) < A < LRLA*/(2r) ,

and it is easy to verify that Algorithm AP X-LRLA returns a score at least as large as
(1~ L)LRLA" in time O(nmrT/LRLA") and space O(mrT/LRLA") . This output-
size sensitive complexity result implies an achievement of a good performance in
practice whenever we can set a relatively large lower limit S of scores for local
alignments of interest. For example, whenever the scoring scheme is such that
important local alignments sought in the given pair of sequences have better scores
than some bound S, where S > T for some positive real constant ¢, setting A =
S/(2r) in APX-LRLA gives ascore > (1 — L)LRLA* if LRLA* > S in time O(nmr)
and space O(mr) .

In both algorithms HALF and APX-LRLA, the stated objective is to compute
the best possible score for a local alignment with the assumed length constraint. In
general we may be interested in finding many significant local alignments. The al-
gorithms proposed by Waterman and Eggert [18], and by Huang and Miller [11] find
best k non-intersecting alignments for a given k . The variations of these algorithms
which are based on the computations in APX-LRLA can be developed so that the
resulting algorithms compute approximations for the best k& non-intersecting align-
ments whose horizontal lengths do not exceed T'. We omit the details of these
constructions.

5. Conclusion

We considered the length restricted local alignment problem LRLA to circum-
vent the undesirable mosaic and the shadow effects of the ordinary local alignment
algorithm. In length restricted local alignment we search for substrings I and .J that
maximize the score s(I, J) among all I C X and J CY with [J| <T. LRLA can be
solved by extending the dynamic programming formulation of local alignment prob-
lem. However the resulting time complexity is O(T'nm), which may not be practical
for large values of n, m, and T'. In this paper, we proposed two approximation algo-
rithms for LRLA. The first algorithm is a simple %—approximation algorithm which
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has the same time and space complexity as the ordinary local alignment algorithm.
The second algorithm APX-LRLA obtains a score within difference 2A from the
optimum for any given positive integer A, and runs in time O(nmT/A).

A special case of the length restricted local alignment problem is cyclic local
alignment. This gives rise to a dual approach to the cyclic edit distance problem.
Within the same complexity bounds of our algorithms and the same approximation
guarantee, we can compute

CLA™(X,Y) Zog}%n{s(fy NIITCX, JCYkt1---YmY1---Yr }-

The algorithms can be generalized to the more common scoring scheme of affine
gap penalties which is widely used in practice. We present an algorithm APX-
LRLA-AFFINE which generalizes LRLA to the affine case with the same perfor-
mance guarantee as LRLA.

The algorithms are simple to implement and provably efficient. The degree of
approximation can be controlled with a reasonable trade-off of optimality versus
time and space. There is also reason to believe that the approximate score returned
is on the average much closer to the actual optimum than the worst case error
bound of 2A.
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