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THE MOSTAR AND WIENER INDEX OF ALTERNATE LUCAS CUBES

ÖMER EĞECIOĞLU, ELIF SAYGI AND ZÜLFÜKAR SAYGI∗

Abstract. The Wiener index and the Mostar index quantify two distance related properties of con-

nected graphs: the Wiener index is the sum of the distances over all pairs of vertices and the Mostar

index is a measure of how far the graph is from being distance-balanced. These two measures have been

considered for a number of interesting families of graphs. In this paper, we determine the Wiener index

and the Mostar index of alternate Lucas cubes. Alternate Lucas cubes form a family of interconnection

networks whose recursive construction mimics the construction of the well-known Fibonacci cubes.

1. Introduction

The hypercube graph Qn of dimension n (also called n-cube) is one of the basic models for inter-

connection networks. The vertex set of Qn is represented by the set of all binary strings of length n

and two vertices are made adjacent if and only if they differ in exactly one bit. Fibonacci cubes and

(classical) Lucas cubes were introduced as new models of computation for interconnection networks

[11, 15]. Both families are subgraphs of Qn. These cubes decompose into two lower dimensional

Fibonacci cubes and a perfect matching. They have interesting structural and enumerative properties

which have been studied extensively [11, 13, 15]. Alternate Lucas cubes were introduced in [9] as an

alternative for the Lucas cubes. They have a useful fundamental decomposition similar to that of the

Fibonacci cubes; just as Fibonacci cubes are constructed from two lower dimensonal Fibonacci cubes

and a perfect matching, alternate Lucas cubes are constructed from two lower dimensional alternate

Lucas cubes and a perfect matching. They have many interesting structural and enumerative proper-

ties [9]. Here we remark that, the number of vertices and the number of edges of alternate Lucas cubes
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are equinumerous with those of the corresponding classical Lucas cubes, but they are not isomorphic

graphs.

Distance related properties of graphs such as the Wiener index, irregularity and Mostar index have

been studied for various families of graphs in the literature. Let G = (V (G), E(G)) be a connected

graph with vertex set V (G) and edge set E(G). The Wiener index W (G) is defined as the sum of

distances over all unordered pairs of vertices of G, that is,

W (G) =
∑

{u,v}∈V (G)

d(u, v)

where the distance d(u, v) is the length of the shortest path in G between u and v. It is determined for

Fibonacci cubes and Lucas cubes in [14]. The irregularity of a graph measures how much the graph

differs from a regular graph and Albertson index (irregularity) is defined as the sum of |deg(u)−deg(v)|
over all edges uv ∈ E(G) [1]. The irregularity of Fibonacci cubes and Lucas cubes are studied in [3, 7]

and the irregularity of alternate Lucas cubes are presented in [9]. For any uv ∈ E(G) let nu(G) denote

the number of vertices in V (G) that are closer (w.r.t. the standard shortest path metric) to u than

to v; and let nv(G) denote the number of vertices in V (G) that are closer to v than to u. The Mostar

index of G is defined in [6] as

Mo(G) =
∑

uv∈E(G)

|nu(G)− nv(G)| .

This index measures how far the given graph G is from being distance-balanced (see, [12]). For a

survey on Mostar index of graphs see [2]. When G (and the edge uv ∈ E(G)) is clear from the context

we will use nu = nu(G) and nv = nv(G). The relation between the Mostar index and the irregularity

of graphs and their difference are investigated in [10]. Recently, the Mostar index of trees, product

graphs, Fibonacci cubes and Lucas cubes have been investigated in [4, 8].

In this paper, we determine the Wiener index and the Mostar index of alternate Lucas cubes. In

Section 2 we present the structure of alternate Lucas cubes and structural results we need for the

calculation of these indices. In Section 3 we obtain an expression for the Mostar index of alternate

Lucas cubes and we derive a closed formula for this expression in Section 4. Finally, we present the

Wiener index of alternate Lucas cubes in Section 5.

2. Preliminaries

We use the notation [n] = {1, 2, . . . , n} for any n ∈ Z+. Let B = {0, 1} and

Bn = {b1b2 · · · bn | bi ∈ B, ∀i ∈ [n]}

denote the set of all binary strings of length n. The n-dimensional hypercube Qn is the simple graph

with vertices represented by the 2n binary strings in Bn. The edges of Qn are between pairs of vertices

whose binary representations differ in exactly one bit position. The n-dimensional Fibonacci cube Γn
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is the induced subgraph of Qn, is obtained by removing all vertices containing consecutive 1’s from

Qn. The vertices of Γn can be represented by the set FBn of all Fibonacci strings of length n

FBn = {b1b2 · · · bn | bi · bi+1 = 0, ∀i ∈ [n− 1]} ⊆ Bn .

The number of vertices of Γn is equal to |FBn| = fn+2, where f0 = 0, f1 = 1 and fn = fn−1 + fn−2

for n ≥ 2 are the Fibonacci numbers. If we remove the vertices with b1 = bn = 1 from Γn, then one

obtains the n-dimensional classical Lucas cube Λn, whose vertices can be represented by the set all

Lucas strings of length n

{b1b2 · · · bn | bi · bi+1 = 0, ∀i ∈ [n− 1] and b1 · bn = 0} ⊆ Bn .

For n ≥ 1, Λn has Ln vertices, where L0 = 2, L1 = 1 and Ln = Ln−1 + Ln−2 for n ≥ 2 are the Lucas

numbers.

Every positive integer can be represented uniquely as the sum of distinct Fibonacci numbers in such

a way that the sum does not include any two consecutive Fibonacci numbers. This representation is

called the Zeckendorf representation. By convention we assume that the integer 0 is represented by

the n-bit string (0 · · · 0) when we are considering n-dimensional graphs with binary labels. A similar

representation of integers using Lucas numbers is considered in [5] where it is shown that every positive

integer m can be expressed uniquely as a sum of distinct Lucas numbers in the form

m =
n−1∑
i=0

bn−iLi ,

where bi · bi+1 = 0 for 1 ≤ i ≤ n − 1 and bn · bn−2 = 0. We call this representation the Lucas

representation of integers. We will refer to the binary encoding of an integer via its coefficients bi in

this representation as its binary alternate Lucas string. By removing the vertices with bn−2 = bn = 1

from Γn, one obtains the n-dimensional alternate Lucas cubes Ln [9], whose vertices can be represented

by the set all binary alternate Lucas strings of length n

LBn = {b1b2 · · · bn | bi · bi+1 = 0, ∀i ∈ [n− 1] and bn−2 · bn = 0} ⊆ Bn .

For n ≥ 1, Ln also has Ln vertices. It is clear from the above definitions that L1 = Λ1 = Γ1 = K1

(complete graph with 1 vertex), L2 = Λ2 = P3 (path graph on 3 vertices) and L3 = Λ3.

The following fundamental decomposition of Γn, Λn and Ln can be obtained easily from the defini-

tions:

(1) For the Fibonacci cubes, the set FBn splits into two subsets depending on b1 = 0 or b1 = 1.

Therefore, Γn decomposes into a subgraph Γn−1, whose vertices are given by the strings that

start with 0, and a subgraph Γn−2 whose vertices are given by the strings that start with 10.

This decomposition can be denoted as

Γn = 0Γn−1 + 10Γn−2
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where there is a perfect matching between 10Γn−2 and 00Γn−2 ⊆ 0Γn−1, which are two copies

of Γn−2.

(2) The Lucas cube Λn has a subgraph Γn−1 whose vertices are represented by the Fibonacci

strings starting with 0 and a subgraph Γn−3 whose vertices are given by the Fibonacci strings

that start with 10 and end with 0. Using these subgraphs Λn can be decomposed as

Λn = 0Γn−1 + 10Γn−30

where there is a perfect matching between 10Γn−30 and 00Γn−30 ⊆ 0Γn−1. Here we note that

the lower dimensional graphs that appear in the decomposition of Λn are not Lucas cubes, but

Fibonacci cubes.

(3) For the alternate Lucas cube Ln, the set LBn is also splits into two subsets depending on b1 = 0

or b1 = 1. Therefore, Ln can be decomposed into two subgraphs induced by the vertices that

start with 0 and 10 respectively. The vertices that start with 0 constitute a graph isomorphic

to Ln−1 and the vertices that start with 10 constitute a graph isomorphic to Ln−2. For n ≥ 3,

the decomposition of Ln can be represented as

Ln = 0Ln−1 + 10Ln−2(2.1)

where there is a perfect matching between 10Ln−2 and 00Ln−2 ⊆ 0Ln−1, analogous to the

decomposition of Fibonacci cubes.

3. The Mostar index of alternate Lucas cubes

By direct inspection we observe that Mo(L1) = 0, Mo(L2) = 2 and Mo(L3) = 6.

Lemma 3.1. For n ≥ 3, assume that uv ∈ E(Ln) with uk = 0 and vk = 1 for some k ∈ [n]. Then

for k ≤ n − 2 we have nu(Ln) = fk+1Ln−k and nv(Ln) = fkLn−k−1; and for k ∈ {n − 1, n} we have

nu(Ln) = fn+1 and nv(Ln) = fn−1.

Proof. Assume that 1 < k < n−2 and let α ∈ V (Ln) have string representation a1a2 · · · an. Since uv ∈
E(Ln), u and v must be of the form b1 · · · bk−2000bk+2 · · · bn and b1 · · · bk−2010bk+2 · · · bn, respectively.

Then the difference between d(α, u) and d(α, v) depends on the value of ak. If ak = 0 we have

d(α, u) = d(α, v) − 1 and if ak = 1 we have d(α, u) = d(α, v) + 1. Therefore, nu(Ln) and nv(Ln) are

equal to the number of vertices in Ln whose kth coordinate is 0 and 1, respectively. These vertices

have string representation of the form β10β2 and β3010β4 where β1 and β3 are Fibonacci strings of

length k−1 and k−2; β2 and β4 are alternate Lucas strings of length n−k and n−k−1. Consequently,

nu(Ln) = fk+1Ln−k and nv(Ln) = fkLn−k−1.

For the case k = 1 we have u ∈ V (0Ln−1) and v ∈ V (10Ln−2). Then nu(Ln) = |V (0Ln−1)| =

Ln−1 = f2Ln−1 and nv(Ln) = |V (10Ln−2)| = Ln−2 = f1Ln−2.

For k = n − 2, nu(Ln) counts the number of vertices in Ln having string representations β000,

β001 and β010, which gives nu(Ln) = 3fn−1 = fn−1L2 since β can be any Fibonacci string of length
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n− 3. Similarly, nv(Ln) = fn−2 = fn−2L1 since it counts the number of vertices in Ln having string

representation of the form β′0100.

Similarly, for k = n − 1, nu(Ln) and nv(Ln) count the number of vertices in Ln having string

representations βan−20an and β010 respectively. Since an−20an ∈ LB3, we have β ∈ FBn−3 if

an−2 = 0 (an ∈ B) and β ∈ FBn−4 if an−2 = 1 (an = 0). Then we get nu(Ln) = 2fn−1 + fn−2 = fn+1

and nv(Ln) = fn−1.

Finally for k = n, nu(Ln) and nv(Ln) count the number of vertices in Ln having string representa-

tions β0 and β′001 respectively, which immediately gives nu(Ln) = fn+1 and nv(Ln) = fn−1. �

To find the Mostar index of the alternate Lucas cube Ln, we need to find the number of edges

uv ∈ E(Ln) for which uk = 0 and vk = 1 for each fixed k ∈ [n] and add up these contributions over k.

Lemma 3.2. For n ≥ 3, assume that uv ∈ E(Ln) with uk = 0 and vk = 1 for some k ∈ [n]. Then the

number of such edges in Ln is equal to fkLn−k−1 for k ≤ n−2, and is equal to fn−1 for k ∈ {n−1, n}.

Proof. As in the proof of Lemma 3.1 for 1 < k < n − 1, we know that u and v are of the form

a1 · · · ak−2000ak+2 · · · an and a1 · · · ak−2010ak+2 · · · an. Therefore the number edges uv in Ln satisfying

uk = 0 and vk = 1 is equal to the number of vertices of the form a1 · · · ak−2000ak+2 · · · an, which gives

the desired result.

For the boundary case k = 1 we need to find the number of vertices of the form 00a3 · · · an and

for the cases k = n − 1 and k = n we need to find the number of vertices of the form a1 · · · an−3000.

Clearly, these numbers are equal to |LBn−2| = Ln−2 = f1Ln−2 and |FBn−3| = fn−1. This completes

the proof. �

Using Lemma 3.1 and Lemma 3.2 we obtain the following main result.

Theorem 3.3. For n ≥ 1, the Mostar index of alternate Lucas cube Ln is given by

(3.1) Mo(Ln) = 2fn−1fn +
n−2∑
k=1

fkLn−k−1 (fkLn−k−2 + fk−1Ln−k) .

In the next section we derive a closed form formula for the expression (3.1).

4. A closed formula for Mo(Ln)

By the fundamental decomposition (2.1) of Ln, the set of edges E(Ln) consists of three distinct

types:

(1) The edges in 0Ln−1, which we denote by E(0Ln−1).

(2) The link edges between 10Ln−2 and 00Ln−2 ⊂ 0Ln−1, which we denote by LEn.

(3) The edges in 10Ln−2, which we denote by E(10Ln−2) .

In other words we have the partition

E(Ln) = E(0Ln−1) ∪ LEn ∪ E(10Ln−2) .
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We keep track of the contribution of each part of this decomposition by setting for n ≥ 3,

Mn(x, y, z) =
∑

uv∈E(0Ln−1)

|nu − nv|x+
∑

uv∈LEn

|nu − nv|y +
∑

uv∈E(10Ln−2)

|nu − nv|z .(4.1)

Clearly, Mo(Ln) = Mn(1, 1, 1). We define

M0 = M1 = 0

M2 = y + z(4.2)

and by direct inspection calculate

M3 = 4x+ 2y

M4 = 11x+ 3y + 6z(4.3)

M5 = 42x+ 12y + 17z .

The initial conditions (4.2) and (4.3) in turn give

Mo(L2) = M2(1, 1, 1) = 2

Mo(L3) = M3(1, 1, 1) = 6

Mo(L4) = M4(1, 1, 1) = 20

Mo(L5) = M5(1, 1, 1) = 71

consistent with the values that are calculated using Theorem 3.3.

By using the fundamental decomposition (2.1) of Ln and mimicking the proof of [8, Proposition 1]

we obtain the following useful result.

Proposition 4.1. For n ≥ 4 the polynomial Mn(x, y, z) satisfies

Mn(x, y, z) = Mn−1(x+ z, 0, x) +Mn−2(2x+ z, x+ z, x+ z) + Ln−3(Ln−2 + Ln−4)x+ Ln−2Ln−3y

where M0 = M1 = 0, M2(x, y, z) = y + z and M3(x, y, z) = 4x+ 2y.

Proof. Considering the sums in definition (4.1), there are three cases to consider:

(1) uv ∈ LEn such that u ∈ V (0Ln−1) and v ∈ V (10Ln−2):

We know that d(u, v) = 1 and the string representations of u and v must be of the form

00b3 · · · bn and 10b3 · · · bn, respectively. Then using Lemma 3.1 with k = 1 we have |nu−nv| =
Ln−1 − Ln−2 = Ln−3 for each edge uv in LEn. As |LEn| = Ln−2 all of these edges contribute

Ln−2Ln−3y to Mn(x, y, z).

(2) uv ∈ E(10Ln−2):

Let the string representations of u and v be 10u3 · · ·un and 10v3 · · · vn, respectively. Using

the fundamental decomposition of Ln there exist vertices of the form u′ = 0u3 · · ·un and

v′ = 0v3 · · · vn in V (Ln−1); u′′ = u3 · · ·un and v′′ = v3 · · · vn in V (Ln−2). Then nu counts

the number of vertices 0α ∈ V (0Ln−1) and 10β ∈ V (10Ln−2) satisfying d(0α, u) < d(0α, v)

http://dx.doi.org/10.22108/TOC.2022.130675.1912

http://dx.doi.org/10.22108/TOC.2022.130675.1912


Trans. Comb. 12 no. 1 (2023) 37-46 Ö. Eğecioğlu, E. Saygı and Z. Saygı 43

and d(10β, u) < d(10β, v). For any 0α ∈ V (0Ln−1) we know that d(0α, u) = d(α, u′) + 1 and

d(0α, v) = d(α, 0v′) + 1. Therefore, for a fixed 0α ∈ V (0Ln−1), d(α, u′) < d(α, v′) if and only

if d(0α, u) < d(0α, v). Similarly, for any 10β ∈ V (10Ln−2) we have d(10β, u) = d(β, u′′) and

d(β, v) = d(β, v′′). Then we can write∑
uv∈E(10Ln−2)

∣∣nu(Ln)− nv(Ln)
∣∣ =

∑
u′v′∈E(Ln−1)

∣∣nu′(Ln−1)− nv′(Ln−1)
∣∣

+
∑

u′′v′′∈E(Ln−2)

∣∣nu′′(Ln−2)− nv′′(Ln−2)
∣∣ .

Note that Ln−1 = 0Ln−2+10Ln−3 and the edge u′v′ ∈ E(Ln−1) is an edge in the set E(0Ln−2).

Furthermore u′′v′′ ∈ E(Ln−2) is an arbitrary edge. Then by the definition (4.1) of Mn we have∑
u′v′∈E(Ln−1)

∣∣nu′(Ln−1)− nv′(Ln−1)
∣∣ = Mn−1(1, 0, 0)

and ∑
u′′v′′∈E(Ln−2)

∣∣nu′′(Ln−2)− nv′′(Ln−2)
∣∣ = Mn−2(1, 1, 1) .

Hence all of these edges uv ∈ E(10Ln−2) contribute
(
Mn−1(1, 0, 0)+Mn−2(1, 1, 1)

)
z toMn(x, y, z).

(3) uv ∈ E(0Ln−1):

Since 0Ln−1 = 00Ln−2 + 010Ln−3 we have three subcases to consider here.

(a) uv ∈ LEn−1 such that u ∈ 00Ln−2 and v ∈ 010Ln−3:

Then using Lemma 3.1 with k = 2 we have |nu−nv| = f3Ln−2−f2Ln−3 = 2Ln−2−Ln−3 =

Ln−2 + Ln−4 for each edge uv in LEn. As |LEn−1| = Ln−3 all of these edges contribute

Ln−3(Ln−2 + Ln−4)x to Mn(x, y, z).

(b) uv ∈ E(010Ln−3):

Let the string representations of u and v are of the form 010u4 · · ·un and 010v4 · · · vn
respectively. Using the fundamental decomposition of Ln there exist vertices of the form

u′ = 000u4 · · ·un and v′ = 000v4 · · · vn in V (0Ln−1); u′′ = 0u4 · · ·un and v′′ = 0v4 · · · vn
in V (Ln−2). Then for any 10α ∈ V (10Ln−2) we know that d(10α, u) = d(10α, u′) + 1 =

d(α, u′′) + 2 and we know that d(10α, v) = d(10α, v′) + 1 = d(α, v′′) + 2. Therefore for all

10α ∈ V (10Ln−2) we count their total contribution to Mn by Mn−2(1, 0, 0)x in this case.

Furthermore, as uv ∈ E(010Ln−3) we have uv ∈ E(0Ln−1), and for all 0α ∈ V (0Ln−1)

we count their total contribution to Mn by Mn−1(0, 0, 1)x by using the definition of

Mn−1. Hence, the edges uv ∈ E(010Ln−3) contribute
(
Mn−1(0, 0, 1) +Mn−2(1, 0, 0)

)
x to

Mn(x, y, z).

(c) uv ∈ E(00Ln−2).

These edges are the ones of E(0Ln−1) that are not in E(010Ln−3) and LEn−1 (not cre-

ated during the connection of 00Ln−2 and 010Ln−3). Then similar to the Case 2 and

using the definition (4.1) of Mn these edges contribute
(
Mn−1(1, 0, 0) + Mn−2(1, 1, 1)

)
x

to Mn(x, y, z).
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Combining all of the above cases and notingMn−1(0, 0, 1)x = Mn−1(0, 0, x), Mn−2(1, 0, 0)x = Mn−2(x, 0, 0),

Mn−2(1, 1, 1)x = Mn−2(x, x, x) we complete the proof. �

If we write Mn(x, y, z) = anx+ bny+ cnz, then from the recursion in Proposition 4.1, we obtain for

n ≥ 4 the system of equations

an = an−1 + cn−1 + 2an−2 + bn−2 + cn−2 + Ln−3(Ln−2 + Ln−4)

bn = Ln−2Ln−3(4.4)

cn = an−1 + an−2 + bn−2 + cn−2 .

The initial values for 0 ≤ n ≤ 3 are given by (4.2) and (4.3). Let A(t), B(t), C(t) be the generating

functions of the sequences an, bn, cn, (n ≥ 0), respectively. We have the auxiliary result that ([16,

A215602])

(4.5) D(t) =
∑
n≥4

Ln−2Ln−3t
n =

t4(3 + 6t− 2t2)

(1 + t)(1− 3t+ t2)
.

From (4.4) with (4.2) and (4.3) we obtain the system of equations

A(t) = (t+ 2t2)A(t) + t2B(t) + (t+ t2)C(t) + (1 + t)D(t) + 3t3 + 2t4

B(t) = D(t) + t2 + 2t3(4.6)

C(t) = (t+ t2)A(t) + t2B(t) + t2C(t) + t2 .

Solving the system (4.6) and using (4.5) we find

A(t) =
t3(4− 5t− 2t2 + 2t3)

(1 + t)2(1− 3t+ t2)2

B(t) =
t2(1− 3t2 + 3t3)

(1 + t)(1− 3t+ t2)

C(t) =
t2(1− 4t+ 6t2 + 3t3 − 6t4 + 9t5 − 3t6)

(1 + t)2(1− 3t+ t2)2
.

Since Mo(Γn) = Mn(1, 1, 1) = an + bn + cn, adding the generating functions A(t), B(t), C(t) gives

(4.7)
∑
n≥0

Mo(Ln)tn =
t2(2− 2t− 4t2 + 11t3 − 4t4)

(1 + t)2(1− 3t+ t2)2
= 2t2 + 6t3 + 20t4 + 71t5 + 220t6 + · · ·

Using partial fractions decomposition in (4.7) and the expansions

1

1− 3t+ t2
=

∑
n≥0

f2n+2t
n(4.8)

1

(1− 3t+ t2)2
=

∑
n≥0

1
5

(
(4n+ 2)f2n+2 + (3n+ 3)f2n+1

)
tn

we obtain after some simplification the following result.
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Theorem 4.2. For n ≥ 1, the Mostar index of alternate Lucas cube Ln is given by

(4.9) Mo(Ln) =
1

25

(
(16L2n + (5n− 28)L2n−1 − (15n− 40)(−1)n

)
.

The expression in (4.9) for Mo(Ln) is a closed form evaluation of the sum given in Theorem 3.3.

5. The Wiener index of Alternate Lucas cubes

By mimicking the proof of [14, Theorem 3.1] and using Lemma 3.1 we obtain the following result.

Theorem 5.1. For n ≥ 1, the Wiener index of alternate Lucas cube Ln is

(5.1) W (Ln) = 2fn+1fn−1 +

n−2∑
k=1

fkfk+1Ln−k−1Ln−k .

Next we obtain a closed form expression for the formula (5.1). Note that we have the generating

functions

F (t) =
∑
k≥1

fkfk+1t
k =

t

(1 + t)(1− 3t+ t2)

G(t) =
∑
k≥1

LkLk+1t
k =

t(3 + 6t− 2t2)

(1 + t)(1− 3t+ t2)

H(t) =
∑
k≥1

fk−1fk+1t
k =

t2(2− t)
(1 + t)(1− 3t+ t2)

.

The sum that appears in (5.1) is a convolution. Therefore the generating function of W (Ln) is

(5.2)
∑
n≥1

W (Ln)tn = 2H(t) + tF (t)H(t) =
t2(4− 7t+ 2t2 + 6t3 − 2t4)

(1 + t)2(1− 3t+ t2)2
.

From (5.2), first few terms of the sequence W (Ln) (n ≥ 1) are

0, 4, 9, 38, 118, 380, 1156, 3476, 10247, 29862, . . .

in agreement with the values obtained from (5.1).

By using partial fractions decomposition of (5.2) and the expansions in (4.8) we obtain the following

expression for the Wiener index of alternate Lucas cubes.

Theorem 5.2. For n ≥ 1, the Wiener index of the alternate Lucas cube Ln is given in closed form

by

(5.3) W (Ln) =
1

25

(
(5n− 6)L2n−1 + (5n+ 8)L2n−2 + (5n+ 20)(−1)n

)
.

We find from (5.3) that the asymptotic expression for the Wiener index of alternate Lucas cubes is

W (Ln) ∼ 1
5nL2n .

It is interesting that using the expression (4.9), we find that Mo(Ln) is asymptotically given by

Mo(Ln) ∼ 1
5nL2n−1 .
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[13] S. Klavžar, Structure of Fibonacci cubes: a survey, J. Comb. Optim., 25 (2013) 505–522.
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