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tThis paper begins with a brief dis
ussion of a 
lass of polynomial Riemann hypotheses,whi
h leads to the 
onsideration of sequen
es of orthogonal polynomials and 3-term re
ur-sions. The dis
ussion further leads to higher order polynomial re
ursions, in
luding 4-termre
ursions where orthogonality is lost. Nevertheless, we show that 
lassi
al results on thenature of zeros of real orthogonal polynomials (i. e., that the zeros of pn are real and thoseof pn+1 interleave those of pn) may be extended to polynomial sequen
es satisfying 
ertain4-term re
ursions. We identify spe
i�
 polynomial sequen
es satisfying higher order re
ur-sions that should also satisfy this 
lassi
al result. As with the 3-term re
ursions, the 4-termre
ursions give rise naturally to a linear fun
tional. In the 
ase of 3-term re
ursions thezeros fall ni
ely into pla
e when it is known that the fun
tional is positive, but in the 
aseof our 4-term re
ursions, we show that the fun
tional 
an be positive even when there arenon-real zeros among some of the polynomials. It is interesting, however, that for our 4-termre
ursions positivity is guaranteed when a 
ertain real parameter C satis�es C � 3, andthis is exa
tly the 
ondition of our result that guarantees the zeros have the aforementionedinterleaving property. We 
onje
ture the 
ondition C � 3 is also ne
essary.Next we used a 
lassi
al determinant 
riterion to �nd exa
tly when the asso
iated lin-ear fun
tional is positive, and we found that the Hankel determinants �n formed from thesequen
e of moments of the fun
tional when C = 3 give rise to the initial values of theinteger sequen
e 1; 3; 26; 646; 45885; � � � ; of Alternating Sign Matri
es (ASMs) with verti
alsymmetry. This spurred an intense interest in these moments, and we give 9 diverse 
har-a
terizations of this sequen
e of moments. We then spe
ify these Hankel determinants as�Supported in part by NSF Grant No. CCR{9821038.the ele
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Ma
donald-type integrals. We also provide an an in�nite 
lass of integer sequen
es, ea
hsequen
e of whi
h gives the Hankel determinants �n of the moments.Finally we show that 
ertain n-tuples of non-interse
ting latti
e paths are evaluated by arelated 
lass of spe
ial Hankel determinants. This 
lass in
ludes the �n. At the same time,ASMs with verti
al symmetry 
an readily be identi�ed with 
ertain n-tuples of os
ulatingpaths. These two latti
e path models appear as a natural bridge from the ASMs with verti
alsymmetry to Hankel determinants.
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1 Introdu
tionLet g(x) be a real polynomial and T [g℄(s) be the polynomial de�ned linearly on basis elementsby T [1℄(s) = 1T [xn℄(s) = s(s+ 1) � � � (s+ n� 1)=n!: (1)The transformation T 
an be viewed in terms of the 
omplex integral transformT [g℄(s) �sin(�s) = Z 10 xs(1� x)1�sg(x) dxx(1 � x) :Furthermore if g(x) = g(1 � x) then T [g℄(s) = T [g℄(1 � s):Espe
ially interesting would be those 
ases in whi
h T [g℄(s) satis�es, additionally a Riemannhypothesis; i.e., in those 
ases in whi
h the zeros � = � + i
, satisfy � = 12 .Redmond has re
ently given an analyti
 proof that shows that whenever the polynomial gsatis�es a Riemann hypothesis, then so does the T -transform T [g℄. Although this result doesnot in
lude those situations where the polynomial g does not satisfy a Riemann hypothesis, butT [g℄(s) does, he has been able to generalize g 2 Rh) T [g℄ 2 Rh to entire g of order 1 (see [9℄).As an example, his result shows that the polynomialsT [(x+ r)n + (1� x+ r)n℄(s) (2)satisfy a Riemann hypothesis for all n > 0 and all values of the real parameter r. A substantialamount of numeri
al eviden
e indi
ates that a great deal more is true and we give two examplesto illustrate the important phenomena of positivity and interla
ing that are ina

essible byanalyti
 methods.First, when r > 0, the polynomialsT [(x+ r)n℄(w + 12) = Xi;j�0 
ijwirj
an be shown to have the positivity property that all the 
oeÆ
ients 
ij are non-negative, whi
h
an be used [4℄ to show that the w-zeros of T [(x+ r)n℄(w + 12) are negative when r > 0.Using this positivity result and other results, together with known parts of the standard the-ory of 3-term polynomial re
ursions, E�ge
io�glu and Ryave
 [4℄ were able to show in a 
ompletelydi�erent way that for all n > 0 and all real values of the parameter r, the polynomials givenin (2) satisfy a Riemann hypothesis. The proof te
hniques here have impli
ations that are thesubje
t matter of this paper.After having disposed of what might be termed The Linear Case by these alternative te
h-niques, it seemed natural to 
onsider the Quadrati
 Case; i. e., to 
onsider the zeros ofPn(s; r) = T [(x(x� 1) + r)n℄(s); (3)the ele
troni
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for values of the parameter r satisfying r � 14 . Here again Redmond's result shows that thePn(s; r) satisfy a Riemann hypothesis, but it is again likely that mu
h more is true as we indi
ate.The polynomials Pn(s; r) generate real polynomialsPn(12 + it; r)in t2, so that if we put u = �t2 and setpn(u; r) = Pn(12 + it; r) (4)then the pn satisfy a 4-term re
ursion. Numeri
al data indi
ates that for ea
h r � 14 , the u-zerosof pn+1(u; r) are negative and interla
e the u-zeros of pn(u; r). We have 
alled this assertion theQuadrati
 Polynomial Riemann hypothesis. Moreover, the data also supports the assertion thata positivity result (like the result established in the Linear Case) holds in the Quadrati
 Case;i. e., that if pn(u;R + 14 ) = Xi;j�0 
i;juiRj ;then the nonzero 
oeÆ
ients 
i;j are positive. If true, this would show that if the roots of thepn(u; r) are real, then they are negative for r � 14 , whi
h is equivalent to Pn(s; r) 2 Rh.We 
annot provide a proof of the polynomial Riemann hypothesis in the Quadrati
 Case. Ifthe hypothesis is 
orre
t, it is interesting when 
onsidered within the framework of the generaltheory of polynomial re
ursions.The new feature in the Quadrati
 Case is that the pn(u; r) do not satisfy a 3-term re
ursionfor r > 14 , but rather a 4-term re
ursion. Essentially the 3-term theory, on whi
h the LinearCase relies, is based on a notion of orthogonality not available in the 
onsideration of 4-termre
ursions. In other words, the standard arguments of the 3-term theory are then too weak toextend to a 4-term theory, and in fa
t they 
annot be extended in any general statement.Without any existing theory available to ta
kle the Quadrati
 Polynomial Riemann hypoth-esis, we turned to the 
onsideration of renormalized versions of the 4-term re
ursions satis�edby the pn. The re
ursions for the pn are given in (5) of se
tion 2. We mention that the term\renormalization" refers to a series of elementary transformations (des
ribed in Appendix II)that 
onvert the 4-term polynomial re
ursions (5) into the 4-term polynomial re
ursions (6).Renormalization therefore has the e�e
t of 
ondensing the somewhat 
ompli
ated re
ursions(5) in the parameters n and r into a relatively simple re
ursion (6) in the single parameter C.This simple re
ursion identi�ed C = 3 as a 
riti
al value, and led to the formulation of the3-Conje
ture. This 
onje
ture might be viewed as a single asymptoti
 version of the Quadrati
Polynomial Riemann hypothesis, and again, substantial amount of data indi
ates its truth. Onthe other hand, this 
onje
ture is readily phrased in two halves, and Redmond was able to provethe most important half, and his proof is in
luded in this paper as Theorem 1. Higher order
onje
tures are probably true and examples are given.In a strange twist of fortune, 
ertain determinants �n whi
h are naturally atta
hed to the3-Conje
ture (and whi
h will appear in se
tion 5), open up some very unexpe
ted 
onne
tionsto Alternating Sign Matri
es (ASM's). In fa
t when the sequen
e of integers 1, 3, 26, 646,the ele
troni
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45885,� � �, �rst appeared on the s
reen, our amazement was total. From that point on everythingwe tou
hed seemed inexorably (and for a time, inexpli
ably) to generate these integers, and thefollowing table lists some of the many models 
onsidered in this paper that are 
onne
ted viathis fas
inating sequen
e. The symbols in the �rst 
olumn will be explained in due 
ourse, andn : 0 1 2 3 4 � � ��n : 1 3 26 646 45885 � � �RR(n) : 1 3 26 646 45885 � � �In : 1 3 26 646 45885 � � �An : 1 3 26 646 45885 � � �Vn : 1 3 26 646 45885 � � �On : 1 3 26 646 45885 � � �Pn : 1 3 26 646 45885 � � �Figure 1: Di�erent models for 1, 3, 26, 646, 45885,� � �we begin with the Robbins-Rumsey sequen
e,RR(n) = nYk=0 �6k+42k+2�2�4k+32k+2� ;listed in [10℄ as the 
onje
tured 
ounting formula for the number Vn of ASM's with verti
alsymmetry. This 
onje
ture (and others) has re
ently been proved by Kuperberg [6℄. In thispaper we prove several results and indi
ate dire
tions for further 
onje
tures. In Theorem 3(se
tion 7) we show that �n = In;where In is a sequen
e of values of 
ertain Ma
donald-type integrals (see (27), Se
tion 7). InTheorem 4 (se
tion 8) we show that In = An;where An is any one of the sequen
e of Hankel determinants given in Theorem 4. In Theorem5, we show that An = RR(n):There are two sequen
es, On (De�nition 1, Se
tion 9) and Pn (De�nition 2, Se
tion 10), that
ount two types, respe
tively, of ensembles of latti
e paths. We show in Lemma 2 (se
tion 9)that Vn = Onand we show in Theorem 6 (se
tion 10) thatAn = Pn:the ele
troni
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ombinatori
s 8 (2001), #R36 5



A 
ompletely di�erent proof of the Robbins-Rumsey 
onje
tureVn = RR(n)would follow from a bije
tion between the latti
e paths 
ounted by On and those 
ounted byPn, or equivalently, between the two 
orresponding families of tableaux des
ribed at the end ofse
tion 10.2 The 3-Conje
tureUsing (1) we 
onstru
t the �rst few polynomials Pn(s; r) de�ned in (3) asP0(s; r) = 1P1(s; r) = 12s(s� 1) + rP2(s; r) = 124s2(s� 1)2 + (r � 112)s(s� 1) + r2:For n � 2, it 
an be shown that the Pn satisfy the 4-term re
ursion(2n+ 2)(2n+ 1)Pn+1(s) = [s(s� 1) + 12rn2 + 8rn+ 2r � n2 � n℄Pn(s)� [12r2n2 � 2rn2 � 2r2n℄Pn�1(s)+ [n(n� 1)(4r3 � r2)℄Pn�2(s):This re
ursion is derived in Appendix I. The pn(u) of (4) therefore satisfy the re
ursion(2n+ 2)(2n+ 1)pn+1(u) = [�14 + u+ 12rn2 + 8rn+ 2r � n2 � n℄pn(u)� [12r2n2 � 2rn2 � 2r2n℄pn�1(u) (5)+ [n(n� 1)(4r3 � r2)℄pn�2(u);whi
h, as a tool in proving the Quadrati
 Polynomial Riemann hypothesis, we found intra
table,and we turned to e�orts at simplifying the re
ursion by renormalization. Renormalization is anattempt to see what is happening in the pn-re
ursion (5) for large n. We have put the stepsin the renormalization into Appendix II and quote here merely the new polynomial re
ursionthat results from the renormalization of the pn. Thus we obtained a sequen
e of polynomialsqn = qn(x) with q�2 = q�1 = 0, q0 = 1, and de�ned thereafter by the re
ursionqn = xqn�1 � Cqn�2 � qn�3; (6)where C = 8r(6r � 1)[16r2(4r � 1)℄ 23 :As r runs from 14 to 1, C(r) is monotone de
reasing to 3, and we �nd that C = 3 is a
riti
al value in several important respe
ts. Before we 
onsider the 4-term re
ursion (6), it willthe ele
troni
 journal of 
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be useful to review brie
y some of the theory of 3-term re
ursions (we refer the reader to [3℄ fordetails).Consider a sequen
e of polynomials qn(x) de�ned by the 3-term re
ursion,qn = (x� 
n)qn�1 � �nqn�2;where q�1 = 0, q0 = 1 and the f
ng and f�ng are real sequen
es. There is then a unique linearfun
tional L on the spa
e of polynomials su
h thatL[1℄ = �1L[qmqn℄ = 0 m 6= nL[q2n℄ = �1�2 � � � �n+1It follows that the fqng is an orthogonal sequen
e of moni
 polynomials with respe
t to L if the�n 6= 0.The fun
tional L is said to be positive de�nite if L[p℄ > 0 for every non-negative, non-zeropolynomial p. Therefore L is positive de�nite if and only if all �n > 0. In this 
ase, the zeros ofthe qn+1 are real and simple and interla
e the zeros of qn. Moreover, if we spe
ify the momentsof L by �n = L[xn℄(and take �0 = �1 = 1), then L is positive de�nite if and only if the asso
iated sequen
e ofHankel determinants �n = �n[�i+j℄0�i;j�n (7)are positive for n = 0; 1; : : :.Now if you begin with a sequen
e of moni
 polynomials qn de�ned as in (6) by a 4-termre
ursion, then you again get some orthogonality with respe
t to the fun
tional LC de�ned byLC [1℄ = �0 = 1LC [xn℄ = �nLC [qn℄ = 0 n � 1;whi
h results in LC [q1q3℄ = 0;but not, for example, LC [q2q3℄ = 0:Evidently, this loss of orthogonality makes it impossible to transfer dire
tly the arguments ofthe 3-term theory to the 4-term situation.Our �rst result, the so-
alled 3-Conje
ture, relates to the Quadrati
 Polynomial Riemannhypothesis and the 4-term re
ursions (6). We have the following 
onje
ture.Conje
ture 1 (3-Conje
ture) The sequen
e of polynomials qn, n = 1; 2; : : :, as de�ned throughthe 4-term re
ursion (6) have real zeros if and only if C � 3. Moreover, when C � 3, the zerosof qn+1 interla
e the zeros of qn.the ele
troni
 journal of 
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This 
onje
ture is proved in the 
ase that C � 3. We do not have a proof of the statementthat when C < 3, then there is some qn with some non-real zeros. Numeri
al eviden
e for valuesof C as high as C = 2:9 gives n with qn having some non-real zeros and indi
ates that C = 3 isindeed the 
riti
al value.Theorem 1 If C � 3 then the polynomials de�ned by q�2 = q�1 = 0, q0 = 1 and by (6) forn � 1 have real zeros, and the zeros of qn+1 interleave the zeros of qn.Proof The proof breaks down into the following steps:1. Fix N large and restri
t attention to the polynomials. (qn(x))0�n<N .2. Show that if C is suÆ
iently large then the zeros of (qn(x))0�n<N are real and interleaved.3. If for some C, the zeros of (qn(x))0�n<N are not real and interleaved then as C de
reasesthere must be a transition at some point. At the point of the transition there will be a kwith 0 < k < N � 1 and a real x0 su
h that qk(x0) = qk+1(x0) = 0.4. Fix C and x0 to be this transition point and assume that C � 3. Let t1; t2; t3 be the rootsof the polynomial, t3 � x0t2 + Ct+ 1 = 0:5. Show that two of the roots must be equal.6. Dispose of the double root 
ase.7. Dispose of the triple root 
ase.Large C 
ase and the transitionFix N > 0. We �rst need to show that for suÆ
iently large C the roots of the �rst N polynomialsare real and interleaved. We do this by s
aling and showing that after s
aling and normalizationthe qn are a simple perturbation of orthogonal polynomials. Note thatqn+1(pCx)C(n+1)=2 = xqn(pCx)Cn=2 � qn�1(pCx)C(n�1)=2 � 1C3=2 qn�2(pCx)C(n�2)=2Thus if we de�ne qn(x) = qn(pCx)Cn=2then qn satis�es the following re
ursionqn+1(x) = xqn(x)� qn�1(x)� C�3=2qn�2(x):For large C this is just a perturbation of the re
ursionrn+1(x) = xrn(x)� rn�1(x)the ele
troni
 journal of 
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whi
h de�nes a set of orthogonal polynomials. Thus the �rst set of N polynomials of q 
an bemade arbitrarily 
lose to the �rst N polynomials rn (n = 0; 1; 2; : : : N � 1).Sin
e the polynomials rn are orthogonal their roots are simple and real. For arbitrary realC, the polynomials qn have real 
oeÆ
ients. This means that any 
omplex roots of qn 
omeas half of a 
omplex 
onjugate pair of roots. But as C gets large the roots of qn approa
h theroots of the rn and it is impossible for two 
omplex 
onjugate roots to approa
h two distin
troots of rn. Thus for suÆ
iently large C the roots of the �rst N polynomials of qn are real andinterleaved. Note that this interleaving is a stri
t interleaving so that no root of qn is equal toa root of qn+1 for 0 � n < N � 1. Thus the roots of the �rst N polynomials of p are real andinterleaved.Now we let C de
rease until the interleaving property fails. It is not hard to see that theinterleaving property 
an only fail if there is a transition value for C and a k with 0 < k < N�1su
h that qk and qk+1 have a 
ommon real root. Let that root be x0. We will now demonstratethat su
h a transition point 
an only o

ur if C is stri
tly less than 3.Consider the 
ubi
 equation t3 � x0t2 + Ct+ 1 = 0: (8)Let t1; t2; t3 be the roots of this equation. The remainder of the proof hinges on whether thisequation has a double root or triple root.The roots are distin
tFirst suppose that equation (8) does not have a double root. In that 
ase, we 
an �nd somea1; a2; a3 su
h that qn(x0) = a1tn+21 + a2tn+22 + a3tn+23 :Now we have q�2(x0) = q�1(x0) = qk(x0) = qk+1(x0). This leads to the following equations:a1 + a2 + a3 = 0a1t1 + a2t2 + a3t3 = 0a1tk+21 + a2tk+22 + a3tk+23 = 0a1tk+31 + a2tk+32 + a3tk+33 = 0Note that the a1; a2; a3 
annot be trivial be
ausea1t21 + a2t22 + a3t23 = 1:Thus the following determinants are zero:������� 1 1 1t1 t2 t3tk+21 tk+22 tk+23 ������� = 0������� 1 1 1t1 t2 t3tk+31 tk+32 tk+33 ������� = 0the ele
troni
 journal of 
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This means in turn that we 
an �nd non-trivial �; �; 
 and �0; �0; 
0 su
h that�+ �ti + 
tk+2i = 0�0 + �0ti + 
0tk+3i = 0for i = 1; 2; 3. A little manipulation gives the following equations��0
 + (�
0 � �0
)ti + �
0t2i = 0 (9)where i = 1; 2; 3. The next question is whether equations (9) 
ould be trivial in the sense that��0
 = 0; (�
0 � �0
) = 0; �
0 = 0:We will show that if equations (9) are trivial then C < 3. This will be done in three 
ases.First, if 
 = 0 then ti = ��=� and we �nd that there is a triple root whi
h is a 
ase that is
overed later. Se
ond, if 
0 = 0 then ti = ��0=�0 whi
h also leaves us in the triple root 
ase.Finally, the only remaining 
ase is that �0 = 0 and � = 0. In this 
ase,tk+2i = ��=
:This means that the ti's di�er from one another by a fa
tor of a root of unity. Also 1 = j � 1j =jt1t2t3j = jt1j3 so jt1j = 1. But C = t1t2 + t1t3 + t2t3whi
h means that C < 3.Thus the equations (9) are not trivial. But this means that the following determinant iszero: ������� 1 1 1t1 t2 t3t21 t22 t23 ������� = (t3 � t2)(t3 � t1)(t2 � t1) = 0So there is a double root whi
h was a 
ase we are 
overing below.Double Root CaseWe will assume that the 
ubi
 equation (8) has a double root. Note that we are 
onsidering thetriple root 
ase to be distin
t and it is handled below. If we have a double root then we 
anwrite t1 = t2 = ��; t3 = � 1�2where � 6= 1. Note that � must be real. Now we 
an �nd real numbers �; �; � su
h thatqn�2(x0) = (�n+ �)(��)n + �(�1=�2)nUsing q�2(x0) = q�1(x0) = 0, we 
an solve for �, � and � to getqn�2(x0) = �(��)n �( 1�3 � 1)n+ 1� 1�3n �the ele
troni
 journal of 
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Now we will use the 
laim that qk(x0) = 0 for k > 0. In this 
ase, we would havek + 2 = 1� (1=�)3k+61� (1=�)3 = 1 + 1�3 + : : :+ 1�3k+3 : (10)Note that the right hand side of this equation has k + 2 summands. If � > 0 then we look atthe 
ases where � > 1 and � < 1. In both 
ases the above equality is impossible. If � < 0 thenwe use the fa
t that C = �2 + 2�:For negative � the right hand side of this equation is de
reasing with �. It ranges from +1 as� ! �1 to �1 as � ! 0�. Thus C 
an only be greater than or equal to 3 if � � �2. But if� � �2 then the equation k + 2 = 1 + 1�3 + : : :+ 1�3k+3is 
learly impossible.Triple Root CaseWe are left with only one possible remaining 
ase: that of triple roots. In that 
ase t1 = t2 =t3 = �1, C = 3 and x0 = �3. We then haveqn+1(x0) = �3qn(x0)� 3qn�1(x0)� qn�2(x0)and qn(x0) = (n+ 1)(n+ 2)2 :This 
overs all the 
ases. It means that the transition point that we have been talking about
annot happen for C � 3. Thus if C � 3 the roots of the qn are real and interleaved. �3 The 6-Conje
tureAll of the work to this point derives from the initial 
onsideration of the T -transform of thepowers (x(x�1)+r)n and the 4-term polynomial sequen
es they satisfy. Of 
ourse we 
ould beginwith the powers of other polynomials invariant under x! 1� x, and 
onsider the higher ordersequen
es they de�ne. We then would 
onsider whi
h values of various parameters guarantee aRiemann hypothesis.For the sake of brevity, we look at just one more 
ase of the kind of situation that presentsitself in se
tion 11, and skip the derivations.We have 
hosen a 5-term sequen
e, qn = qn(x;C) withqn = xqn�1 � Cqn�2 + 4qn�3 � qn�4
the ele
troni
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with initial terms q�3 = 0q�2 = 0q�1 = 0 (11)q0 = 1as an example of an in�nite 
lass of sequen
es depending on a single parameter C and we beginwith the following 
onje
ture.Conje
ture 2 (The 6-Conje
ture) The sequen
e of polynomials satisfying the re
ursionqn = xqn�1 � Cqn�2 + 4qn�3 � qn�4with initial polynomials as in (11) have real zeros if and only if C � 6. In this 
ase, the zerosof qn+1 interla
e the zeros of qn.Numeri
al eviden
e indi
ates that many other polynomial sequen
es depending on a singleparameter C have real zeros if and only if C is not smaller than some 
riti
al value. We 
onne
tthese higher order sequen
es to Hankel determinants in se
tion 11. There is a substantial amountof numeri
al eviden
e that the 
riti
al 
oeÆ
ients that are at work for these re
ursions 
omefrom binomial 
oeÆ
ients, e. g. 3; 1 for 4-term re
ursions, and 6; 4; 1 for 5-term re
ursions.4 MomentsWe 
onsider the sequen
e of polynomials qn = qn(x) de�ned by the 4{term re
ursionqn = xqn�1 � Cqn�2 � qn�3; (n � 1)with q�2 = q�1 = 0, and q0 = 1. Thusq0 = 1q1 = xq2 = x2 � Cq3 = x3 � 2Cx� 1q4 = x4 � 3Cx2 � 2x+ C2Write qn(x) = nXj=0dn;jxjand de�ne Qn = [di;j ℄0�i;j�n to be the (n+ 1)� (n+ 1) matrix of 
oeÆ
ients. ThusQ4 = 26666664 1 0 0 0 00 1 0 0 0�C 0 1 0 0�1 �2C 0 1 0C2 �2 �3C 0 1
37777775the ele
troni
 journal of 
ombinatori
s 8 (2001), #R36 12



We spe
ify a linear fun
tional LC on the spa
e of real polynomials byLC [q0℄ = 1 (12)LC [qn℄ = 0 ; n � 1:Expressing the moments of LC by �n = �n(C) = LC [xn℄; (13)then the �rst few moments are �0 = 1�1 = 0�2 = C�3 = 1�4 = 2C2�5 = 5C�6 = 3 + 5C3;and in general, we have the following result.Theorem 2 The moments �n of the fun
tional L are given by any of the following expressions:1. The (n; 0)-th entry of Q�1n .2. The sum of the weights of all latti
e paths from the origin to the point (n; 0) with elementarysteps (a; b) ! (a+ 1; b+ 1) with weight 1;(a; b) ! (a+ 1; b� 1) with weight C; (14)(a; b) ! (a+ 1; b� 2) with weight 1;whi
h stay weakly above the x-axis.3. The sum of the monomials Cn2(T ) over all 2-3{trees T on n + 1 nodes, where n2(T ) =number of nodes of T with 2 
hildren.4. The 
oeÆ
ient of xn in 1n+ 1(1 + Cx2 + x3)n+15. The sum 1n+ 1 Xn=3j+2k n+ 1j; k !Ck
the ele
troni
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6. For C � 3, the integral moment Z t1t2 tnw(t)dtwhere t2 < t1 are the two larger roots of the dis
riminant of z3 + Cz2 � tz + 1, andw(t) = wC(t) is positive for t2 < t < t1.7. For C = 3, the integral moment p32� 3n+4 Z 10 fn(u)g(u)du (15)where f(u) = 9u(1� u)� 1g(u) = u 13 (1� u) 23 (1� 2u) (16)8. For C = 3, the expression (�1)n3n+4 2n+1Xk=0 
n;k k + 132n+ 3! (17)where the 
n;k are de�ned by(u+ 1)(1 + 7u+ u2)n = 2n+1Xk=0 
n;kuk:9. For C = 3, the expression (�1)n3n+4 nXk=0 nk! k + 132k + 3! 32k3k + 5 :Proof To prove part 1, note that by (12) and (13), �0 = 1 and for i > 0iXj=0 di;j�j = 0:Therefore for every n > 0, Qn 266664 �0�1...�n 377775 = 266664 10...0 377775Thus the ve
tor [�0; �1; � � � ; �n℄t is the �rst 
olumn of Q�1n and (1) follows.To prove 2, let Q�1n = [ei;j ℄0�i;j�n. Thusxi = nXj=0 ei;jqj(x) (18)the ele
troni
 journal of 
ombinatori
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Multiplying both sides by x,xi+1 = nXj=0 ei;jxqj(x)= nXj=0 ei;j(qj+1(x) +Cqj�1(x) + qj�2(x))= qi+1(x) + Cei;1 + ei;2 + nXj=1 ei;j�1qj(x) + nXj=1Cei;j+1qj(x) + nXj=1 ei;j+2qj(x)Comparing 
oeÆ
ients with the expansion (18) with i repla
ed by i+ 1ei+1;j = 8><>: 1 if j = i+ 1ei;j�1 + Cei;j+1 + ei;j+2 if 0 < j � iCei;1 + ei;2 if j = 0 (19)This is the same re
ursion satis�ed by the sum of the weights of the 
olle
tion of paths from
1

1

C

C1 1

1 1

1 1

Figure 2: A latti
e path from the origin to (10; 0) with elementary steps as in (14).the origin to the point (i+ 1; j) whi
h stay weakly above the x-axis and have elementary stepsgiven in (14). An example of su
h a path from the origin to (10; 0) with weight C2 is shown inFigure 2. Sin
e the value at the latti
e point (n; 0) is en;0, the sum of the weights of all pathsfrom the origin to (n; 0) is �n by part 1. This proves part 2.To prove part 3, we traverse a latti
e path in part 2 from right to left, 
oding the threeelementary steps in (14) by x0, x2, and x3, respe
tively, and padding the resulting string withan extra x0. For the example path in Figure 2 this results in the 
odex3 x0 x0 x2 x0 x3 x0 x2 x0 x0 x0 (20)This word is the word obtained by the depth-�rst traversal of a 2-3{tree T on 11 nodes, andputting the labels of the nodes down one by one from left to right. Ea
h x3 is the label of aninternal node with 3 
hildren, ea
h x2 is the label of an internal node with 2 
hildren, and x0'sare the labels of leaf nodes with no 
hildren (thus the internal nodes have 2 or 3 
hildren, assuggested by the name 2-3{tree). Note that n0 + n2 + n3 = n + 1 where ni is the number ofnodes with i 
hildren, and the 
ontribution of the tree is Cn2(T ), sin
e under this bije
tion, thethe ele
troni
 journal of 
ombinatori
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0xFigure 3: The 2-3{tree 
orresponding to the latti
e path in Figure 2.nodes labeled with x2 have weight C, and all the other nodes have weight 1. The tree that
orresponds to the path in Figure 2 via the depth-�rst 
ode in (20) is shown in Figure 3.To prove part 4, we use the following version of Lagrange InversionTheorem (Lagrange Inversion Formula) Let R(x) be the formal power seriesR(x) = R0 +R1x+R2x2 + � � �and let f(x) = f1x+ f2x2 + f3x3 + � � �be the formal power series solution of the equation f(x) = xR(f(x)). Then fn is given by the
oeÆ
ient of xn�1 in 1nRn(x).We use this result in the following way. Letf(x) =XT Cn2(T )xn(T ) = Xn�0�n(C)xn+1where the sum is over all 2-3{trees T , and n(T ) is the total number of nodes in T . Any 2-3{treewith more than one node 
an be uniquely de
omposed into either 2 or 3 prin
ipal subtrees.Therefore f(x) satis�es the fun
tional equationf(x) = x+ xCf(x)2 + xf(x)3Now we 
an use the Lagrange Inversion Formula with R(x) = 1+Cx2+x3 and obtain �n = fn+1as the 
oeÆ
ient of xn in 1n+1(1 + Cx2 + x3)n+1. This proves part 4. Part 5 follows by themultinomial theorem.Parts 4 and 5 of the theorem have alternate proofs. We begin with the series1X0 zkqk(x);the ele
troni
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whi
h may be evaluated via the re
ursion1X0 zkqk(x) = 1 + 1X1 zk(xqk�1 � Cqk�2 � qk�3)= 1 + (zx� Cz2 � z3) 1X0 zkqkto obtain 1X0 zkqk(x) = 1z(t(z)� x)where t(z) = 1z + Cz + z2:Let T (�) denote the image of the 
ir
le [z : jzj = �℄ under the map z ! t(z). Given C, if �is suÆ
iently small, as z goes around the 
ir
le z = �, t(z) goes around the origin on
e in theopposite dire
tion. It follows thatxn = 12�i IT (�) tnt� xdt= � 12�i Ijzj=� t0(z)tn(z)t� x dz= 1Xk=0(� 12�i Ijzj=� t0tnzk+1dz)qk(x):This sum is �nite, and we therefore obtainL[xn℄ = � 12�i Ijzj=� t0tnzdz (21)as L simply pi
ks o� the k = 0 term in the sum. It follows thatL[xn℄ = 12(n+ 1)�i Ijzj=� tn+1dz= 12(n+ 1)�i Ijzj=�(1 + Cz2 + z3)n+1 dzzn+1= 1n+ 1 Xn=3j+2k n+ 1j; k !Ck:This again establishes parts 4 and 5 of the theorem.For the proof of the parts 6 and 7, we 
onvert the path integral de�ning �n in (21) to a realintegral on the real line. We begin with the assumption that C > 3. We denotep(z) = z3 + Cz2 � tz + 1= (z � z1(t))(z � z2(t))(z � z3(t)):the ele
troni
 journal of 
ombinatori
s 8 (2001), #R36 17



Then z1(t) = �C3 � 12 13 (H 131 +H 132 )z2(t) = �C3 � 12 13 (!2H 131 + !H 132 )z3(t) = �C3 � 12 13 (!H 131 + !2H 132 )where H1, H2, and the dis
riminant � of p(z) are given asw(t) = p32�2 13 (H 132 �H 131 )H1 = G+s��27H2 = G�s��27G = 1 + tC3 + 2(C3 )3��27 = 1 + 4C327 + 2Ct3 � C2t227 � 4t327 :Sin
e C > 3 by assumption, the dis
riminant of p has three distin
t real t-roots t1(C), t2(C),and t3(C), satisfying t3(C) < �C < t2(C) < 0and 154 < t1(C) < C + 2:We let z1 be the real bran
h of p(z) = 0, and we observe that t1(C), t2(C), and t3(C) areea
h 2-
y
les of the bran
hes, z1(t), z2(t), and z3(t), where0 < z2(t1) = z3(t1) < 12z1(t1) < �4and �1 < z2(t2) = z3(t2) < 0z1(t2) < �1and z1(t3) = z2(t3) < �1�1 < z3(t3) < 0:Next, note that if T = T (C) denotes the image of the unit 
ir
le jzj = 1 under the mapz ! t(z);the ele
troni
 journal of 
ombinatori
s 8 (2001), #R36 18



then T traverses the origin in the t-plane on
e, 
utting the real axis at �C and C + 2. By theinequalities above, the two roots t2 < t1 therefore lie within this 
ontour, while the third roott3 is outside. See Figure 4.
T = T (C)

3z ( )1t

z ( )2 t2

t-plane

z-plane

-1 1

-C C+2

t3 2 1t t

(3
z= )t2

z2 ( ) =1t

| z | = 1[ ]z :

z (2 t

3z (t

)

)

Figure 4: Paths of integration in the z and the t-planes.Sin
e L[xn℄ = � 12�i Ijzj=� t0tnzdz= � 12�i Ijzj=1 t0tnzdz;the ele
troni
 journal of 
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we 
an 
onvert this z-integral to an integral in the t-plane,�n = 12�i IT ztndt= 12�i Z t1t2 (z2(t)� z3(t))tndt= ! � !22�i2 13 Z t1t2 (H 131 (t)�H 132 (t))tndt= p32�2 13 Z t1t2 (H 131 (t)�H 132 (t))tndt= Z t1t2 !(t)tndtwhi
h is part 6 of the theorem.At C = 3, the bran
hing of the fun
tion z(t) 
hanges a bit, be
ause the dis
riminant� = �(t+ 3)2(15 � 4t)now has a double root at �3. Hen
e, t2(3) = �3 is a 3-
y
le (and t1(3) = 154 remains a 2-
y
le). But this fa
t 
learly does not 
hange the argument above and we simply take the limitas C ! 3+, to obtain = p32�2 13 Z 154�3 (H 131 (t)�H 132 (t))tndtWe use this last expression to obtain the formula of part 7. Sin
e C = 3, we have��27 = (t+ 3)2(15� 4t))27in whi
h 
ase we have H1(t) = (3 + t)[1 + p15� 4t3p3 ℄H2(t) = (3 + t)[1� p15� 4t3p3 ℄Making the 
hange of variable, 3 + t = 274 u dt = 274 duin the integral de�ning L[xn℄ we get�n = p32�2 13 Z 10 (274 u) 13 [(1 +p1� u) 13 � (1�p1� u) 13 ℄(274 u� 3)n 274 du= 3n+4 p316� Z 10 u 13 [(1 +p1� u) 13 � (1�p1� u) 13 ℄(94u� 1)ndu:Next make the 
hange of variable u = 4v(1 � v)du = 4(1 � 2v)dv;the ele
troni
 journal of 
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to obtain �n = 3n+4p32� Z 120 fn(v)[v(1 � v)℄ 13 [(1� v) 13 � v 13 ℄(1� 2v)dv= 3n+4p32� Z 10 fn(v)g(v)dv;where f and g are as in (16).To prove part 8, we begin with the expression,�n = 3n+4 p316� Z 10 u 13 [(1 +p1� u) 13 � (1�p1� u) 13 ℄(94u� 1)ndu:The substitution u = 1� v2du = �2vdvresults in the di�eren
e of two integrals�n = 3n+4 p316� Z 10 (1� v2) 13 [(1 + v) 13 � (1� v) 13 ℄(94(1� v2)� 1)n2vdv:In the se
ond integral, let v = �w; dv = �dw, and 
ombine the result with the �rst integral toget �n = 3n+4p38� Z 1�1(1� v2) 13 [(1 + v) 13 ℄(94(1� v2)� 1)nvdv:Then make the substitution v = 1� u1 + udv = �2(1 + u)2duand note that 1� v = 2u1 + u1 + v = 21 + uto obtain �n = 3n+4p32� Z 10 u 13 1� u(1 + u)4 [( 31 + u)2u� 1℄ndu (22)= (�1)n3n+4p32� Z 10 u 13 1� u(1 + u)2n+4 [1� 7u+ u2℄ndu= (�1)n3n+4p32� Z 10 u 13(1 + u)2n+4 2n+1Xk=0 (�1)k
n;kukduthe ele
troni
 journal of 
ombinatori
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With 0 < a < m+ 1, we haveZ 10 ua�1(1 + u)m+1 du = (�1)m �sin(a�) a� 1m !whi
h readily provides the expression in part 8 for �n. Part 9 of the theorem follows from analternate evaluation of the integral formula (22). We omit the details. �RemarkPart 8 of the above provides new expressions for the moments �n in terms of sums of fra
tionalbinomial 
oeÆ
ients. Thus, if n = 0, we have�0 = 34 " 133!+  433!# = 1:Similarly �1 = (�1)35 " 135!+ 8 435!+ 8 735!+  1035 !# = 0and �2 = 36 " 137!+ 15 437!+ 65 737!+ 65 1037 !+ 15 1337 !+  1637 !# = 3:RemarkIt is evident from the latti
e path interpretation in part 2, and multinomial expansion in part 5of Theorem 2 that as a polynomial in C,deg(�2n(C)) = n; deg(�2n+1(C)) = n� 1: (23)Furthermore the 
oeÆ
ient of the leading term in �n(C) is the Catalan number 12n+1�2n+1n � for�2n (n > 0), and the binomial 
oeÆ
ient �2n+1n+1 � for �2n+1.5 Very Spe
ial Hankel DeterminantsConsider again the sequen
e of polynomials de�ned by the 4{term re
ursionqn = xqn�1 � Cqn�2 � qn�3; (n � 1)with q�2 = q�1 = 0, and q0 = 1, and the linear fun
tional LC de�ned byLC [q0℄ = 1; LC [qn℄ = 0 (n � 1):�n = �n(C) = LC [xn℄
the ele
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as 
hara
terized by Theorem 2. For the 
riti
al value C = 3, we have�0 = 1�1 = 0�2 = 3�3 = 1�4 = 18�5 = 15;and these in turn produ
e a sequen
e of Hankel determinants as de�ned in (7) that start out as�0 = 1�1 = 3�2 = 26�3 = 646�4 = 45885�5 = 930465and 
ontinue to agree (as far as the tables go) with the number of ASMs with verti
al symmetrygiven by the formula (34) for RR(n), and so you are suddenly working in another universe. Sin
ethe 
riti
al value is C = 3, write C = 3 + t with t � 0 and let �n = �n(3 + t). We �nd that�0 = 1�1 = 0�2 = 3 + t�3 = 1�4 = 18 + 12t+ 2t2�5 = 15 + 5t�6 = 138 + 135t + 45t2 + 5t3 (24)�7 = 189 + 126t + 21t2�8 = 1218 + 1540t + 756t2 + 168t3 + 14t4�9 = 2280 + 2268t + 756t2 + 84t3As a 
onsequen
e of parts 2 and 5 of Theorem 2, the �n(C) are polynomials in C with non-negative integral 
oeÆ
ients. It follows from (23) that also as polynomials in t, deg(�2n(3+t)) =n, deg(�2n+1(3 + t)) = n� 1, and the 
oeÆ
ients of �n(3 + t) are non-negative integers.As polynomials in C, the �rst few Hankel determinants �n = det[�i+j ℄ are as shown below.Evidently, deg(�n(C)) = 12n(n+ 1). However the 
oeÆ
ients of �n(C) are not non-negative.�0 = 1the ele
troni
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�1 = C�2 = �1 + C3 (25)�3 = �2� 3C3 + C6�4 = �14C � 6C7 + C10�5 = 18� 120C3 � 30C6 + 15C9 � 10C12 + C15But repla
ing C by 3 + t, we obtain the polynomials �n = �n(3 + t) = det[�i+j(3 + t)℄ as�0 = 1�1 = 3 + t�2 = 26 + 27t+ 9t2 + t3 (26)�3 = 646 + 1377t + 1188t2 + 537t3 + 135t4 + 18t5 + t6�4 = 45885 + 166198t + 264627t2 + 245430t3 + 147420t4 +60102t5 + 16884t6 + 3234t7 + 405t8 + 30t9 + t10It is interesting that these �n(3 + t) do have non-negative 
oeÆ
ients. We wonder whetheror not this is true in general. The 
onstant terms 1; 3; 26; 646; 45885; : : : of �n(3 + t) agreewith the number Vn of ASMs with verti
al symmetry as far as the tables go, as noted earlier.Furthermore, it is reasonable to think that ASMs with verti
al symmetry are only a spe
ial setof obje
ts enumerated by �n(3 + t), the others having some non-zero statisti
 indi
ated by theexponents of t.6 Positivity is InsuÆ
ientGiven the analogy with 3-term re
ursions, it is natural to 
onje
ture that if the linear form Lasso
iated with a 4-term re
ursion is positive then the zeros of the re
ursively de�ned polynomialsare real and interleaved. In this se
tion we in
lude an argument that shows that this 
onje
tureis false.We start with the positive linear form and then generate the badly behaved 4-term re
ur-sion to �t the linear form. We will de�ne the positive linear form by starting with the set oforthogonal polynomials asso
iated with the positive linear form. We 
an a
tually 
hoose anyset of orthogonal polynomials, but for 
ompleteness we 
hoose the Hermite polynomials. There
ursion for the Hermite polynomials Hn = Hn(x) is as follows:H�2 = H�1 = 0Hn = 2xHn�1 � 2(n� 1)Hn�2The positive linear form then satis�es the equationsL[H0℄ = 1L[Hn℄ = 0 (n > 0):the ele
troni
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Now we de�ne the polynomials qn = qn(x) that should satisfy the 4-term re
ursion asq0 = H0 = 1q1 = H1q2 = H2 + 
H1q3 = H3 + (�=�)H2q4 = H4 + �H3 + �H2qn = Hn (n > 4)where �, � and 
 will be determined. Now it is not hard to see that for almost all � and � thereis a 
 that makes the above set of polynomials satisfy a 4-term re
ursion. In fa
t if� 6= 06�2 � �(� + 8) 6= 0then 
 = 4��6�2 � �(� + 8)works. It is also 
lear that L[q0℄ = 1L[qn℄ = 0 (n > 0):That is L is the linear form for the 4-term re
ursion. Finally, for almost any 
omplex number z0we 
an �nd � and � su
h that q4(z0) = 0. It is possible that the � and � found might not havean asso
iated 
. However, if we then perturb � and � then q4 will have a zero near z0. Thus we
an guarantee a 4-term re
ursion for whi
h q4 has 
omplex roots.However, to make things expli
it, the following values work:� = �4=3� = 28=3
 = 28=85q4((1 + i)=2) = 0:7 Certain Ma
donald-type IntegralsWe take the moments �n = �n(C) with C = 3 as de�ned in the form�n = 3n+4p32� Z 10 fn(v)g(v)dvwhere f and g are as given in (16), to obtain an expression for the determinants �n =det[�i+j ℄0�i;j�n as Ma
donald-type integrals. LetIn = (p32� )n+1 3(n+1)(3n+4)(n+ 1)! ZI(n+1) Y0�i<j�n(vi � vj)2 nYi=0 g(ui)dui (27)the ele
troni
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where vi = ui(1� ui)g(ui) = u 13i (1� ui) 23 (1� 2ui)We haveTheorem 3 If �n = det[�i+j ℄0�i;j�n, then �n = In.Proof We put B = 34p32�g(u) = u 13 (1� u) 23 (1� 2u)f(u) = 9u(1 � u)� 1Then 
hoosing n+1 variables u0; u1; : : : ; un; and labeling fi = f(ui) and gi = g(ui) (0 � i � n),we get �n = det[�i+l℄0�i;l�n= Bn+1 ZI(n+1) nYi=0(3fi)i det[(3fk)l℄ nYi=0 gidui= Bn+13n(n+1) ZI(n+1) nYi=0(fi)i det[f lk℄ nYi=0 giduiwhere the integral is over the (n+1)-fold produ
t of the unit interval. Now sum over all (n+1)!permutations of the indi
es to get(n+ 1)!�n = Bn+13n(n+1) ZI(n+1) det[f lk℄2 nYi=0 gidui= Bn+13n(n+1) ZI(n+1) [ Y0�i<j�n(fi � fj)℄2 nYi=0 gidui= Bn+133n(n+1) ZI(n+1) Y0�i<j�n(vi � vj)2 nYi=0 giduiwhere vi = ui(1� ui):The theorem follows immediately. �From what is said in the next several se
tions, it is reasonable to think that the �n givethe number of ASMs with verti
al symmetry. In that 
ase, these integrals should also 
ount theASMs with verti
al symmetry.the ele
troni
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For example, expand Y0�i<j�n(vi � vj)2 =X(i) 
i0;i1;���;invi00 vi11 � � � vinn ;where the 
oeÆ
ients are integers and the sum is over 
ompositions (i) = (i0; i1; : : : ; in) ofn(n+ 1) in whi
h 0 � ik � 2n for every k. Substituting into the integral and noting thatZ 10 u��1(1� u)��1(1� 2u)du = (� � �)� � �(�+ 1)�(�)�(�+ � + 1)and in the 
ase � = ik + 43 , and � = ik + 53 ,(� � �)� � �(�+ 1)�(�)�(�+ � + 1) = 133ik+4 � 2�p3 � �(3ik + 4)�(2ik + 4)�(ik + 2)we arrive at (n+ 1)!�n =X(i) 
i0;i1;���;in nYk=0Mik ;where Mk = 1k + 1 3k + 3k !:In order to evaluate the sum, we may assume that the indi
es form a partition of n(n+ 1),in whi
h 
ase 0 � i0 � i1 � � � � � in and the ik run over the range k � ik � n+ k. This 
hangewill only involve a new 
olle
tion of integer 
oeÆ
ients for whi
h we keep the same notation.Thus if n = 0, there is one term with i0 = 0 
0 = 1and �0 =  30! = 1If n = 1, the original sum over (i0; i1) = (0; 2) 
0;2 = 1= (2; 0) 
2;0 = 1= (1; 1) 
1;1 = �2is repla
ed with a sum over (i0; i1) = (0; 2) 
0;2 = 2= (1; 1) 
1;1 = �2and dividing by 2! we get �1 = det[Mi+j ℄0�i�j�1= M0M2 �M21= 3the ele
troni
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In the 
ase n = 2, the sum is over(i0; i1; i2) = (0; 2; 4) 
(i) = 6= (0; 3; 3) 
(i) = �6= (1; 1; 4) 
(i) = �6= (1; 2; 3) 
(i) = 12= (2; 2; 2) 
(i) = �6so that after dividing by 3!, we get�2 = det[Mi+j ℄0�i�j�2= M0M2M4 �M0M23 �M21M4 + 2M1M2M3 �M32= 26:8 Equivalent forms for �nRe
all that �n(C) = det[�i+j(C)℄0�i;j�nwhere the moments �k are de�ned by (13) and 
hara
terized in a variety of forms by Theorem2. The determinant �n(3) itself 
an be expressed in a number of di�erent forms as the followingtheorem shows.Theorem 4 �n(3) = det[ai+j ℄0�i;j�n, where ak has any of the forms1. ak = 1k+1�3k+3k �,2. ak = bk(x) =Pkj=0 j+1k+1�3k�j+1k�j �xj for any x. In parti
ular det[bi+j(x)℄0�i;j�n evaluates to�n(3) independently of x.3. ak = 1k+1�3k+1k �,4. ak = �3k+2k � .Proof We will �rst deal with the 
ase whereak = 1k + 1 3k + 3k !:We will use the following expression for �k from Theorem 2,�k = p32� 3k+4 Z 10 fk(u)g(u)duwhere f(u) = 9u(1 � u)� 1g(u) = u 13 (1� u) 23 (1� 2u)the ele
troni
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as in (16). This form for the �k allows us to make the following 
omputation:kXi=0 ki!3k�i�i = p32� 3k+4 Z 10 (f(u) + 1)kg(u)du= p32� 33k+4 Z 10 (1� 2u)uk+ 13 (1� u)k+ 23 g(u)du= p32� 33k+4  �(k + 43)�(k + 53)�(2k + 3) � 2�(k + 73)�(k + 43)�(2k + 4) != p32� 33k+4(2k + 3� 2(k + 43))�(k + 43)�(k + 53)�(2k + 4)= p32� 33k+3 �(3k + 3)2��(2k + 4)�(k + 1)33k+3� 12= 1k + 1 3k + 3k != akNow row and 
olumn manipulations show that the determinant ofai+j = i+jXk=0 i+ jk !3i+j�k�kis equal to the determinant of �i+j . This proves part 1.We now prove part 2. The �rst 5 polynomials bk(x) areb0(x) = 1b1(x) = x+ 2b2(x) = x2 + 4x+ 7b3(x) = x3 + 6x2 + 18x+ 30b4(x) = x4 + 8x3 + 33x2 + 88x+ 143The proof of 2 is related to the enumeration of 2{line arrays of positive integerse1 e2 � � � ekf1 f2 � � � fksu
h that 1 = f1 = e1 � f2 � e2 � � � � � fk � ek � j and ei � i, (1 � i � k). Let hk;j be thenumber of su
h arrays. Carlitz proved [2℄ thathk;k�j+1 = jk 3k � j � 1k � j !; (1 � j � k);and 1k 3kk � 1! = kXj=1hk;k�j+1 (28)the ele
troni
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We de�ne the polynomials bk(x) in terms of the numbers hk;j of Carlitz asbk(x) = xk+1 k+1Xj=1 hk+1;jx�j:It 
an be proved that the bk(x) satisfy the re
ursion(1� x)2bk(x)� x3bk�1(x) = 1k + 1 3k + 1k !� 2k + 1 3kk !x (29)for k � 1 with b0(x) = 1 by 
omparing 
oeÆ
ients and verifying the resulting binomial identity.In parti
ular there is a representation of the form(1� x)2bk(x)� x3bk�1(x) = �k � �kxfor two numeri
al sequen
es f�kg and f�kg de�ned in (29). Now perform elementary rowoperations on the matrix Bn = [bi+j(x)℄ as follows: multiply the last row by (1 � x)2, andsubtra
t from it x3 times the (n� 1)-st row. Then multiply the (n� 1)-st row by (1� x)2, andsubtra
t from it x3 times the (n � 2)-nd row, and so on, 
ontinuing down to n = 1. Only the�rst row stays b0(x); b1(x); : : : ; bn�1(x). All other entries of the transformed matrix are now ofthe form �r��rx, i.e. linear in x. Call this new matrix Cn. The operations on Bn multiply thedeterminant by (1� x)2n and so (1� x)2n det(Bn) = det(Cn): (30)But det(Cn) is a polynomial of degree n + n = 2n from �rst prin
iples. Sin
e det(Bn) is apolynomial in x, the left hand side of (30) is a polynomial of degree at least 2n, and thereforeexa
tly 2n. This for
es det(Bn) to be a 
onstant independent of x. By Carlitz's summation in(28), bk(1) = 1k + 1 3k + 3k !and therefore by part 1 of the Theorem, �n = det(Bn). Spe
ializing bk(x) at x = 0 givesbk(0) = 1k + 1 3k + 1k !whi
h proves part 3, while part 4 is a 
onsequen
e of the binomial identitybk(3) =  3k + 2k !: �RemarkAs we have seen in (25) and (26) of Se
tion 5 for the �rst few values of n, the polynomials �n(t+3)appear to have non-negative 
oeÆ
ients, the 
onstant term agreeing with the number of ASMsthe ele
troni
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with verti
al symmetry. Consider the matrix entries in the equivalent forms for �n given inTheorem 4. These 
an be interpreted as 
orresponding to the t = 0 
ase of the determinantfor any of the alternate formulations for ak in Theorem 4. For example �n = det[ai+j ℄ withak = 13k+1�3k+1k �, and it is reasonable to assume that ak is the 
onstant term in some polynomialak(t), for whi
h det[ai+j(t)℄ is identi
al to the polynomial �n(3 + t) obtained through the�k(3 + t)'s.Theorem 5 �n(3) = RR(n).Proof For this proof we will use the representation of �n(3) as the determinant of the matrixAn = " 3(i + j) + 2i+ j !#0�i;j�nwhi
h is the interpretation of �n(3) given in part 4 of Theorem 4. In a private 
orresponden
e,we have learned that Ira Gessel and Guo
e Xin have independently dis
overed a di�erent ap-proa
h to 
al
ulating this determinant. The approa
h we take is a variation of �nding the LDUde
omposition of the matrix An. More spe
i�
ally we �nd a lower triangular matrix,266664 w0;0w1;0 w1;1: : :wn;0 wn;1 : : : wn;n 377775so that 266664 w0;0w1;0 w1;1: : :wn;0 wn;1 : : : wn;n 377775266664 a0;0 : : : a0;na1;0 : : : a1;n: : :an;0 : : : an;n 377775is an upper triangular matrix where ai;j =  3(i + j) + 2i+ j !:We normalize the w-matrix so that wi;i = 1 for all i � 0. We then pro
eed to guess the formulafor the w-matrix. This is given below:wi;j =Xk " (�1)i+j+k(3k)!(2k + 1)!k!  2ii+ j + k!(3i+ 2)!(j + k)!(2i + 2j + 2k + 1)!(3j + 3k + 2)!i!(4i + 1)! # :We plan on providing more details on how this guess was obtained elsewhere. It 
an easily be
he
ked to be a

urate with matri
es with sizes up to 30� 30.We then pro
eeded to use automated tools to validate this guess. For notational 
onvenien
ewe rename the running indi
es by i and j, and denote the row and the 
olumn indi
es of thematrix by n and m respe
tively. Then we need to demonstrate that the following double sumthe ele
troni
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nXi=0wm;iai;n =nXi=0 n�iXj=0 � (�1)m+i+j(3j)!(2j + 1)!j! � 2mm+ i+ j� (3m+ 2)!(i+ j)!(2m+ 2i+ 2j + 1)!(3i+ 3j + 2)!m!(4m+ 1)! �3(i+ n) + 2i+ n ��is zero if m < n and is �6n+42n+2�2�4n+32n+2�if m = n. These types of identities 
an be proved automati
ally using a tool due to Wilf andZeilberger: see for example, Kurt Wegs
haider's thesis [12℄ for a 
omprehensive treatment.We rewrite the double sum, and equivalently show that for m < n (below the diagonal)nXi=0 n�iXj=0 (�1)i+j(3j)!(i + j)!(2 + 3i+ 3m)!(1 + 2i+ 2j + 2n)!j!(1 + 2j)!(2 + 3i+ 3j)!(i +m)!(2 + 2i+ 2m)!(�i� j + n)!(i+ j + n)! = 0 (31)and for n = m (on the diagonal)nXi=0 n�iXj=0 (�1)n+i+j(3j)!(3n+ 3i+ 2)!(i+ j)!(2n+ 2i+ 2j + 1)!(3n� 1)!(4n+ 3)!j!(2j + 1)!(n+ i+ j)!(n� i� j)!(n+ i)!(2n+ 2i+ 2)!(3j + 3i+ 2)!(n� 1)!(2n+ 1)(6n+ 1)! = 1:(32)To in
orporate the 
ondition m < n, we multiply the summand in (31) by �n�1m � and setF [m;n; i; j℄ = (�1)i+j(3j)!(i + j)!(2 + 3i+ 3m)!(1 + 2i+ 2j + 2n)!�n�1m �j!(1 + 2j)!(2 + 3i+ 3j)!(i +m)!(2 + 2i+ 2m)!(�i� j + n)!(i+ j + n)!The following 
erti�
ate for F proving (31) was 
omputed by Akalu Tefera:12(�2 + n)(�1 + n)(1 + 4n)(�7 + 6n)(�5 + 6n)F [�2 +m;�2 + n;�1 + i; j℄ +12(m� n)(�1 + n)(�1 + 4n)(�4� 9n+ 18n2)F [�2 +m;�1 + n;�1 + i; j℄ +3(�1 +m� n)(m� n)(1 + 3n)(2 + 3n)(�3 + 4n)F [�2 +m;n;�1 + i; j℄ +4(�1 +m)(�1 + n)(�3 + 4n)(�1 + 4n)(1 + 4n)F [�1 +m;�1 + n;�1 + i; j℄ =�[i;�12(�2 + n)(�1 + n)(1 + 4n)(�7 + 6n)(�5 + 6n)F [�2 +m;�2 + n;�1 + i; j℄ �12(m� n)(�1 + n)(�1 + 4n)(�4� 9n+ 18n2)F [�2 +m;�1 + n;�1 + i; j℄�3(�1 +m� n)(m� n)(1 + 3n)(2 + 3n)(�3 + 4n)F [�2 +m;n;�1 + i; j℄℄ + �[j; 0℄The 
erti�
ate for the sum (32) with summand F [n; i; j℄ given by(�1)n+i+j(3j)!(3n+ 3i+ 2)!(i+ j)!(2n+ 2i+ 2j + 1)!(3n� 1)!(4n+ 3)!j!(2j + 1)!(n+ i+ j)!(n� i� j)!(n+ i)!(2n+ 2i+ 2)!(3j + 3i+ 2)!(n� 1)!(2n+ 1)(6n+ 1)!the ele
troni
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turned out to be mu
h more 
ompli
ated. We ran Kurt Wegs
haider's Mathemati
a programMultiSum with the 
ommand FindRe
urren
e[summand, n, i, j, 1℄. The resulting 
erti�-
ate proving (32) 
an be a

essed online1. It is safe to bet that this \one-line proof" of (32) isa re
ord-setter as far as long 
erti�
ates go, as the 
erti�
ate �le is over 1.2MB, and 
ontainsabout 20,000 lines. �9 ASM, verti
al symmetry, latti
e path modelsAlternating Sign Matri
esAn n� n matrix with entries from f�1; 0; 1g is an Alternating Sign Matrix (ASM) if1. every row and 
olumn has sum 1,2. in every row and 
olumn, the non-zero entries start with 1 and alternate in sign.Be
ause of the se
ond 
ondition, the partial sums of elements of every row and 
olumn of anASM must be 1 or 0. Every permutation matrix is an ASM, and for n = 1; 2 these are the onlyASMs. For n = 3, there are 7 ASMs, the six 3� 3 permutation matri
es and the matrix264 0 1 01 �1 10 1 0 375The �rst few values of the number of ASMs is1; 2; 7; 42; 429; 7436; : : :Numerous 
onje
tures 
on
erning ASMs were put forward by Mills, Robbins, and Rumsey in[7℄. These are further des
ribed in [11℄. A general formula for the number of n� n ASMs was
onje
tured by Mills{Robbins{Rumsey to ben�1Yk=0 (3k + 1)!(n+ k)! (33)and proved by Zeilberger in 1996 [13℄. Shorter proofs were subsequently given by Kuperberg [5℄and a re�nement by Zeilberger [14℄. There is a substantial amount of 
ombinatori
s 
on
erningASMs that is still not fully understood. Proofs for the number of ASMs having symmetries (e.g.invariant under re
e
tion about a verti
al axis, invariant under a 90 degree rotation, et
.) forwhi
h there are 
onje
tured formulas have only re
ently been announ
ed by Greg Kuperberg[6℄. For example, the number of (2n+ 3)� (2n+ 3) ASMs2 symmetri
 about a verti
al axis isRR(n) = nYk=0 �6k+42k+2�2�4k+32k+2� (34)whi
h starts out as 1; 3; 26; 646; 45885 for n = 0; 1; 2; 3; 4. A full a

ount of the history of ASMs
an be found in [1℄.1http://www.
s.u
sb.edu/�omer/diagonal-
ertifi
ate.txt2For te
hni
al reasons we start with the 3� 3 
ase in this paper.the ele
troni
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Latti
e PathsIn this se
tion we 
onsider latti
e paths in the plane with unit steps in the dire
tion of thehorizontal and verti
al axes. The elementary steps are(a; b) ! (a+ 1; b) (horizontal step);(a; b) ! (a; b+ 1) (verti
al step): (35)Thus a t-step path � is the union of the 
losed line segments determined by a sequen
e of distin
tlatti
e points (s0; s1; : : : ; st) su
h that if si = (xi; yi), then xi+1 � xi and yi+1 � yi are in f0; 1g.The path � is said to be from s0 to st, denoted by � : s0 ! st. Given latti
e points A = (a1; a2)and B = (b1; b2), there is an en
oding of a path � : A ! B as a word over f1; 2g 
onsisting ofb1 � a1 o

urren
es of 1 (horizontal steps) and b2 � a2 o

urren
es of 2 (verti
al steps). Thusthe number of paths from A to B is the binomial 
oeÆ
ient b1 � a1 + b2 � a2b1 � a1 !Note that this number is zero unless B is weakly to the North-East of A. For sets of pointsAi = (ai1; ai2) and Bi = (bi1; bi2), (1 � i � n), we single out two families of n-tuples of paths� = (�1; : : : ; �n) with �i : Ai ! Bi. � is 
alled1. Non-interse
ting if no two paths �i; �j have a 
ommon point,2. Os
ulating if the paths are allowed to meet at latti
e points only, but without 
rossing.Figure 7 shows a 4-tuple of non-interse
ting paths, and the rightmost �gure in Figure 5 showsa 5-tuple of os
ulating paths where the os
ulation points are indi
ated by 
ir
les. In all of theseexamples, the path from A0 to B0 is a degenerate path 
onsisting of a single latti
e point withno horizontal or verti
al steps.There is a standard tool for representing the number of non-interse
ting families of pathsas a determinant via involutions, assuming 
ertain restri
tions on the relative positions of thepoints Ai and Bi. For a permutation � of the indi
es i, let �� denote n-tuples of paths �� =(��1 ; : : : ; ��n) with ��i : Ai ! B�(i) and set sign(��) = sign(�). ThenX� X�� sign(��) = det " ai1 � bj1 + ai2 � bj2ai1 � bj1 !#1�i;j�n (36)For any involution on the unrestri
ted set of n-tuples of paths �� whi
h is sign-reversing outsideits �xed point set F , the left-hand side of (36) 
an be written asX��2F sign(��) (37)A sign-reversing involution 
an be de�ned by lo
ating a 
anoni
al pair of interse
ting paths (su
has the smallest labeled interse
tion of the smallest pair in lexi
ographi
 order), and swit
hingthe ele
troni
 journal of 
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the portions of the paths after the interse
tion point. If the position of the points Ai and Biguarantee that any n-tuple �� 
orresponding to a non-identity � is interse
ting, su
h as whena11 � a21 � � � � � an1 and a12 � a22 � � � � � an2 ;b11 � b21 � � � � � bn1 and b12 � b22 � � � � � bn2 ;then the determinant in (36) 
ounts the number of n tuples of non-interse
ting paths � =(�1; : : : ; �n) with �i : Ai ! Bi.ASM and Os
ulating PathsThe path interpretation of ASMs in terms of os
ulating paths is dire
tly based on the 
ornersum matrix introdu
ed by Robbins and Rumsey in [10℄: Given an n � n matrix A, the 
ornersum matrix A of A is de�ned by Ai;j =XAk;lwhere the sum is over all pairs of integers (k; l) with k � i and l � j (the interpretation heredi�ers from [10℄ only in the ordering of the row and 
olumn indi
es of A). Ak;l is regarded as zeroif k or l is out of the range f1; 2; : : : ; ng. The di�eren
es Ai;j �Ai+1;j and Ai;j �Ai;j+1 are thepartial sums of the rows and 
olumns of A. Using this observation the following 
hara
terizationof ASMs in terms of 
orner sum matri
es 
an be provedLemma 1 ([10℄, lemma 1) An n� n matrix A is an ASM i� A satis�es1. A1;i = Ai;1 = n+ 1� i for i = 1; 2; : : : ; n,2. Ai;j �Ai;j+1 and Ai;j �Ai+1;j are in f0; 1g for 1 � i; j � n.Therefore the 
orner-sum matrix A of an ASM A has �rst row from right to left, and �rst 
olumnfrom bottom up the entries 1; 2; : : : ; n. The other entries Ai;j are from f0; 1; : : : ; ng so that theentry above and to the left is either equal to Ai;j or 1 +Ai;j.We think of A as 
onsisting of n2 
ells in the (n+1)� (n+1) grid with label of the 
ell (i; j)equal to the entry Ai;j. Tra
ing the south and east boundaries of the 
ells in A 
orrespondingto ea
h �xed i 2 f1; 2; : : : ; ng produ
es n latti
e paths Sin
e the steps of the paths in the �rstrow (a verti
al step) and in the �rst 
olumn (a horizontal step) are predetermined by 
ondition1 of lemma 1, these 
an be viewed as paths in the n � n grid. The rows start with the pointsA0; A1; : : : ; An�1 from top to bottom, and the 
olumns with the points B0; B1; : : : ; Bn�1 Let� = (�0; �1; : : : ; �n�1) where �i : Ai ! Bi is the latti
e path obtained from the boundary of theentries n� i in A. Then the path from A0 to B0 is a single point, and the family � is os
ulating.Next, we 
onsider ASM with verti
al symmetry. The path interpretation that a

ompaniesRobbins and Rumsey's 
orner-sum matrix 
an again be interpreted as an os
ulating path model.De�nition 1 On denotes the number of (n+ 1)-tuples of os
ulating paths � = (�0; �1; : : : ; �n)where Ai = (0;�2i); Bi = (i; 0); (38)and �i : Ai ! Bi for i = 0; 1; : : : ; n.the ele
troni
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An example of su
h a 5-tuple � family appears on the right hand side of Figure 5 for n = 4.Lemma 2 On is the number of (2n+ 3)� (2n+ 3) ASM with verti
al symmetry.Proof There is a simple one-to-one 
orresponden
e. Label the 
olumns of A as the n + 1left 
olumns L1; : : : ; Ln+1, the 
entral 
olumn 
 and the n + 1 
olumns to the right of 
 asR1; : : : ; Rn+1. The proof of the lemma makes use of the 
orner-sum matrix interpretation forthe general ASM, applied to the (2n+3)�(n+2) matrix that 
onsists of 
 andR1; : : : ; Rn+1. Firstof all note that the entries in 
 must be 1;�1; 1;�1; : : : ;�1; 1 by verti
al symmetry. Furthermorethe row sums in R1; : : : ; Rn+1 must alternately be 0 or 1 from top to bottom. These 
onditionsfor
e that the entries in 
 and R1; : : : ; Rn+1 in A satisfy1. In 
, the entries of A from bottom up are 1; 1; 2; 2; : : : ; n+ 1; n+ 1; n+ 2.2. In R1, the entries of A from bottom up are 0; 1; 1; 2; 2; : : : ; n+ 1; n+ 1.3. In the �rst two rows inR1; R2; : : : ; Rn+1 the entries of A from right to left are 1; 2; 3; : : : ; n+1.4. In the last row in R1; R2; : : : ; Rn+1 the entries of A are 0.These properties imply that the paths that are obtained from the boundaries of the 
ells labeledf1; 2; : : : ; n + 1g from A as in the 
ase of the general ASM are now predetermined in the �rsttwo rows, the last row, and the 
olumns 
 and R1. This leaves a 2n� n grid de�ning the pointsAi and Bi as in Figure 5. The boundary of the 
ells labeled n+ 1� i de�nes a path from Ai toBi as given in (38). The path �0 : A0 ! B0 is a degenerate path with one point, and the family� = (�0; �1; : : : ; �n) is os
ulating. The reverse of this map is straightforward. �
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Figure 5: The 
olumns 
, R1; R2; R3; R4; R5 of an 11 � 11 verti
ally symmetri
 ASM,the 
orner sum matrix, and the 
orresponding 5-tuple of os
ulating paths.the ele
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This 
onstru
tion is displayed in Figure 5 for the 11� 11 verti
ally symmetri
 ASM on the leftof the �gure (the rightmost 6 
olumns are shown). The resulting 5-tuple of os
ulating paths areas given on the right hand side.10 Path Interpretations & Hankel DeterminantsOur path model for Hankel determinants related to ASM with verti
al symmetry is as follows.Consider the set of points A0; A1; : : : ; An and B0; B1; : : : ; Bn whereAi = (�i;�2i); and Bi = (i; 2i + 2); (0 � i � n)as displayed in Figure 6 for n = 3. The points Ai are on the line y = 2x in the third quadrant,
B
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A
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Figure 6: Path model for the (n+ 1)� (n+ 1) Hankel matrix (39) for r = 2 and n = 3.and the points Bi are on the line y = 2x + 2 in the �rst quadrant. The number of paths� : Ai ! Bj is given by  3(i+ j) + 2i+ j !whi
h is the (i; j)-th entry of the Hankel matrix [ai+j ℄0�i;j�n with determinant �n(3) we 
onsid-ered before with ak = �3k+2k � (this is the 
hara
terization in part 4 of Theorem 4). In the generalthe ele
troni
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ase, instead of the lines y = 2x and y = 2x+2, we 
onsider the lines y = rx and y = rx+ r forr � 1 with Ai = (�i;�ri); and Bi = (i; ri + r); (0 � i � n):In this way we obtain a path model for the (n+ 1)� (n+ 1) Hankel matrix" (r + 1)(i + j) + ri+ j !# : (39)Our results hold for general r in this setup, where the ASM with verti
al symmetry 
orrespondsto the 
ase r = 2.Theorem 6 For any integer r � 1, det h�(r+1)(i+j)+ri+j �i0�i;j�n is the number of non-interse
tingtuples of paths � = (�0; �1; : : : ; �n) with �i : Ai ! Ci whereAi = (�i;�ri); and Ci = (i;�i); (0 � i � n)as shown in Figure 7 for r = 2 and n = 3.
A1

A
3

A
0

A2

y=2x

2C

1C

C0

C3

y= -x

Figure 7: Tuples of non-interse
ting paths (Hankel paths) 
ounted by the Hankeldeterminant det h�(r+1)(i+j)+ri+j �i for r = 2 and n = 3.Proof First we work with tuples of paths from points Ai to Bj in Figure 6, and subsequentlyidentify the tuples enumerated by the determinant as non-interse
ting paths from points Ai to Ciin Figure 7. Note that the usual 
an
ellation of interse
ting n-tuples via sign reversing involutionsfails for the pla
ement of points Figure 6, sin
e it is possible to have non-identity permutations� for whi
h �� is non-interse
ting. However the interpretation (37) for the determinant stillholds. We show that all tuples of paths 
an be paired up to 
an
el out ex
ept for those � =the ele
troni
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(�0; �1; : : : ; �n) 
orresponding to the identity permutation for whi
h �i stays stri
tly to theNorth-West of �j whenever i < j. Assuming for a moment that we 
an do this, it is easy to seethat we 
an identify su
h a family with paths from Ai to Ci instead of the Bi as 
laimed in theTheorem, sin
e the portion of �i from Ci to Bi must 
onsist of verti
al steps only for every i.We pro
eed in two steps. First we pair up tuples �� in whi
h some path �i : Ai ! B�(i)starts out by r (or more) verti
al steps (and therefore interse
ts the line y = rx+ r at x = �i).Consider any bije
tion � for the trivial binomial identity (r + 1)kk ! = (r + 1) (r + 1)k � 1k � 1 ! :Lo
ate the largest index i in �� for whi
h �i passes through (�i;�ri + r), i.e. starts with rverti
al steps. Suppose �(i) = k and �(i�1) = l so that �i : (�i;�ri+r)! Bk, �j : Ai�1 ! Bl.Let N = i+ k and M = i+ l. The number of su
h �i; �i�1 pairs is (r + 1)NN ! (r + 1)M � 1M � 1 ! : (40)Swit
hing the endpoints, the number of pairs �i : (�i;�ri+ r)! Bl, �j : Ai�1 ! Bk is (r + 1)MM ! (r + 1)N � 1N � 1 ! ; (41)and these latter pairs of paths have signs opposite to those of the former. Now � 
an be usedto 
onstru
t a bije
tion between these two sets of opposite signed pairs of paths by setting up a
orresponden
e for (r + 1)NN ! (r + 1)M � 1M � 1 ! = (r + 1) (r + 1)N � 1N � 1 ! (r + 1)M � 1M � 1 !and  (r + 1)MM ! (r + 1)N � 1N � 1 ! = (r + 1) (r + 1)M � 1M � 1 ! (r + 1)N � 1N � 1 !and 
omposing the two bije
tions. Let F be the �xed point of this sign-reversing involution.We 
an now 
onsider only �� 2 F . These are tuples �� in whi
h no �i starts with r verti
alsteps. Now by the pigeonhole prin
iple, either �i stays North-West of �j in su
h a �� for all pairsi < j, or �� is an interse
ting tuple of paths. Su
h interse
ting ones in F 
an be 
an
eled outby a standard sign-reversing involution, leaving the non-interse
ting ones (su
h as the examplein Figure 7) 
orresponding to the identity permutation as the tuples of paths enumerated by thedeterminant. �De�nition 2 Pn denotes the number of (n+1)-tuples of non-interse
ting paths � = (�0; �1; : : : ; �n)with �i : Ai ! Ci whereAi = (�i;�2i); and Ci = (i;�i); (0 � i � n);the ele
troni
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An example 4{tuple 
ounted by Pn is shown in Figure 7 for r = 2 and n = 3.As a 
orollary of Theorem 6 with r = 2, we have thatPn = det " 3(i+ j) + 2i+ j !#0�i;j�nand therefore the sequen
e Pn starts out as 1; 3; 26; 646; 45885 for n = 0; 1; 2; 3; 4.RemarkThe values of the Hankel determinants in Theorem 6 for small values of n and r are given inFigure 8. The se
ond row is given by RR(n) for n = 0; 1; 2; 3; 4. For the �rst row, it is easy tornn 0 1 2 3 41 1 1 1 1 12 1 3 26 646 458853 1 6 206 40083 440423014 1 10 950 848465 70963494765 1 15 3200 9604260 403895099151Figure 8: Values of det h�(r+1)(i+j)+ri+j �i0�i;j�n for small values of r and n.see from the path interpretation thatdet " 2(i + j) + 1i+ j !# = 1for every n sin
e there is only one tuple of paths � enumerated by the determinant, i.e. one inwhi
h ea
h � : Ai ! Ci 
onsists of horizontal steps only. Sin
edet " 12(i+ j) + 1 2(i + j) + 1i+ j !# = det " 2(i+ j) + 1i+ j !#we obtain a 
ombinatorial proof of the well-known result that the Catalan-Hankel determinanton the right evaluates to unity [8℄.RemarkPart of the bije
tion 
onstru
ted for the proof of Theorem 6 was built upon � proving 
NN ! = 
 �  
N � 1N � 1 ! (42)Of 
ourse the equality of (40) and (41) follows from (42) trivially and does not require a bije
tion.In parti
ular 
onstru
ting a \ni
e" bije
tion � involves dividing 
ombinatorially, whi
h is usuallyproblemati
. This is best illustrated by the fa
t that the q-binomial identity(1 + q + � � � + qN�1) " 
NN # = (1 + q + � � �+ qN�1)(1 + qN + � � � + q(
�1)N ) " 
N � 1N � 1 #the ele
troni
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has a straightforward bije
tive proof, sin
e both sides q-
ount the number of strings of type1(
�1)N2N�131 by inversions, whereas" 
NN # = (1 + qN + � � �+ q(
�1)N ) " 
N � 1N � 1 #does not.RemarkA related Hankel determinant whi
h 
an easily be evaluated via a path model is det[ai+j ℄0�i;j�nwhere ak = �2kk �.Theorem 7 det " 2(i + j)i+ j !#0�i;j�n = 2n : (43)Proof Consider the set of points A0; A1; : : : ; An and B0; B1; : : : ; Bn whereAi = (�i;�i); and Bi = (i; i); (0 � i � n)so that A0 = B0 = (0; 0). Then ai+j is the number of paths from Ai to Bj, and the determinant
an be interpreted as in (36). We show that det[ai+j℄0�i;j�n enumerates all (n + 1)-tuples ofpaths � = (�0; �1; : : : ; �n) 
orresponding to the identity permutation in whi
h ea
h pi is a right-angle between Ai and Bi, i.e. ea
h �i 
onsists of horizontal steps followed by verti
al steps, orverti
al steps followed by horizontal steps as shown in Figure 9 for n = 4. Sin
e there are 2n
0A
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B

B

B

2A

A

B4

2

A

3

4

B

0

1

3

Figure 9: Path model for the Hankel determinant det[�2(i+j)i+j �℄0�i;j�4.su
h (n+ 1)-tuples of paths, the Theorem will follow. The key observation is that for any twodistin
t points Bk and Bl, the number of pairs of paths, one from (�i;�j) to Bk and one from(�j;�i) to Bl is  i+ j + 2ki+ k ! i+ j + 2lj + l !the ele
troni
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and this 
an be written as  i+ j + 2kj + k ! i+ j + 2li+ l ! ;whi
h is the number of pairs of paths, one from (�i;�j) to Bl and one from (�j;�i) to Bk.Note that in this 
ase there is a trivial bije
tion between these two sets of pairs of paths thatwe 
an use as the part of an involution. We again pro
eed in two steps. First we pair up tuples�� in whi
h some pair of paths �r : Ar ! Bk and �s : As ! Bl pass through symmetri
allypla
ed points (�i;�j) and (�j;�i), respe
tively. By the above observation, this pairing is signreversing. Let F be the �xed point of this involution. On F , we pair up interse
ting pairs ofpaths in the usual way. The �nal �xed point set enumerated by the determinant 
onsist of all(n+ 1)-tuples of paths � = (�0; �1; : : : ; �n) su
h that1. � is non-interse
ting,2. There are no two paths in � su
h that one passes through (�i;�j), and the other through(�j;�i) for any i; j (�n � i; j � n).Now noti
e that in any su
h tuple �, we must have �1 : A1 ! B1. Otherwise �1 has to gothrough either (2;�1), or (�1; 2), and in either 
ase it is then impossible for any other path torea
h B1. Now �2 : A2 ! B2, for otherwise �2 has to pass through (3;�2), or (�2; 3), making itimpossible for any other path to rea
h B2. It follows that �i : Ai ! Bi and ea
h �i other than�0 
an be either type of a right-angle. This proves Theorem 7. �RemarkThere is a straightforward one-to-one 
orresponden
e between the Hankel paths 
ounted byPn (as de�ned in De�nition 2) and 
olumn-stri
t tableaux of stair
ase shape (n + 1; n; : : : ; 1)in whi
h the entries in row i are bounded by 2(n + 1) � i. For example, the 4-tuple of non-interse
ting paths in Figure 7 
orresponds to the 
olumn stri
t tableau in Figure 10 where thebounds for the row entries are 7; 6; 5; 4 from top to bottom. On the other hand, there is a
4

32 6

1 1 4 6

3 4Figure 10: Column-stri
t tableau 
orresponding to the 4-tuple of paths in Figure 7.one-to -one 
orresponden
e between the os
ulating paths 
orresponding to ASM with verti
alsymmetry 
ounted by On (as de�ned in De�nition 1) and stri
t Gelfand patterns [11℄ with �rstrow 1; 3; : : : ; 2n� 1. For example, the 5-tuple of os
ulating paths in Figure 5 
orresponds to thestri
t Gelfand pattern in Figure 11 with �rst row 1; 3; 5; 7; 9.the ele
troni
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42 7 8
52 7

3 6

1 3 5 7 9

3Figure 11: Stri
t Gelfand pattern 
orresponding to the 5-tuple of paths in Figure 5.RemarkThe two types of paths in question, the Hankel paths 
ounted by Pn�1 (as de�ned in De�nition2) and the os
ulating paths 
orresponding to ASM with verti
al symmetry 
ounted by On�1 (asde�ned in De�nition 1) 
an be shown to be in bije
tion with the families F1(n) and F2(n) oftableaux de�ned below. First, 
all a tableau (or a shifted tableau) with n rows good if1. the entries are bounded by n,2. the �rst 
ell in row i is labeled i,3. entries are weakly-in
reasing down the anti-diagonals.Let � = (2n � 1; :::; 3; 1). Then F1(n) is the family of 
olumn{stri
t good tableaux of shape �,and F2(n) is the family of shifted good tableaux of shape �. Examples of these are given inFigures 12 and Figure 13 for n = 3.11111 11111 11111 11112 11112 11112 11113 11113 11113 11122 11122 11122 11123222 223 233 222 223 233 222 223 233 222 223 233 2223 3 3 3 3 3 3 3 3 3 3 3 311123 11123 11133 11133 11222 11222 11223 11223 11233 11233 12222 12223 12233223 233 223 233 223 233 223 233 223 233 233 233 2333 3 3 3 3 3 3 3 3 3 3 3 3Figure 12: Family F1(3) of 
olumn-stri
t good tableaux of shape (5; 3; 1) 
ounted byP2.11111 11111 11111 11112 11112 11112 11113 11113 11122 11122 11122 11123 11123222 223 233 222 223 233 223 233 222 223 233 223 2333 3 3 3 3 3 3 3 3 3 3 3 311133 11222 11222 11222 11223 11223 11233 12222 12222 12222 12223 12223 12233233 222 223 233 223 233 233 222 223 233 223 233 2333 3 3 3 3 3 3 3 3 3 3 3 3Figure 13: Family F2(3) of shifted good tableaux of shape (5; 3; 1) 
ounted by O2.
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11 Higher Order �nWe note again that the Hankel determinants det[ai+j ℄0�i;j�n withak =  2k + 1k !;all have the value 1. It appears that the values det[ai+j ℄0�i;j�n withak =  3k + 2k !;are the same as the 
onje
tured numbers for ASMs with verti
al symmetry given by (34).So in two 
ases, the values of an in�nite 
lass of determinants are given by smooth arithmeti
sequen
es; i.e., the prime fa
tors of the determinants 
ome from ratios of produ
ts of binomial
oeÆ
ients and are therefore small. This phenomenon seems to be quite extensive.We now return to the 
riti
al value C = 6 of se
tion 3, the value whi
h spe
i�es the polyno-mial sequen
e qn = xqn�1 � 6qn�2 + 4qn�3 � qn�4with initial polynomials q�3 = q�2 = q�1 = 0, q0 = 1 As in se
tion 2, we may de�ne a linearfun
tional L on the spa
e of polynomials byL[1℄ = 1L[qn℄ = 0 (n � 1):This fun
tional has moments �n = L[xn℄ the �rst seven values of whi
h are�0 = 1�1 = 0�2 = 6�3 = �4�4 = 73�5 = �120�6 = 1164:The asso
iated Hankel determinants �n = det[�i+j ℄0�i;j�n begin�0 = 1�1 = 6�2 = 206�3 = 40083:the ele
troni
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It 
an readily be shown that these parti
ular �n 
an also be realized in other forms, and wemention �n = det[bi+j ℄0�i;j�n, where bk =  4k + 3k !:In the tables, the largest prime fa
tor of these determinants is generally quite large, andsome further numeri
al data suggests that the Hankel determinants det[hi+j ℄0�i;j�n withhk =  ak + bk ! (a � 4)are never smooth.12 EpilogueThis paper began with the 
onsideration of a 
ertain transform of polynomials, whi
h we have
alled the T -transform. From this transform we began our study of families of polynomialssatisfying a Riemann hypothesis. These families o

ur as the terms generated by re
ursions, andex
ept in the few 
ases where the re
ursions are 3-term, the empiri
al eviden
e of the existen
eof a Riemann hypothesis and of a familiar interla
ing phenomenon 
annot be studied within theframework of an existing theory. This led us to the 
onsideration of renormalized re
ursions, outof whi
h emerged several new problems, as well as a totally unexpe
ted 
onne
tion to various
ombinatorial obje
ts, whi
h in
lude Alternating Sign Matri
es with verti
al symmetry. As tothe new problems, we mention again the 3-
onje
ture and the 6-
onje
ture, whi
h are merely twoexamples of in�nitely many questions related to renormalized re
ursions and questions aboutthe nature of interla
ing phenomenon, as well as questions about the t-analogues generated byvarious Hankel determinant models presented.We have indi
ated that to ea
h renormalized re
ursion, there is a 
riti
al value, and that this
riti
al value may be atta
hed to rather interesting 
ombinatorial questions. These 
ombinatorialquestions in turn may be approa
hed from various di�erent dire
tions, whi
h seem to uniteproblems in diverse areas. For example, it is unexpe
ted that 
ertain values of Ma
donald-like integrals we 
onsider are asso
iated to the number of ASMs with verti
al symmetry. Thisintegral formulation in turn, is a dire
t 
onsequen
e of our interpretation of the values of 
ertainHankel determinants 
ombinatorially by latti
e path models in whi
h the standard sign-reversinginvolutions do not apply.Re
ently we have dis
overed a vast generalization of the T -transform, with the attendantRiemann hypothesis and interla
ing phenomenon. This new twisted T -transform is a multidi-mensional 
onvolution de�ned as follows. Given n(n+1)2 positive integers
 = [
ij : 0 � i < j � n℄we de�ne a kernel via W [u; 
; n℄ = Y0�i<j�n[1� ui � uj℄
ij :the ele
troni
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Given n+ 1 polynomials P = [pk : 0 � k � n℄;ea
h having all their zeros on the line Re(s) = 12 , their twisted transform is de�ned asT [P; 
℄(s) = �sin�s� �n+1 ZI(n+1) W [u; 
; n℄ nYk=0 pk(uk)usk(1� uk)1�s dukuk(1� uk) :The T -transform whi
h led to the 
onsiderations in the present paper is the 
ase n = 0 of thiswith the empty produ
t W [u; 
; n℄ = 1. For T [P; 
℄, Redmond [9℄ was able to prove thatpk 2 Rh for ea
h pk 2 P ) T [P; 
℄(s) 2 Rh:However, the apparent interla
ing phenomenon 
onje
ture is still unproved. In a futurepaper we plan to address this question. Undoubtedly the general 
ase will also raise a numberof 
ombinatorial questions and relations of the nature 
onsidered in the present paper.
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13 APPENDIX I (Derivation of the 4-term re
ursion)In this appendix we derive the the 4-term re
ursion 
orresponding to the Quadrati
 PolynomialRiemann hypothesis. We begin with a general framework.Let f(x) be a positive fun
tion, and g(x) a real fun
tion, both de�ned on the unit interval0 < x < 1 and 
hosen so that the integral~gf (s) = Z 10 f(x)sf(1� x)1�sg(x)d�xis an analyti
 fun
tion of the 
omplex variable s = � + it on the 
riti
al strip 0 < � < 1. Themeasure d�x denotes the invariant measure for a group of transformations[y = m�(x) : � > 0℄of the unit interval to itself, de�ned for ea
h � > 0 viaf(1� y)f(y) = 1� f(1� x)f(x)For ea
h su
h � there is a �-multiplier M�(x) de�ned byf(y) =M�(x)f(x);so that f(1� y) = M�(x)� f(1� x):Of parti
ular interest are those 
hoi
es of f and g for whi
h ~gf (s) may be extended to ameromorphi
 fun
tion in the 
omplex plane and there satisfying a fun
tional equation su
h as~gf (s) = ~gf (1� s):This fun
tional equation would follow, for example, from a 
hoi
e of g satisfyingg(x) = g(1� x);and of 
ourse a very spe
ial interest would obtain in those 
ases in whi
h ~gf (s) satis�es, ad-ditionally, a Riemann hypothesis; i. e., in those 
ases of ~gf (s) whose zeros � = � + i
 in the
riti
al strip satisfy � = 12 .We have 
onsidered in this paper the spe
ial polynomial 
ase, f(x) = x, in whi
hM�(x) = �1 + (�� 1)xm�(x) = xM�(x)d�(x) = = dxx(1� x) ;together with a sequen
e, gn(x) = [x(x � 1) + r℄n, of powers of a quadrati
. The gn satisfydi�erential-di�eren
e equations, from whi
h it is readily dedu
ed that the sequen
e, Pn(s; r) =T [gn℄, satisfy 4-term re
ursions.the ele
troni
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To indi
ate how these re
ursions are obtained, make the substitution,y = m�(x)in the integral, ~gf (s) = Z 10 f(y)sf(1� y)1�sg(y)d�yto get ~gf (s)�1�s = Z 10 f(x)sf(1� x)1�sD(�; x)d�xwhere D(�; x) =M�(x)g(m�(x)):Evaluating the derivatives with respe
t to � at � = 1 we get(1� s)~g(s) = Z 10 f(y)sf(1� y)1�s _D(1; x)d�ys(1� s)~g(s) = Z 10 f(y)sf(1� y)1�s �D(1; x)d�yIn the spe
ial (polynomial) 
ase M1 = 1dd�M(�)j�=1 = 1� xd2d�2M(�)j�=1 = x(x� 1)dd�m(�)j�=1 = x(1� x)d2d�2m(�)j�=1 = x2(x� 1)and d2d�2D(�; x)j�=1 = x2(1� x)2�gn(x) + x(x� 1)(2x � 1) _gn(x) + x(x� 1)gn(x)and the re
ursion (5) given in se
tion 1 follows dire
tly fromgn = gn1_gn = n(2x� 1)gn�11�gn = n(n� 1)(2x � 1)2gn�21 + 2ngn�11(2x� 1)2 = 4(g1 � r) + 1x(x� 1) = g1 � r:We remark that the same method will produ
e higher order re
ursions for the T -transforms ofsequen
es of powers Q(x)n.the ele
troni
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14 APPENDIX II (Renormalized 4-term re
ursion)Renormalization is an attempt to see what is happening in the Pn-re
ursion (5) of se
tion 1 forlarge n. As a �rst step we put s = 12 + it, where t is a real variable. The real polynomialsPn(12 + it)are polynomials in u = �t2 and we putpn(u) = Pn(12 + it):The pn satisfy the re
ursion(2n+ 2)(2n+ 1)pn+1(u) = [�14 + u+ 12rn2 + 8rn+ 2r � n2 � n℄pn(u)� [12r2n2 � 2rn2 � 2r2n℄pn�1(u) (44)+ [n(n� 1)(4r3 � r2)℄pn�2(u):Next, divide the re
ursion by n2 and throw away the terms in the 
oeÆ
ients that go to zero asn goes to in�nity. There results a re
ursion4en+1(u) = ( un2 + 12r � 1)en(u)� (12r2 � 2r)en�1(u) + (4r3 � r2)en�2(u):Next, multiply this re
ursion by 4n and put fn = 4nen to getfn+1(u) = ( un2 + 12r � 1)fn(u)� 8r(6r � 1)fn�1(u) + 16r2(4r � 1)fn�2(u):Next, put u = n2v to get a re
ursiongn+1(( nn+ 1)2v) = (v + 12r � 1)gn(v)� 8r(6r � 1)gn�1(( nn� 1)2v)+ 16r2(4r � 1)gn�2(( nn� 2)2v):We repla
e this re
ursion withhn+1(v) = (v + 12r � 1)hn(v)� 8r(6r � 1)hn�1(v) + 16r2(4r � 1)hn�2(v):Next, put v + 12r � 1 = u to get a re
ursionIn+1(u) = uIn(u)�AIn�1(u) +BIn�2(u)with A = 8r(6r � 1)B = 16r2(4r � 1):the ele
troni
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Finally, if we put u = xB 13A = CB 23Qn(x) = B�n3 In(xB 13 )then we get a polynomial re
ursionQn(x) = xQn�1(x)� CQn�2(x) +Qn�3(x); (45)with C = 8r(6r � 1)[16r2(4r � 1)℄ 23 :In the re
ursion (44), we 
onsidered the range 14 < r < 1, whi
h is 
onverted to the range1 > C > 3. This is how the 
riti
al value C = 3 emerges from the 
al
ulations.From the asymptoti
 re
ursion (45), we obtain a sequen
e of polynomials, the �rst �ve ofwhi
h are given by Q0(x;C) = 1Q1(x;C) = xQ2(x;C) = x2 � CQ3(x;C) = x3 � 2Cx+ 1Q4(x;C) = x4 � 3Cx2 + 2x+ C2We note that if a sequen
e of polynomials qn is de�ned byq0(x;C) = 1q1(x;C) = xq2(x;C) = x2 � Cand thereafter by the re
ursionqn(x) = xqn�1(x)� Cqn�2(x)� qn�3(x);then the qn are related to the Qn byqn(x) = (�1)nQn(�x):It follows that Qn has real zeros for some pair n and C, if and only if qn has real zeros. In thispaper we preferred to work with the se
ond re
ursion, the one with the minus sign, be
ause themoments that are de�ned by this sequen
e are non-negative, while the 
orresponding momentsde�ned by the �rst re
ursion alternate in sign.the ele
troni
 journal of 
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