
Algorithms For Local Alignment With LengthConstraints?Abdullah N. Arslan and �Omer E�gecio�gluDepartment of Computer ScienceUniversity of California, Santa BarbaraCA 93106, USAfarslan,omerg@cs.ucsb.eduAbstract. The local sequence alignment problem is the detection ofsimilar subsequences in two given sequences of lengths n � m. Unfor-tunately the common notion of local alignment su�ers from some well-known anomalies which result from not taking into account the lengths ofthe aligned subsequences. We introduce the length restricted local align-ment problem which includes as a constraint an upper limit T on thelength of one of the subsequences to be aligned. We propose an e�cientapproximation algorithm using which we can �nd a solution satisfyingthe length bound, and whose score is within di�erence � of the opti-mum score for any given positive integer � in time O(nmT=�) usingO(mT=�) space. We also introduce the cyclic local alignment problemand show how our idea can be applied to this case as well. This is a dualapproach to the well-known cyclic edit distance problem.1 IntroductionOne of the central problems in computational molecular biology is the local se-quence alignment problem (LA). LA aims to reveal similar regions in a given pairof sequences X and Y whose lengths are n and m respectively with n � m. TheSmith-Waterman algorithm �nds an optimal local alignment by searching fortwo segments with maximum similarity score by discarding poor initial and ter-minal fragments. However an alignment returned by the algorithm may containa mosaic of well-conserved fragments arti�cially connected by poorly conservedor even unrelated fragments. As a result, a local alignment with score 1,000and length 10,000 may be chosen over a possibly more signi�cant shorter localalignment with score 998 and length 1,000. This de�ciency causes two forms ofanomalies known as the \mosaic e�ect" and the \shadow e�ect". Mosaic e�ect inan alignment is observed when a poor region is sandwiched between two regionswith high similarity scores. Shadow e�ect is observed when a biologically impor-tant short alignment is not detected by the algorithm because it overlaps witha much longer yet biologically irrelevant alignment with only a slightly higherscore.? Supported in part by NSF Grant No. CCR{9821038.



In this paper we consider the length restricted local alignment (LRLA) prob-lem in which we search for substrings I of X and J of Y that maximize thescore s(I; J) among all substrings satisfying jJ j � T for a given T . This is yetanother attempt to eliminate problems associated with local alignment. The ob-jective is similar to that of normalized local alignment algorithms [3], in that weaim to circumvent the undesirable mosaic and the shadow e�ects. The degree offragmentation in this new problem is controlled by varying the upper bound T .LRLA can be solved by extending the dynamic programming formulation oflocal alignment problem with resulting time complexity O(Tnm). Since this maynot be practical for large values of the parameters, we propose two approximationalgorithms for LRLA. The �rst one is a simple 12 -approximation algorithm, withthe same complexity as that of the local alignment problem itself. The secondalgorithm returns a score guaranteed to be within di�erence 2� of the optimumfor a given � � 1. The time complexity of this approximation algorithm isO(nmT=�), with O(mT=�) space. These two algorithms can also be used toapproximately solve the cyclic local alignment problem (CLA) of maximizings(I; J) where I is a substring of X , and J is a substring of a cyclic shift of Y .The outline of this paper is as follows. In section 2, we discuss related work inthe literature on algorithms for restricted versions of local alignment and cyclicedit distance. In section 3 we present the requisite notions and give the notationwe use. Section 4 contains the description of the approximation algorithmsHALFand APX-LRLA. Concluding remarks are presented in section 5.2 Previous WorkThe anomalies of mosaic and shadow e�ects that exist in the ordinary formu-lation of local alignment and the Smith-Waterman algorithm lead to problemsin comparison of long genomic sequences and comparative gene prediction. Thiswas recently pointed out by Zhang et al., 1999 [15] who proposed to decomposea discovered local alignment into sub-alignments that avoid the mosaic e�ect.However, the post-processing approach may miss the alignments with the bestdegree of similarity if the Smith-Waterman algorithm missed them in the �rstplace. As a result, highly similar fragments may be ignored if they are not partsof longer alignments dominating other local similarities. Another approach to �x-ing the problems with the Smith-Waterman algorithm is based on the notion ofX-drop, a region within an alignment that scores below X . The alignments thatcontain no X-drops are called X-alignments. Although X-alignments are expen-sive to compute in practice, Altschul et al., 1997 [2] and Zhang et al., 1998 [14]used some heuristics for searching databases with this approach. Alexandrovand Solovyev, 1998 [1] proposed to normalize the alignment score by its lengthand demonstrated that this new approach leads to better protein classi�cation.Arslan et al., 2001 [3] de�ned the normalized local alignment problem where thegoal is to �nd substrings I and J that maximize s(I; J)=(jI j + jJ j) among allsubstrings I and J with jI j + jJ j � t, where s(I; J) is the score, and t is athreshold for the minimal overall length of I and J . Because of the cubic time



complexity of the exact algorithm as an approximation to the original problemthey proposed a solution to the maximization of s(I; J)=(jI j+ jJ j+L) for a givenparameter L. This can be done in time O(nm logn) and using O(m) space [3].The length restricted local alignment problem considered in this paper triesto eliminate problems associated with local alignment, and it has an e�cientapproximation algorithm which allows for a control over the length of the optimallocal alignment sought. The limit is placed on only the substring J of Y . Webelieve that the underlying scoring scheme should limit the length of the othersubstring involved in an optimal alignment automatically, and therefore havingtwo limits, one for jI j and another for jJ j is redundant.An application of length restricted local alignment is the formulation of thecyclic local alignment problem as a special case of LRLA. The cyclic local align-ment is the problem of maximizing s(I; J) over all I and J , where I is a substringof X , and J is a substring of a cyclic shift of Y . The cyclic local alignment prob-lem is the length restricted local alignment problem with strings X and Y Y , andlimit T = jY j. The approximation algorithms we develop can readily be usedfor this problem. Moreover it de�nes a dual approach to well-known cyclic editdistance problem which aims to �nd the minimum edit distance between stringX and a cyclic shift of Y over all possible cyclic shifts of Y .Cyclic edit distance problem appears in many applications, and there is ex-tensive literature on the subject. Bunke and B�uhler, 1993 [4] presented cyclicedit distance as a method for two-dimensional shape recognition. Uliel et al.,1999 [12] suggested using it for detecting circular permutations in proteins. Thereare many algorithms for the problem. Fu and Lu [6] presented an O(nm2)-time algorithm, Maes [10] proposed an algorithm with O(nm logm) time andO(nm) space complexity, and described how to reduce the space complexityto O((n +m) logm). There are also O(nm)-time suboptimal algorithms devel-oped by Gorman et al., 1988 [7], Bunke and B�uhler, 1993 [4], and Uliel et al.,1999 [12]. Gregor and Thomason, 1996 [8] presented an output-size sensitive al-gorithm whose time complexity ranges from O(nm) to O(nm2). There are fasteralgorithms for the case of unit-cost edit operations in which each edit operationhas weight 1 except for a match (substitution of the same symbol, or no oper-ation) whose weight is 0. For this case, Chung, 1998 [5] proposed an algorithmfor a generalized version of the problem called banded cyclic string-to-string cor-rection problem whose time complexity ranges between O(nm) and O(nm logm)for cyclic edit distance computation. Landaue et al., 1998 [9] described an algo-rithm for incremental string comparison which can be used to solve cyclic editdistance problem with unit costs in time O(m2).Since cyclic local alignment problem is a special case of LRLA, the approxi-mation algorithms we describe in this paper can also be used to solve the cycliclocal alignment problem with the same complexity. This makes cyclic local align-ment an alternative to cyclic edit distance in applications using cyclic stringcomparison.



3 Preliminaries and De�nitionsGiven two strings X = x1x2 : : : xn and Y = y1y2 : : : ym with n � m, the align-ment graph GX;Y (edit graph in the context of string editing) is used to representall possible alignments between X and Y . It is a directed acyclic graph having(n + 1)(m + 1) lattice points (u; v) as vertices for 0 � u � n, and 0 � v � m(Figure 1). An alignment path for substrings xi � � �xk , and yj � � � yl is a directedpath from the vertex (i� 1; j� 1) to (k; l) in GX;Y where i � k and j � l. Hori-zontal and vertical arcs correspond to insert and delete operations respectively.The diagonal arcs correspond to substitutions which are either matching (if thecorresponding symbols are the same), or mismatching (otherwise). If we tracethe arcs of an alignment path for substrings I and J and perform the indicatededit operations in the given order on I , we obtain J .
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The following is the classical dynamic programming formulation [13] to com-pute the maximum local alignment score Si;j ending at each vertex (i; j):Si;j = maxf0; Si�1;j � �; Si�1;j�1 + s(xi; yj); Si;j�1 � �g (1)for 1 � i � n, 1 � j � m, with the boundary conditions Si;j = 0 whenever i = 0or j = 0.Let� indicate the substring relation. The local alignment (LA) problem seeksfor substrings I � X and J � Y with the highest similarity score. The optimalvalue LA�(X;Y ) for this problem is given byLA�(X;Y ) = maxfs(I; J) j I � X; J � Y g = maxi;j Si;j (2)where s(I; J) is the best alignment score between I and J . LA� can be computedusing the Smith-Waterman algorithm [11] in time O(nm). The space complexityis O(m) because only O(m) entries of the dynamic programming matrix need tobe stored at any given time. In what follows, for any optimization problem P ,we denote by P� its optimum value, and sometimes drop the parameters fromthe notation when they are obvious from the context.As de�ned in [3], the objective of the normalized local alignment problem(NLAt) is:NLAt�(X;Y ) = maxfs(I; J)=(jI j+ jJ j) j I � X; J � Y; jI j+ jJ j � tg (3)Figure 2 includes examples where optimal alignments for LA and NLAt maybe di�erent. In each case, the long alignment has the highest ordinary scorewhereas the shorter alignments have higher normalized scores. The normalizedscore of an alignment is obtained by dividing its score by its length, which isde�ned as the sum of the lengths of the substrings involved in the alignment.If we use ordinary scores as the similarity measure then the long alignments inFigure 2 are optimal. If we use normalized scores then the alignments returneddepend on the value of t. For the alignments in Figure 2 t = 200 is a sepa-rating value in determining the optimality of short and long alignments. Theneed to have control over the alignment lengths becomes apparent when we usenormalized scores. Without controlling the desired alignment lengths, with nor-malized scores short alignments overshadow the true long alignments causingyet another anomaly. Arslan et al., 2001 [3] changed the objective function tos(I; J)=(jI j+ jJ j+L) by introducing parameter L which gives a degree of controlover the total length of the optimal subsequences. In this way, the length con-straint can be dropped [3]. This gave rise to an e�cient algorithm which runs intime O(nm logn) and using O(m) space. However an adequate control over thelength through parameter L is di�cult to describe. Given a limit T , we de�nethe length restricted local alignment (LRLA) score between X and Y asLRLA�(X;Y; T ) = maxfs(I; J) j I � X; J � Y; and jJ j � Tg (4)In LRLA problem, the horizontal lengths of the resulting alignments arecontrolled by upper limit T on one of the substrings, which in practice will be
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Fig. 2. Some example alignments. The numbers written in italic are the ordinary scoresof the alignments. The normalized score of the shorter alignment(s) is 80=200 = 0:4while that of the longer alignment is 120=600 = 0:2 .determined by biological considerations. For the alignments in Figure 2, settingT = 100 or T = 300 changes the optimality of the short and long alignmentswhen the ordinary scores are used.The cyclic edit distance (CED) between X and Y is the minimum edit dis-tance between X and any cyclic shift of Y :CED�(X;Y ) = minfed(X; �k(Y )) j 0 � k < mg (5)where ed denotes the edit distance, and �k(Y ) is the cyclic shift of Y by k which isde�ned as follows: �0(Y ) = Y , and for 0 < k < m, �k(Y ) = yk+1 : : : ymy1 : : : yk.Maes' algorithm [10] computes CED�(X;Y ) in O(nm logm) steps. For anyk, ed(X; �k(Y )) is the cost of the shortest (least-cost) path P (k) between thevertices (0; k) and (n;m + k) in GX;Y Y as shown in Figure 3. Maes' idea isto make use of the \non-crossing" property of shortest paths, which restrictsthe candidate P (k) to be squeezed between P (i) and P (j) where i < k < j asillustrated in the �gure. However this idea cannot be generalized to the case ofa�ne gap penalties in which the total cost of a gap of size a, i.e. a block of ainsertions (or deletions), is �+ (a� 1)� where � is the gap open penalty. It caneasily be seen that P (i) and P (j) may be crossing each other in this case.As a dual approach to CED we de�ne cyclic local alignment (CLA) problemby expressing its objective in the formCLA�(X;Y ) = maxfs(I; J) j I � X; J � �k(Y ) for some k; 0 � k < mg (6)
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to column j, and alignments ending at some node (i; j) . From the dynamicprogramming formulation (1), we note the following observation for optimalalignments with the basic scoring scheme assumed: any optimal alignment (withpositive score) ending at a given node (i; j) has to start with a match since onlythe matches have positive scores. Let Si;j;k for 0 � k � bT=�c� 1 represent the
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Fig. 5. Slabs with respect to column j, and alignments ending at node (i; j) startingat di�erent slabs.optimum score achievable by any alignment ending at node (i; j) and starting atslab k with respect to column j. For LRLA, we are only interested in alignmentswith horizontal length not exceeding T . A single slab can contribute at most �to the score of any alignment. Consequently, we need to store at each node atmost bT=�c scores Si;j;k, for 0 � k � bT=�c � 1 corresponding to the bT=�cslabs that include (i; j) and span a past horizontal window of length at mostT . Figure 6 shows the steps of our approximation algorithm APX-LRLA. Theprocessing is done row-by-row starting with the top row (i = 0) of GX;Y .We can modify the Smith-Waterman algorithm such that it breaks the tiesin scores by selecting alignments with smaller horizontal lengths. This modi�edalgorithm can be used in Step 1 to check if the maximum score over all thealignments is achieved by an alignment whose horizontal length does not exceedT . Step 2 of the algorithm performs the initialization of the lists of the nodes inthe top row (i = 0). Step 3 implements computation of scores as dictated by thedynamic programming formulation in (1):� If the current node (i; j) is not on the �rst column after a boundary thennodes (i� 1; j), (i� 1; j� 1) and (i; j� 1) share the same slabs with node (i; j) .In this case Si;j;k is calculated by using Si�1;j;k , Si�1;j�1;k, and Si;j�1;k asSi;j;k = maxf0;Si�1;j;k � �;Si�1;j�1;k � s(xi; yj);Si;j�1;k � �gwhere Si�1;j�1;k � s(xi; yj) = Si�1;j�1;k + s(xi; yj) if Si�1;j�1;k > 0 or k = 0;and 0 otherwise. This is because, by de�nition, a local alignment has a positivescore, and it is either a single match, or it is an extension of an alignment whosescore is positive. Therefore we do not let an alignment with no score be extendedunless the resulting alignment is a single match in the current slab.� If the current node is on the �rst column following a boundary (i.e. j mod� = 1) then the slabs for the nodes involved in the computations for node (i; j)



di�er as shown in Figure 7. In this case slab k for node (i; j) is slab k � 1 forthe nodes at column j � 1 . Moreover any alignment ending at (i; j) startingat slab 0 for (i; j) can either only include one of the edges ((i � 1; j); (i; j)),((i � 1; j � 1); (i; j)), or ((i; j � 1); (i; j)), or extend an alignment from node(i � 1; j). The edges ((i � 1; j); (i; j)) and ((i; j � 1); (i; j)) both have negativeweight �� . Therefore, Si;j;0 is set to maxf0; s(xi; yj);Si�1;j;0 � �g. For slabk > 0, Si;j;k is calculated bySi;j;k = maxf0;Si�1;j;k � �;Si�1;j�1;k�1 � s(xi; yj);Si;j�1;k�1 � �g :During these computations, the running maximum score is also updated when-ever a newly computed score Si;j;k is larger than the current maximum, and the�nal value is returned in Step 3. The alignment position achieving this score mayalso be desired. This can be done by maintaining for each optimal alignment itsstart and end positions besides its score. In this case in addition to the runningmaximum score, the start and end positions of a maximal alignment should bestored and updated.If there is an alignment with the maximum score and with horizontal lengthnot exceeding T then the algorithm returns this score in Step 1. Otherwise, we�rst show that for any node (i; j) and slab k, Si;j;k calculated by the algorithmis the optimum score achievable over the set of all the alignments ending at node(i; j) and starting at slab k with respect to column j . This claim is proved byinduction. If we assume that the claim is true for nodes (i� 1; j), (i� 1; j � 1)and (i; j � 1), and for their slabs, then we can easily see by following Step 3of the algorithm that the claim holds for node (i; j) and its slabs. Consider thealignments with horizontal length at most T . If there is an optimal alignmentwith score LRLA� and with length at most T � 2�, then this alignment iscaptured during the calculations at its right end point. In this case, by theprevious claim, the algorithm returns the optimum score LRLA� . If all optimalalignments with score LRLA� have horizontal length > T � 2�, we show thatduring the computations the algorithm observes a score which does not di�ermore than 2� from the optimum score LRLA�. To see this, let an optimalalignment start at node (i0; j0) and end at node (i; j). We know that its horizontallength is larger than T�2� . Let (i00; j00) be the node the alignment crosses at theboundary (bj=�c�bT=�c+1)�. This is the left boundary of slab k = bT=�c�1relative to column j as shown in Figure 8. Note that the score of the part of thealignment between nodes (i0; j0) and (i00; j00) is at most 2� according to our basicscoring scheme. Since (i00; j00) is one of the nodes in slab k relative to j Si;j;kis larger than or equal to the score of the part of the given optimal alignmentbetween (i00; j00) and (i; j) by our previous claim on the optimality of Si;j;k .Thus Si;j;k does not di�er from LRLA� by more than 2�, i.e.LRLA� � 2� � Si;j;kNote that it is likely that a score higher than the guaranteed lower boundLRLA� � 2� is returned frequently in practice as the algorithm explores allthe nodes as possible end points. Algorithm APX-LRLA essentially implements



Algorithm APX-LRLA(�; �)1: Run a modified Smith-Waterman algorithm. If the maximum score isachieved within horizontal length � T then return this score and exit2: Initialization:set LRLA� = 0set S0;j;k = 0 for all j; k, 0 � j � m, and 0 � k � bT=�c � 13: Main computations :for i = 1 to n do fset Si;0;k = 0 for all k, 0 � k � bT=�c � 1for j = 1 to m do fif (j mod � = 1) thenfset Si;j;0 = maxf0; s(xi; yj);Si�1;j;0 � �gset LRLA� = maxfLRLA�;Si;j;0gfor k = 1 to bT=�c � 1 do fset Si;j;k = maxf0;Si�1;j;k � �;Si�1;j�1;k�1 � s(xi; yj);Si;j�1;k�1 � �gset LRLA� = maxfLRLA�;Si;j;kggg elseffor k = 0 to bT=�c � 1 do fset Si;j;k = maxf0;Si�1;j;k � �;Si�1;j�1;k � s(xi; yj);Si;j�1;k � �gset LRLA� = maxfLRLA�;Si;j;kggggg3: Return LRLA�Fig. 6. Algorithm APX-LRLA which approximates LRLA� within di�erence 2�.
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