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Madonald-type integrals. We also provide an an in�nite lass of integer sequenes, eahsequene of whih gives the Hankel determinants �n of the moments.Finally we show that ertain n-tuples of non-interseting lattie paths are evaluated by arelated lass of speial Hankel determinants. This lass inludes the �n. At the same time,ASMs with vertial symmetry an readily be identi�ed with ertain n-tuples of osulatingpaths. These two lattie path models appear as a natural bridge from the ASMs with vertialsymmetry to Hankel determinants.
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1 IntrodutionLet g(x) be a real polynomial and T [g℄(s) be the polynomial de�ned linearly on basis elementsby T [1℄(s) = 1T [xn℄(s) = s(s+ 1) � � � (s+ n� 1)=n!: (1)The transformation T an be viewed in terms of the omplex integral transformT [g℄(s) �sin(�s) = Z 10 xs(1� x)1�sg(x) dxx(1 � x) :Furthermore if g(x) = g(1 � x) then T [g℄(s) = T [g℄(1 � s):Espeially interesting would be those ases in whih T [g℄(s) satis�es, additionally a Riemannhypothesis; i.e., in those ases in whih the zeros � = � + i, satisfy � = 12 .Redmond has reently given an analyti proof that shows that whenever the polynomial gsatis�es a Riemann hypothesis, then so does the T -transform T [g℄. Although this result doesnot inlude those situations where the polynomial g does not satisfy a Riemann hypothesis, butT [g℄(s) does, he has been able to generalize g 2 Rh) T [g℄ 2 Rh to entire g of order 1 (see [9℄).As an example, his result shows that the polynomialsT [(x+ r)n + (1� x+ r)n℄(s) (2)satisfy a Riemann hypothesis for all n > 0 and all values of the real parameter r. A substantialamount of numerial evidene indiates that a great deal more is true and we give two examplesto illustrate the important phenomena of positivity and interlaing that are inaessible byanalyti methods.First, when r > 0, the polynomialsT [(x+ r)n℄(w + 12) = Xi;j�0 ijwirjan be shown to have the positivity property that all the oeÆients ij are non-negative, whihan be used [4℄ to show that the w-zeros of T [(x+ r)n℄(w + 12) are negative when r > 0.Using this positivity result and other results, together with known parts of the standard the-ory of 3-term polynomial reursions, E�geio�glu and Ryave [4℄ were able to show in a ompletelydi�erent way that for all n > 0 and all real values of the parameter r, the polynomials givenin (2) satisfy a Riemann hypothesis. The proof tehniques here have impliations that are thesubjet matter of this paper.After having disposed of what might be termed The Linear Case by these alternative teh-niques, it seemed natural to onsider the Quadrati Case; i. e., to onsider the zeros ofPn(s; r) = T [(x(x� 1) + r)n℄(s); (3)the eletroni journal of ombinatoris 8 (2001), #R36 3



for values of the parameter r satisfying r � 14 . Here again Redmond's result shows that thePn(s; r) satisfy a Riemann hypothesis, but it is again likely that muh more is true as we indiate.The polynomials Pn(s; r) generate real polynomialsPn(12 + it; r)in t2, so that if we put u = �t2 and setpn(u; r) = Pn(12 + it; r) (4)then the pn satisfy a 4-term reursion. Numerial data indiates that for eah r � 14 , the u-zerosof pn+1(u; r) are negative and interlae the u-zeros of pn(u; r). We have alled this assertion theQuadrati Polynomial Riemann hypothesis. Moreover, the data also supports the assertion thata positivity result (like the result established in the Linear Case) holds in the Quadrati Case;i. e., that if pn(u;R + 14 ) = Xi;j�0 i;juiRj ;then the nonzero oeÆients i;j are positive. If true, this would show that if the roots of thepn(u; r) are real, then they are negative for r � 14 , whih is equivalent to Pn(s; r) 2 Rh.We annot provide a proof of the polynomial Riemann hypothesis in the Quadrati Case. Ifthe hypothesis is orret, it is interesting when onsidered within the framework of the generaltheory of polynomial reursions.The new feature in the Quadrati Case is that the pn(u; r) do not satisfy a 3-term reursionfor r > 14 , but rather a 4-term reursion. Essentially the 3-term theory, on whih the LinearCase relies, is based on a notion of orthogonality not available in the onsideration of 4-termreursions. In other words, the standard arguments of the 3-term theory are then too weak toextend to a 4-term theory, and in fat they annot be extended in any general statement.Without any existing theory available to takle the Quadrati Polynomial Riemann hypoth-esis, we turned to the onsideration of renormalized versions of the 4-term reursions satis�edby the pn. The reursions for the pn are given in (5) of setion 2. We mention that the term\renormalization" refers to a series of elementary transformations (desribed in Appendix II)that onvert the 4-term polynomial reursions (5) into the 4-term polynomial reursions (6).Renormalization therefore has the e�et of ondensing the somewhat ompliated reursions(5) in the parameters n and r into a relatively simple reursion (6) in the single parameter C.This simple reursion identi�ed C = 3 as a ritial value, and led to the formulation of the3-Conjeture. This onjeture might be viewed as a single asymptoti version of the QuadratiPolynomial Riemann hypothesis, and again, substantial amount of data indiates its truth. Onthe other hand, this onjeture is readily phrased in two halves, and Redmond was able to provethe most important half, and his proof is inluded in this paper as Theorem 1. Higher orderonjetures are probably true and examples are given.In a strange twist of fortune, ertain determinants �n whih are naturally attahed to the3-Conjeture (and whih will appear in setion 5), open up some very unexpeted onnetionsto Alternating Sign Matries (ASM's). In fat when the sequene of integers 1, 3, 26, 646,the eletroni journal of ombinatoris 8 (2001), #R36 4



45885,� � �, �rst appeared on the sreen, our amazement was total. From that point on everythingwe touhed seemed inexorably (and for a time, inexpliably) to generate these integers, and thefollowing table lists some of the many models onsidered in this paper that are onneted viathis fasinating sequene. The symbols in the �rst olumn will be explained in due ourse, andn : 0 1 2 3 4 � � ��n : 1 3 26 646 45885 � � �RR(n) : 1 3 26 646 45885 � � �In : 1 3 26 646 45885 � � �An : 1 3 26 646 45885 � � �Vn : 1 3 26 646 45885 � � �On : 1 3 26 646 45885 � � �Pn : 1 3 26 646 45885 � � �Figure 1: Di�erent models for 1, 3, 26, 646, 45885,� � �we begin with the Robbins-Rumsey sequene,RR(n) = nYk=0 �6k+42k+2�2�4k+32k+2� ;listed in [10℄ as the onjetured ounting formula for the number Vn of ASM's with vertialsymmetry. This onjeture (and others) has reently been proved by Kuperberg [6℄. In thispaper we prove several results and indiate diretions for further onjetures. In Theorem 3(setion 7) we show that �n = In;where In is a sequene of values of ertain Madonald-type integrals (see (27), Setion 7). InTheorem 4 (setion 8) we show that In = An;where An is any one of the sequene of Hankel determinants given in Theorem 4. In Theorem5, we show that An = RR(n):There are two sequenes, On (De�nition 1, Setion 9) and Pn (De�nition 2, Setion 10), thatount two types, respetively, of ensembles of lattie paths. We show in Lemma 2 (setion 9)that Vn = Onand we show in Theorem 6 (setion 10) thatAn = Pn:the eletroni journal of ombinatoris 8 (2001), #R36 5



A ompletely di�erent proof of the Robbins-Rumsey onjetureVn = RR(n)would follow from a bijetion between the lattie paths ounted by On and those ounted byPn, or equivalently, between the two orresponding families of tableaux desribed at the end ofsetion 10.2 The 3-ConjetureUsing (1) we onstrut the �rst few polynomials Pn(s; r) de�ned in (3) asP0(s; r) = 1P1(s; r) = 12s(s� 1) + rP2(s; r) = 124s2(s� 1)2 + (r � 112)s(s� 1) + r2:For n � 2, it an be shown that the Pn satisfy the 4-term reursion(2n+ 2)(2n+ 1)Pn+1(s) = [s(s� 1) + 12rn2 + 8rn+ 2r � n2 � n℄Pn(s)� [12r2n2 � 2rn2 � 2r2n℄Pn�1(s)+ [n(n� 1)(4r3 � r2)℄Pn�2(s):This reursion is derived in Appendix I. The pn(u) of (4) therefore satisfy the reursion(2n+ 2)(2n+ 1)pn+1(u) = [�14 + u+ 12rn2 + 8rn+ 2r � n2 � n℄pn(u)� [12r2n2 � 2rn2 � 2r2n℄pn�1(u) (5)+ [n(n� 1)(4r3 � r2)℄pn�2(u);whih, as a tool in proving the Quadrati Polynomial Riemann hypothesis, we found intratable,and we turned to e�orts at simplifying the reursion by renormalization. Renormalization is anattempt to see what is happening in the pn-reursion (5) for large n. We have put the stepsin the renormalization into Appendix II and quote here merely the new polynomial reursionthat results from the renormalization of the pn. Thus we obtained a sequene of polynomialsqn = qn(x) with q�2 = q�1 = 0, q0 = 1, and de�ned thereafter by the reursionqn = xqn�1 � Cqn�2 � qn�3; (6)where C = 8r(6r � 1)[16r2(4r � 1)℄ 23 :As r runs from 14 to 1, C(r) is monotone dereasing to 3, and we �nd that C = 3 is aritial value in several important respets. Before we onsider the 4-term reursion (6), it willthe eletroni journal of ombinatoris 8 (2001), #R36 6



be useful to review briey some of the theory of 3-term reursions (we refer the reader to [3℄ fordetails).Consider a sequene of polynomials qn(x) de�ned by the 3-term reursion,qn = (x� n)qn�1 � �nqn�2;where q�1 = 0, q0 = 1 and the fng and f�ng are real sequenes. There is then a unique linearfuntional L on the spae of polynomials suh thatL[1℄ = �1L[qmqn℄ = 0 m 6= nL[q2n℄ = �1�2 � � � �n+1It follows that the fqng is an orthogonal sequene of moni polynomials with respet to L if the�n 6= 0.The funtional L is said to be positive de�nite if L[p℄ > 0 for every non-negative, non-zeropolynomial p. Therefore L is positive de�nite if and only if all �n > 0. In this ase, the zeros ofthe qn+1 are real and simple and interlae the zeros of qn. Moreover, if we speify the momentsof L by �n = L[xn℄(and take �0 = �1 = 1), then L is positive de�nite if and only if the assoiated sequene ofHankel determinants �n = �n[�i+j℄0�i;j�n (7)are positive for n = 0; 1; : : :.Now if you begin with a sequene of moni polynomials qn de�ned as in (6) by a 4-termreursion, then you again get some orthogonality with respet to the funtional LC de�ned byLC [1℄ = �0 = 1LC [xn℄ = �nLC [qn℄ = 0 n � 1;whih results in LC [q1q3℄ = 0;but not, for example, LC [q2q3℄ = 0:Evidently, this loss of orthogonality makes it impossible to transfer diretly the arguments ofthe 3-term theory to the 4-term situation.Our �rst result, the so-alled 3-Conjeture, relates to the Quadrati Polynomial Riemannhypothesis and the 4-term reursions (6). We have the following onjeture.Conjeture 1 (3-Conjeture) The sequene of polynomials qn, n = 1; 2; : : :, as de�ned throughthe 4-term reursion (6) have real zeros if and only if C � 3. Moreover, when C � 3, the zerosof qn+1 interlae the zeros of qn.the eletroni journal of ombinatoris 8 (2001), #R36 7



This onjeture is proved in the ase that C � 3. We do not have a proof of the statementthat when C < 3, then there is some qn with some non-real zeros. Numerial evidene for valuesof C as high as C = 2:9 gives n with qn having some non-real zeros and indiates that C = 3 isindeed the ritial value.Theorem 1 If C � 3 then the polynomials de�ned by q�2 = q�1 = 0, q0 = 1 and by (6) forn � 1 have real zeros, and the zeros of qn+1 interleave the zeros of qn.Proof The proof breaks down into the following steps:1. Fix N large and restrit attention to the polynomials. (qn(x))0�n<N .2. Show that if C is suÆiently large then the zeros of (qn(x))0�n<N are real and interleaved.3. If for some C, the zeros of (qn(x))0�n<N are not real and interleaved then as C dereasesthere must be a transition at some point. At the point of the transition there will be a kwith 0 < k < N � 1 and a real x0 suh that qk(x0) = qk+1(x0) = 0.4. Fix C and x0 to be this transition point and assume that C � 3. Let t1; t2; t3 be the rootsof the polynomial, t3 � x0t2 + Ct+ 1 = 0:5. Show that two of the roots must be equal.6. Dispose of the double root ase.7. Dispose of the triple root ase.Large C ase and the transitionFix N > 0. We �rst need to show that for suÆiently large C the roots of the �rst N polynomialsare real and interleaved. We do this by saling and showing that after saling and normalizationthe qn are a simple perturbation of orthogonal polynomials. Note thatqn+1(pCx)C(n+1)=2 = xqn(pCx)Cn=2 � qn�1(pCx)C(n�1)=2 � 1C3=2 qn�2(pCx)C(n�2)=2Thus if we de�ne qn(x) = qn(pCx)Cn=2then qn satis�es the following reursionqn+1(x) = xqn(x)� qn�1(x)� C�3=2qn�2(x):For large C this is just a perturbation of the reursionrn+1(x) = xrn(x)� rn�1(x)the eletroni journal of ombinatoris 8 (2001), #R36 8



whih de�nes a set of orthogonal polynomials. Thus the �rst set of N polynomials of q an bemade arbitrarily lose to the �rst N polynomials rn (n = 0; 1; 2; : : : N � 1).Sine the polynomials rn are orthogonal their roots are simple and real. For arbitrary realC, the polynomials qn have real oeÆients. This means that any omplex roots of qn omeas half of a omplex onjugate pair of roots. But as C gets large the roots of qn approah theroots of the rn and it is impossible for two omplex onjugate roots to approah two distintroots of rn. Thus for suÆiently large C the roots of the �rst N polynomials of qn are real andinterleaved. Note that this interleaving is a strit interleaving so that no root of qn is equal toa root of qn+1 for 0 � n < N � 1. Thus the roots of the �rst N polynomials of p are real andinterleaved.Now we let C derease until the interleaving property fails. It is not hard to see that theinterleaving property an only fail if there is a transition value for C and a k with 0 < k < N�1suh that qk and qk+1 have a ommon real root. Let that root be x0. We will now demonstratethat suh a transition point an only our if C is stritly less than 3.Consider the ubi equation t3 � x0t2 + Ct+ 1 = 0: (8)Let t1; t2; t3 be the roots of this equation. The remainder of the proof hinges on whether thisequation has a double root or triple root.The roots are distintFirst suppose that equation (8) does not have a double root. In that ase, we an �nd somea1; a2; a3 suh that qn(x0) = a1tn+21 + a2tn+22 + a3tn+23 :Now we have q�2(x0) = q�1(x0) = qk(x0) = qk+1(x0). This leads to the following equations:a1 + a2 + a3 = 0a1t1 + a2t2 + a3t3 = 0a1tk+21 + a2tk+22 + a3tk+23 = 0a1tk+31 + a2tk+32 + a3tk+33 = 0Note that the a1; a2; a3 annot be trivial beausea1t21 + a2t22 + a3t23 = 1:Thus the following determinants are zero:������� 1 1 1t1 t2 t3tk+21 tk+22 tk+23 ������� = 0������� 1 1 1t1 t2 t3tk+31 tk+32 tk+33 ������� = 0the eletroni journal of ombinatoris 8 (2001), #R36 9



This means in turn that we an �nd non-trivial �; �;  and �0; �0; 0 suh that�+ �ti + tk+2i = 0�0 + �0ti + 0tk+3i = 0for i = 1; 2; 3. A little manipulation gives the following equations��0 + (�0 � �0)ti + �0t2i = 0 (9)where i = 1; 2; 3. The next question is whether equations (9) ould be trivial in the sense that��0 = 0; (�0 � �0) = 0; �0 = 0:We will show that if equations (9) are trivial then C < 3. This will be done in three ases.First, if  = 0 then ti = ��=� and we �nd that there is a triple root whih is a ase that isovered later. Seond, if 0 = 0 then ti = ��0=�0 whih also leaves us in the triple root ase.Finally, the only remaining ase is that �0 = 0 and � = 0. In this ase,tk+2i = ��=:This means that the ti's di�er from one another by a fator of a root of unity. Also 1 = j � 1j =jt1t2t3j = jt1j3 so jt1j = 1. But C = t1t2 + t1t3 + t2t3whih means that C < 3.Thus the equations (9) are not trivial. But this means that the following determinant iszero: ������� 1 1 1t1 t2 t3t21 t22 t23 ������� = (t3 � t2)(t3 � t1)(t2 � t1) = 0So there is a double root whih was a ase we are overing below.Double Root CaseWe will assume that the ubi equation (8) has a double root. Note that we are onsidering thetriple root ase to be distint and it is handled below. If we have a double root then we anwrite t1 = t2 = ��; t3 = � 1�2where � 6= 1. Note that � must be real. Now we an �nd real numbers �; �; � suh thatqn�2(x0) = (�n+ �)(��)n + �(�1=�2)nUsing q�2(x0) = q�1(x0) = 0, we an solve for �, � and � to getqn�2(x0) = �(��)n �( 1�3 � 1)n+ 1� 1�3n �the eletroni journal of ombinatoris 8 (2001), #R36 10



Now we will use the laim that qk(x0) = 0 for k > 0. In this ase, we would havek + 2 = 1� (1=�)3k+61� (1=�)3 = 1 + 1�3 + : : :+ 1�3k+3 : (10)Note that the right hand side of this equation has k + 2 summands. If � > 0 then we look atthe ases where � > 1 and � < 1. In both ases the above equality is impossible. If � < 0 thenwe use the fat that C = �2 + 2�:For negative � the right hand side of this equation is dereasing with �. It ranges from +1 as� ! �1 to �1 as � ! 0�. Thus C an only be greater than or equal to 3 if � � �2. But if� � �2 then the equation k + 2 = 1 + 1�3 + : : :+ 1�3k+3is learly impossible.Triple Root CaseWe are left with only one possible remaining ase: that of triple roots. In that ase t1 = t2 =t3 = �1, C = 3 and x0 = �3. We then haveqn+1(x0) = �3qn(x0)� 3qn�1(x0)� qn�2(x0)and qn(x0) = (n+ 1)(n+ 2)2 :This overs all the ases. It means that the transition point that we have been talking aboutannot happen for C � 3. Thus if C � 3 the roots of the qn are real and interleaved. �3 The 6-ConjetureAll of the work to this point derives from the initial onsideration of the T -transform of thepowers (x(x�1)+r)n and the 4-term polynomial sequenes they satisfy. Of ourse we ould beginwith the powers of other polynomials invariant under x! 1� x, and onsider the higher ordersequenes they de�ne. We then would onsider whih values of various parameters guarantee aRiemann hypothesis.For the sake of brevity, we look at just one more ase of the kind of situation that presentsitself in setion 11, and skip the derivations.We have hosen a 5-term sequene, qn = qn(x;C) withqn = xqn�1 � Cqn�2 + 4qn�3 � qn�4
the eletroni journal of ombinatoris 8 (2001), #R36 11



with initial terms q�3 = 0q�2 = 0q�1 = 0 (11)q0 = 1as an example of an in�nite lass of sequenes depending on a single parameter C and we beginwith the following onjeture.Conjeture 2 (The 6-Conjeture) The sequene of polynomials satisfying the reursionqn = xqn�1 � Cqn�2 + 4qn�3 � qn�4with initial polynomials as in (11) have real zeros if and only if C � 6. In this ase, the zerosof qn+1 interlae the zeros of qn.Numerial evidene indiates that many other polynomial sequenes depending on a singleparameter C have real zeros if and only if C is not smaller than some ritial value. We onnetthese higher order sequenes to Hankel determinants in setion 11. There is a substantial amountof numerial evidene that the ritial oeÆients that are at work for these reursions omefrom binomial oeÆients, e. g. 3; 1 for 4-term reursions, and 6; 4; 1 for 5-term reursions.4 MomentsWe onsider the sequene of polynomials qn = qn(x) de�ned by the 4{term reursionqn = xqn�1 � Cqn�2 � qn�3; (n � 1)with q�2 = q�1 = 0, and q0 = 1. Thusq0 = 1q1 = xq2 = x2 � Cq3 = x3 � 2Cx� 1q4 = x4 � 3Cx2 � 2x+ C2Write qn(x) = nXj=0dn;jxjand de�ne Qn = [di;j ℄0�i;j�n to be the (n+ 1)� (n+ 1) matrix of oeÆients. ThusQ4 = 26666664 1 0 0 0 00 1 0 0 0�C 0 1 0 0�1 �2C 0 1 0C2 �2 �3C 0 1
37777775the eletroni journal of ombinatoris 8 (2001), #R36 12



We speify a linear funtional LC on the spae of real polynomials byLC [q0℄ = 1 (12)LC [qn℄ = 0 ; n � 1:Expressing the moments of LC by �n = �n(C) = LC [xn℄; (13)then the �rst few moments are �0 = 1�1 = 0�2 = C�3 = 1�4 = 2C2�5 = 5C�6 = 3 + 5C3;and in general, we have the following result.Theorem 2 The moments �n of the funtional L are given by any of the following expressions:1. The (n; 0)-th entry of Q�1n .2. The sum of the weights of all lattie paths from the origin to the point (n; 0) with elementarysteps (a; b) ! (a+ 1; b+ 1) with weight 1;(a; b) ! (a+ 1; b� 1) with weight C; (14)(a; b) ! (a+ 1; b� 2) with weight 1;whih stay weakly above the x-axis.3. The sum of the monomials Cn2(T ) over all 2-3{trees T on n + 1 nodes, where n2(T ) =number of nodes of T with 2 hildren.4. The oeÆient of xn in 1n+ 1(1 + Cx2 + x3)n+15. The sum 1n+ 1 Xn=3j+2k n+ 1j; k !Ck
the eletroni journal of ombinatoris 8 (2001), #R36 13



6. For C � 3, the integral moment Z t1t2 tnw(t)dtwhere t2 < t1 are the two larger roots of the disriminant of z3 + Cz2 � tz + 1, andw(t) = wC(t) is positive for t2 < t < t1.7. For C = 3, the integral moment p32� 3n+4 Z 10 fn(u)g(u)du (15)where f(u) = 9u(1� u)� 1g(u) = u 13 (1� u) 23 (1� 2u) (16)8. For C = 3, the expression (�1)n3n+4 2n+1Xk=0 n;k k + 132n+ 3! (17)where the n;k are de�ned by(u+ 1)(1 + 7u+ u2)n = 2n+1Xk=0 n;kuk:9. For C = 3, the expression (�1)n3n+4 nXk=0 nk! k + 132k + 3! 32k3k + 5 :Proof To prove part 1, note that by (12) and (13), �0 = 1 and for i > 0iXj=0 di;j�j = 0:Therefore for every n > 0, Qn 266664 �0�1...�n 377775 = 266664 10...0 377775Thus the vetor [�0; �1; � � � ; �n℄t is the �rst olumn of Q�1n and (1) follows.To prove 2, let Q�1n = [ei;j ℄0�i;j�n. Thusxi = nXj=0 ei;jqj(x) (18)the eletroni journal of ombinatoris 8 (2001), #R36 14



Multiplying both sides by x,xi+1 = nXj=0 ei;jxqj(x)= nXj=0 ei;j(qj+1(x) +Cqj�1(x) + qj�2(x))= qi+1(x) + Cei;1 + ei;2 + nXj=1 ei;j�1qj(x) + nXj=1Cei;j+1qj(x) + nXj=1 ei;j+2qj(x)Comparing oeÆients with the expansion (18) with i replaed by i+ 1ei+1;j = 8><>: 1 if j = i+ 1ei;j�1 + Cei;j+1 + ei;j+2 if 0 < j � iCei;1 + ei;2 if j = 0 (19)This is the same reursion satis�ed by the sum of the weights of the olletion of paths from
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Figure 2: A lattie path from the origin to (10; 0) with elementary steps as in (14).the origin to the point (i+ 1; j) whih stay weakly above the x-axis and have elementary stepsgiven in (14). An example of suh a path from the origin to (10; 0) with weight C2 is shown inFigure 2. Sine the value at the lattie point (n; 0) is en;0, the sum of the weights of all pathsfrom the origin to (n; 0) is �n by part 1. This proves part 2.To prove part 3, we traverse a lattie path in part 2 from right to left, oding the threeelementary steps in (14) by x0, x2, and x3, respetively, and padding the resulting string withan extra x0. For the example path in Figure 2 this results in the odex3 x0 x0 x2 x0 x3 x0 x2 x0 x0 x0 (20)This word is the word obtained by the depth-�rst traversal of a 2-3{tree T on 11 nodes, andputting the labels of the nodes down one by one from left to right. Eah x3 is the label of aninternal node with 3 hildren, eah x2 is the label of an internal node with 2 hildren, and x0'sare the labels of leaf nodes with no hildren (thus the internal nodes have 2 or 3 hildren, assuggested by the name 2-3{tree). Note that n0 + n2 + n3 = n + 1 where ni is the number ofnodes with i hildren, and the ontribution of the tree is Cn2(T ), sine under this bijetion, thethe eletroni journal of ombinatoris 8 (2001), #R36 15
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0xFigure 3: The 2-3{tree orresponding to the lattie path in Figure 2.nodes labeled with x2 have weight C, and all the other nodes have weight 1. The tree thatorresponds to the path in Figure 2 via the depth-�rst ode in (20) is shown in Figure 3.To prove part 4, we use the following version of Lagrange InversionTheorem (Lagrange Inversion Formula) Let R(x) be the formal power seriesR(x) = R0 +R1x+R2x2 + � � �and let f(x) = f1x+ f2x2 + f3x3 + � � �be the formal power series solution of the equation f(x) = xR(f(x)). Then fn is given by theoeÆient of xn�1 in 1nRn(x).We use this result in the following way. Letf(x) =XT Cn2(T )xn(T ) = Xn�0�n(C)xn+1where the sum is over all 2-3{trees T , and n(T ) is the total number of nodes in T . Any 2-3{treewith more than one node an be uniquely deomposed into either 2 or 3 prinipal subtrees.Therefore f(x) satis�es the funtional equationf(x) = x+ xCf(x)2 + xf(x)3Now we an use the Lagrange Inversion Formula with R(x) = 1+Cx2+x3 and obtain �n = fn+1as the oeÆient of xn in 1n+1(1 + Cx2 + x3)n+1. This proves part 4. Part 5 follows by themultinomial theorem.Parts 4 and 5 of the theorem have alternate proofs. We begin with the series1X0 zkqk(x);the eletroni journal of ombinatoris 8 (2001), #R36 16



whih may be evaluated via the reursion1X0 zkqk(x) = 1 + 1X1 zk(xqk�1 � Cqk�2 � qk�3)= 1 + (zx� Cz2 � z3) 1X0 zkqkto obtain 1X0 zkqk(x) = 1z(t(z)� x)where t(z) = 1z + Cz + z2:Let T (�) denote the image of the irle [z : jzj = �℄ under the map z ! t(z). Given C, if �is suÆiently small, as z goes around the irle z = �, t(z) goes around the origin one in theopposite diretion. It follows thatxn = 12�i IT (�) tnt� xdt= � 12�i Ijzj=� t0(z)tn(z)t� x dz= 1Xk=0(� 12�i Ijzj=� t0tnzk+1dz)qk(x):This sum is �nite, and we therefore obtainL[xn℄ = � 12�i Ijzj=� t0tnzdz (21)as L simply piks o� the k = 0 term in the sum. It follows thatL[xn℄ = 12(n+ 1)�i Ijzj=� tn+1dz= 12(n+ 1)�i Ijzj=�(1 + Cz2 + z3)n+1 dzzn+1= 1n+ 1 Xn=3j+2k n+ 1j; k !Ck:This again establishes parts 4 and 5 of the theorem.For the proof of the parts 6 and 7, we onvert the path integral de�ning �n in (21) to a realintegral on the real line. We begin with the assumption that C > 3. We denotep(z) = z3 + Cz2 � tz + 1= (z � z1(t))(z � z2(t))(z � z3(t)):the eletroni journal of ombinatoris 8 (2001), #R36 17



Then z1(t) = �C3 � 12 13 (H 131 +H 132 )z2(t) = �C3 � 12 13 (!2H 131 + !H 132 )z3(t) = �C3 � 12 13 (!H 131 + !2H 132 )where H1, H2, and the disriminant � of p(z) are given asw(t) = p32�2 13 (H 132 �H 131 )H1 = G+s��27H2 = G�s��27G = 1 + tC3 + 2(C3 )3��27 = 1 + 4C327 + 2Ct3 � C2t227 � 4t327 :Sine C > 3 by assumption, the disriminant of p has three distint real t-roots t1(C), t2(C),and t3(C), satisfying t3(C) < �C < t2(C) < 0and 154 < t1(C) < C + 2:We let z1 be the real branh of p(z) = 0, and we observe that t1(C), t2(C), and t3(C) areeah 2-yles of the branhes, z1(t), z2(t), and z3(t), where0 < z2(t1) = z3(t1) < 12z1(t1) < �4and �1 < z2(t2) = z3(t2) < 0z1(t2) < �1and z1(t3) = z2(t3) < �1�1 < z3(t3) < 0:Next, note that if T = T (C) denotes the image of the unit irle jzj = 1 under the mapz ! t(z);the eletroni journal of ombinatoris 8 (2001), #R36 18



then T traverses the origin in the t-plane one, utting the real axis at �C and C + 2. By theinequalities above, the two roots t2 < t1 therefore lie within this ontour, while the third roott3 is outside. See Figure 4.
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Figure 4: Paths of integration in the z and the t-planes.Sine L[xn℄ = � 12�i Ijzj=� t0tnzdz= � 12�i Ijzj=1 t0tnzdz;the eletroni journal of ombinatoris 8 (2001), #R36 19



we an onvert this z-integral to an integral in the t-plane,�n = 12�i IT ztndt= 12�i Z t1t2 (z2(t)� z3(t))tndt= ! � !22�i2 13 Z t1t2 (H 131 (t)�H 132 (t))tndt= p32�2 13 Z t1t2 (H 131 (t)�H 132 (t))tndt= Z t1t2 !(t)tndtwhih is part 6 of the theorem.At C = 3, the branhing of the funtion z(t) hanges a bit, beause the disriminant� = �(t+ 3)2(15 � 4t)now has a double root at �3. Hene, t2(3) = �3 is a 3-yle (and t1(3) = 154 remains a 2-yle). But this fat learly does not hange the argument above and we simply take the limitas C ! 3+, to obtain = p32�2 13 Z 154�3 (H 131 (t)�H 132 (t))tndtWe use this last expression to obtain the formula of part 7. Sine C = 3, we have��27 = (t+ 3)2(15� 4t))27in whih ase we have H1(t) = (3 + t)[1 + p15� 4t3p3 ℄H2(t) = (3 + t)[1� p15� 4t3p3 ℄Making the hange of variable, 3 + t = 274 u dt = 274 duin the integral de�ning L[xn℄ we get�n = p32�2 13 Z 10 (274 u) 13 [(1 +p1� u) 13 � (1�p1� u) 13 ℄(274 u� 3)n 274 du= 3n+4 p316� Z 10 u 13 [(1 +p1� u) 13 � (1�p1� u) 13 ℄(94u� 1)ndu:Next make the hange of variable u = 4v(1 � v)du = 4(1 � 2v)dv;the eletroni journal of ombinatoris 8 (2001), #R36 20



to obtain �n = 3n+4p32� Z 120 fn(v)[v(1 � v)℄ 13 [(1� v) 13 � v 13 ℄(1� 2v)dv= 3n+4p32� Z 10 fn(v)g(v)dv;where f and g are as in (16).To prove part 8, we begin with the expression,�n = 3n+4 p316� Z 10 u 13 [(1 +p1� u) 13 � (1�p1� u) 13 ℄(94u� 1)ndu:The substitution u = 1� v2du = �2vdvresults in the di�erene of two integrals�n = 3n+4 p316� Z 10 (1� v2) 13 [(1 + v) 13 � (1� v) 13 ℄(94(1� v2)� 1)n2vdv:In the seond integral, let v = �w; dv = �dw, and ombine the result with the �rst integral toget �n = 3n+4p38� Z 1�1(1� v2) 13 [(1 + v) 13 ℄(94(1� v2)� 1)nvdv:Then make the substitution v = 1� u1 + udv = �2(1 + u)2duand note that 1� v = 2u1 + u1 + v = 21 + uto obtain �n = 3n+4p32� Z 10 u 13 1� u(1 + u)4 [( 31 + u)2u� 1℄ndu (22)= (�1)n3n+4p32� Z 10 u 13 1� u(1 + u)2n+4 [1� 7u+ u2℄ndu= (�1)n3n+4p32� Z 10 u 13(1 + u)2n+4 2n+1Xk=0 (�1)kn;kukduthe eletroni journal of ombinatoris 8 (2001), #R36 21



With 0 < a < m+ 1, we haveZ 10 ua�1(1 + u)m+1 du = (�1)m �sin(a�) a� 1m !whih readily provides the expression in part 8 for �n. Part 9 of the theorem follows from analternate evaluation of the integral formula (22). We omit the details. �RemarkPart 8 of the above provides new expressions for the moments �n in terms of sums of frationalbinomial oeÆients. Thus, if n = 0, we have�0 = 34 " 133!+  433!# = 1:Similarly �1 = (�1)35 " 135!+ 8 435!+ 8 735!+  1035 !# = 0and �2 = 36 " 137!+ 15 437!+ 65 737!+ 65 1037 !+ 15 1337 !+  1637 !# = 3:RemarkIt is evident from the lattie path interpretation in part 2, and multinomial expansion in part 5of Theorem 2 that as a polynomial in C,deg(�2n(C)) = n; deg(�2n+1(C)) = n� 1: (23)Furthermore the oeÆient of the leading term in �n(C) is the Catalan number 12n+1�2n+1n � for�2n (n > 0), and the binomial oeÆient �2n+1n+1 � for �2n+1.5 Very Speial Hankel DeterminantsConsider again the sequene of polynomials de�ned by the 4{term reursionqn = xqn�1 � Cqn�2 � qn�3; (n � 1)with q�2 = q�1 = 0, and q0 = 1, and the linear funtional LC de�ned byLC [q0℄ = 1; LC [qn℄ = 0 (n � 1):�n = �n(C) = LC [xn℄
the eletroni journal of ombinatoris 8 (2001), #R36 22



as haraterized by Theorem 2. For the ritial value C = 3, we have�0 = 1�1 = 0�2 = 3�3 = 1�4 = 18�5 = 15;and these in turn produe a sequene of Hankel determinants as de�ned in (7) that start out as�0 = 1�1 = 3�2 = 26�3 = 646�4 = 45885�5 = 930465and ontinue to agree (as far as the tables go) with the number of ASMs with vertial symmetrygiven by the formula (34) for RR(n), and so you are suddenly working in another universe. Sinethe ritial value is C = 3, write C = 3 + t with t � 0 and let �n = �n(3 + t). We �nd that�0 = 1�1 = 0�2 = 3 + t�3 = 1�4 = 18 + 12t+ 2t2�5 = 15 + 5t�6 = 138 + 135t + 45t2 + 5t3 (24)�7 = 189 + 126t + 21t2�8 = 1218 + 1540t + 756t2 + 168t3 + 14t4�9 = 2280 + 2268t + 756t2 + 84t3As a onsequene of parts 2 and 5 of Theorem 2, the �n(C) are polynomials in C with non-negative integral oeÆients. It follows from (23) that also as polynomials in t, deg(�2n(3+t)) =n, deg(�2n+1(3 + t)) = n� 1, and the oeÆients of �n(3 + t) are non-negative integers.As polynomials in C, the �rst few Hankel determinants �n = det[�i+j ℄ are as shown below.Evidently, deg(�n(C)) = 12n(n+ 1). However the oeÆients of �n(C) are not non-negative.�0 = 1the eletroni journal of ombinatoris 8 (2001), #R36 23



�1 = C�2 = �1 + C3 (25)�3 = �2� 3C3 + C6�4 = �14C � 6C7 + C10�5 = 18� 120C3 � 30C6 + 15C9 � 10C12 + C15But replaing C by 3 + t, we obtain the polynomials �n = �n(3 + t) = det[�i+j(3 + t)℄ as�0 = 1�1 = 3 + t�2 = 26 + 27t+ 9t2 + t3 (26)�3 = 646 + 1377t + 1188t2 + 537t3 + 135t4 + 18t5 + t6�4 = 45885 + 166198t + 264627t2 + 245430t3 + 147420t4 +60102t5 + 16884t6 + 3234t7 + 405t8 + 30t9 + t10It is interesting that these �n(3 + t) do have non-negative oeÆients. We wonder whetheror not this is true in general. The onstant terms 1; 3; 26; 646; 45885; : : : of �n(3 + t) agreewith the number Vn of ASMs with vertial symmetry as far as the tables go, as noted earlier.Furthermore, it is reasonable to think that ASMs with vertial symmetry are only a speial setof objets enumerated by �n(3 + t), the others having some non-zero statisti indiated by theexponents of t.6 Positivity is InsuÆientGiven the analogy with 3-term reursions, it is natural to onjeture that if the linear form Lassoiated with a 4-term reursion is positive then the zeros of the reursively de�ned polynomialsare real and interleaved. In this setion we inlude an argument that shows that this onjetureis false.We start with the positive linear form and then generate the badly behaved 4-term reur-sion to �t the linear form. We will de�ne the positive linear form by starting with the set oforthogonal polynomials assoiated with the positive linear form. We an atually hoose anyset of orthogonal polynomials, but for ompleteness we hoose the Hermite polynomials. Thereursion for the Hermite polynomials Hn = Hn(x) is as follows:H�2 = H�1 = 0Hn = 2xHn�1 � 2(n� 1)Hn�2The positive linear form then satis�es the equationsL[H0℄ = 1L[Hn℄ = 0 (n > 0):the eletroni journal of ombinatoris 8 (2001), #R36 24



Now we de�ne the polynomials qn = qn(x) that should satisfy the 4-term reursion asq0 = H0 = 1q1 = H1q2 = H2 + H1q3 = H3 + (�=�)H2q4 = H4 + �H3 + �H2qn = Hn (n > 4)where �, � and  will be determined. Now it is not hard to see that for almost all � and � thereis a  that makes the above set of polynomials satisfy a 4-term reursion. In fat if� 6= 06�2 � �(� + 8) 6= 0then  = 4��6�2 � �(� + 8)works. It is also lear that L[q0℄ = 1L[qn℄ = 0 (n > 0):That is L is the linear form for the 4-term reursion. Finally, for almost any omplex number z0we an �nd � and � suh that q4(z0) = 0. It is possible that the � and � found might not havean assoiated . However, if we then perturb � and � then q4 will have a zero near z0. Thus wean guarantee a 4-term reursion for whih q4 has omplex roots.However, to make things expliit, the following values work:� = �4=3� = 28=3 = 28=85q4((1 + i)=2) = 0:7 Certain Madonald-type IntegralsWe take the moments �n = �n(C) with C = 3 as de�ned in the form�n = 3n+4p32� Z 10 fn(v)g(v)dvwhere f and g are as given in (16), to obtain an expression for the determinants �n =det[�i+j ℄0�i;j�n as Madonald-type integrals. LetIn = (p32� )n+1 3(n+1)(3n+4)(n+ 1)! ZI(n+1) Y0�i<j�n(vi � vj)2 nYi=0 g(ui)dui (27)the eletroni journal of ombinatoris 8 (2001), #R36 25



where vi = ui(1� ui)g(ui) = u 13i (1� ui) 23 (1� 2ui)We haveTheorem 3 If �n = det[�i+j ℄0�i;j�n, then �n = In.Proof We put B = 34p32�g(u) = u 13 (1� u) 23 (1� 2u)f(u) = 9u(1 � u)� 1Then hoosing n+1 variables u0; u1; : : : ; un; and labeling fi = f(ui) and gi = g(ui) (0 � i � n),we get �n = det[�i+l℄0�i;l�n= Bn+1 ZI(n+1) nYi=0(3fi)i det[(3fk)l℄ nYi=0 gidui= Bn+13n(n+1) ZI(n+1) nYi=0(fi)i det[f lk℄ nYi=0 giduiwhere the integral is over the (n+1)-fold produt of the unit interval. Now sum over all (n+1)!permutations of the indies to get(n+ 1)!�n = Bn+13n(n+1) ZI(n+1) det[f lk℄2 nYi=0 gidui= Bn+13n(n+1) ZI(n+1) [ Y0�i<j�n(fi � fj)℄2 nYi=0 gidui= Bn+133n(n+1) ZI(n+1) Y0�i<j�n(vi � vj)2 nYi=0 giduiwhere vi = ui(1� ui):The theorem follows immediately. �From what is said in the next several setions, it is reasonable to think that the �n givethe number of ASMs with vertial symmetry. In that ase, these integrals should also ount theASMs with vertial symmetry.the eletroni journal of ombinatoris 8 (2001), #R36 26



For example, expand Y0�i<j�n(vi � vj)2 =X(i) i0;i1;���;invi00 vi11 � � � vinn ;where the oeÆients are integers and the sum is over ompositions (i) = (i0; i1; : : : ; in) ofn(n+ 1) in whih 0 � ik � 2n for every k. Substituting into the integral and noting thatZ 10 u��1(1� u)��1(1� 2u)du = (� � �)� � �(�+ 1)�(�)�(�+ � + 1)and in the ase � = ik + 43 , and � = ik + 53 ,(� � �)� � �(�+ 1)�(�)�(�+ � + 1) = 133ik+4 � 2�p3 � �(3ik + 4)�(2ik + 4)�(ik + 2)we arrive at (n+ 1)!�n =X(i) i0;i1;���;in nYk=0Mik ;where Mk = 1k + 1 3k + 3k !:In order to evaluate the sum, we may assume that the indies form a partition of n(n+ 1),in whih ase 0 � i0 � i1 � � � � � in and the ik run over the range k � ik � n+ k. This hangewill only involve a new olletion of integer oeÆients for whih we keep the same notation.Thus if n = 0, there is one term with i0 = 0 0 = 1and �0 =  30! = 1If n = 1, the original sum over (i0; i1) = (0; 2) 0;2 = 1= (2; 0) 2;0 = 1= (1; 1) 1;1 = �2is replaed with a sum over (i0; i1) = (0; 2) 0;2 = 2= (1; 1) 1;1 = �2and dividing by 2! we get �1 = det[Mi+j ℄0�i�j�1= M0M2 �M21= 3the eletroni journal of ombinatoris 8 (2001), #R36 27



In the ase n = 2, the sum is over(i0; i1; i2) = (0; 2; 4) (i) = 6= (0; 3; 3) (i) = �6= (1; 1; 4) (i) = �6= (1; 2; 3) (i) = 12= (2; 2; 2) (i) = �6so that after dividing by 3!, we get�2 = det[Mi+j ℄0�i�j�2= M0M2M4 �M0M23 �M21M4 + 2M1M2M3 �M32= 26:8 Equivalent forms for �nReall that �n(C) = det[�i+j(C)℄0�i;j�nwhere the moments �k are de�ned by (13) and haraterized in a variety of forms by Theorem2. The determinant �n(3) itself an be expressed in a number of di�erent forms as the followingtheorem shows.Theorem 4 �n(3) = det[ai+j ℄0�i;j�n, where ak has any of the forms1. ak = 1k+1�3k+3k �,2. ak = bk(x) =Pkj=0 j+1k+1�3k�j+1k�j �xj for any x. In partiular det[bi+j(x)℄0�i;j�n evaluates to�n(3) independently of x.3. ak = 1k+1�3k+1k �,4. ak = �3k+2k � .Proof We will �rst deal with the ase whereak = 1k + 1 3k + 3k !:We will use the following expression for �k from Theorem 2,�k = p32� 3k+4 Z 10 fk(u)g(u)duwhere f(u) = 9u(1 � u)� 1g(u) = u 13 (1� u) 23 (1� 2u)the eletroni journal of ombinatoris 8 (2001), #R36 28



as in (16). This form for the �k allows us to make the following omputation:kXi=0 ki!3k�i�i = p32� 3k+4 Z 10 (f(u) + 1)kg(u)du= p32� 33k+4 Z 10 (1� 2u)uk+ 13 (1� u)k+ 23 g(u)du= p32� 33k+4  �(k + 43)�(k + 53)�(2k + 3) � 2�(k + 73)�(k + 43)�(2k + 4) != p32� 33k+4(2k + 3� 2(k + 43))�(k + 43)�(k + 53)�(2k + 4)= p32� 33k+3 �(3k + 3)2��(2k + 4)�(k + 1)33k+3� 12= 1k + 1 3k + 3k != akNow row and olumn manipulations show that the determinant ofai+j = i+jXk=0 i+ jk !3i+j�k�kis equal to the determinant of �i+j . This proves part 1.We now prove part 2. The �rst 5 polynomials bk(x) areb0(x) = 1b1(x) = x+ 2b2(x) = x2 + 4x+ 7b3(x) = x3 + 6x2 + 18x+ 30b4(x) = x4 + 8x3 + 33x2 + 88x+ 143The proof of 2 is related to the enumeration of 2{line arrays of positive integerse1 e2 � � � ekf1 f2 � � � fksuh that 1 = f1 = e1 � f2 � e2 � � � � � fk � ek � j and ei � i, (1 � i � k). Let hk;j be thenumber of suh arrays. Carlitz proved [2℄ thathk;k�j+1 = jk 3k � j � 1k � j !; (1 � j � k);and 1k 3kk � 1! = kXj=1hk;k�j+1 (28)the eletroni journal of ombinatoris 8 (2001), #R36 29



We de�ne the polynomials bk(x) in terms of the numbers hk;j of Carlitz asbk(x) = xk+1 k+1Xj=1 hk+1;jx�j:It an be proved that the bk(x) satisfy the reursion(1� x)2bk(x)� x3bk�1(x) = 1k + 1 3k + 1k !� 2k + 1 3kk !x (29)for k � 1 with b0(x) = 1 by omparing oeÆients and verifying the resulting binomial identity.In partiular there is a representation of the form(1� x)2bk(x)� x3bk�1(x) = �k � �kxfor two numerial sequenes f�kg and f�kg de�ned in (29). Now perform elementary rowoperations on the matrix Bn = [bi+j(x)℄ as follows: multiply the last row by (1 � x)2, andsubtrat from it x3 times the (n� 1)-st row. Then multiply the (n� 1)-st row by (1� x)2, andsubtrat from it x3 times the (n � 2)-nd row, and so on, ontinuing down to n = 1. Only the�rst row stays b0(x); b1(x); : : : ; bn�1(x). All other entries of the transformed matrix are now ofthe form �r��rx, i.e. linear in x. Call this new matrix Cn. The operations on Bn multiply thedeterminant by (1� x)2n and so (1� x)2n det(Bn) = det(Cn): (30)But det(Cn) is a polynomial of degree n + n = 2n from �rst priniples. Sine det(Bn) is apolynomial in x, the left hand side of (30) is a polynomial of degree at least 2n, and thereforeexatly 2n. This fores det(Bn) to be a onstant independent of x. By Carlitz's summation in(28), bk(1) = 1k + 1 3k + 3k !and therefore by part 1 of the Theorem, �n = det(Bn). Speializing bk(x) at x = 0 givesbk(0) = 1k + 1 3k + 1k !whih proves part 3, while part 4 is a onsequene of the binomial identitybk(3) =  3k + 2k !: �RemarkAs we have seen in (25) and (26) of Setion 5 for the �rst few values of n, the polynomials �n(t+3)appear to have non-negative oeÆients, the onstant term agreeing with the number of ASMsthe eletroni journal of ombinatoris 8 (2001), #R36 30



with vertial symmetry. Consider the matrix entries in the equivalent forms for �n given inTheorem 4. These an be interpreted as orresponding to the t = 0 ase of the determinantfor any of the alternate formulations for ak in Theorem 4. For example �n = det[ai+j ℄ withak = 13k+1�3k+1k �, and it is reasonable to assume that ak is the onstant term in some polynomialak(t), for whih det[ai+j(t)℄ is idential to the polynomial �n(3 + t) obtained through the�k(3 + t)'s.Theorem 5 �n(3) = RR(n).Proof For this proof we will use the representation of �n(3) as the determinant of the matrixAn = " 3(i + j) + 2i+ j !#0�i;j�nwhih is the interpretation of �n(3) given in part 4 of Theorem 4. In a private orrespondene,we have learned that Ira Gessel and Guoe Xin have independently disovered a di�erent ap-proah to alulating this determinant. The approah we take is a variation of �nding the LDUdeomposition of the matrix An. More spei�ally we �nd a lower triangular matrix,266664 w0;0w1;0 w1;1: : :wn;0 wn;1 : : : wn;n 377775so that 266664 w0;0w1;0 w1;1: : :wn;0 wn;1 : : : wn;n 377775266664 a0;0 : : : a0;na1;0 : : : a1;n: : :an;0 : : : an;n 377775is an upper triangular matrix where ai;j =  3(i + j) + 2i+ j !:We normalize the w-matrix so that wi;i = 1 for all i � 0. We then proeed to guess the formulafor the w-matrix. This is given below:wi;j =Xk " (�1)i+j+k(3k)!(2k + 1)!k!  2ii+ j + k!(3i+ 2)!(j + k)!(2i + 2j + 2k + 1)!(3j + 3k + 2)!i!(4i + 1)! # :We plan on providing more details on how this guess was obtained elsewhere. It an easily beheked to be aurate with matries with sizes up to 30� 30.We then proeeded to use automated tools to validate this guess. For notational onvenienewe rename the running indies by i and j, and denote the row and the olumn indies of thematrix by n and m respetively. Then we need to demonstrate that the following double sumthe eletroni journal of ombinatoris 8 (2001), #R36 31



nXi=0wm;iai;n =nXi=0 n�iXj=0 � (�1)m+i+j(3j)!(2j + 1)!j! � 2mm+ i+ j� (3m+ 2)!(i+ j)!(2m+ 2i+ 2j + 1)!(3i+ 3j + 2)!m!(4m+ 1)! �3(i+ n) + 2i+ n ��is zero if m < n and is �6n+42n+2�2�4n+32n+2�if m = n. These types of identities an be proved automatially using a tool due to Wilf andZeilberger: see for example, Kurt Wegshaider's thesis [12℄ for a omprehensive treatment.We rewrite the double sum, and equivalently show that for m < n (below the diagonal)nXi=0 n�iXj=0 (�1)i+j(3j)!(i + j)!(2 + 3i+ 3m)!(1 + 2i+ 2j + 2n)!j!(1 + 2j)!(2 + 3i+ 3j)!(i +m)!(2 + 2i+ 2m)!(�i� j + n)!(i+ j + n)! = 0 (31)and for n = m (on the diagonal)nXi=0 n�iXj=0 (�1)n+i+j(3j)!(3n+ 3i+ 2)!(i+ j)!(2n+ 2i+ 2j + 1)!(3n� 1)!(4n+ 3)!j!(2j + 1)!(n+ i+ j)!(n� i� j)!(n+ i)!(2n+ 2i+ 2)!(3j + 3i+ 2)!(n� 1)!(2n+ 1)(6n+ 1)! = 1:(32)To inorporate the ondition m < n, we multiply the summand in (31) by �n�1m � and setF [m;n; i; j℄ = (�1)i+j(3j)!(i + j)!(2 + 3i+ 3m)!(1 + 2i+ 2j + 2n)!�n�1m �j!(1 + 2j)!(2 + 3i+ 3j)!(i +m)!(2 + 2i+ 2m)!(�i� j + n)!(i+ j + n)!The following erti�ate for F proving (31) was omputed by Akalu Tefera:12(�2 + n)(�1 + n)(1 + 4n)(�7 + 6n)(�5 + 6n)F [�2 +m;�2 + n;�1 + i; j℄ +12(m� n)(�1 + n)(�1 + 4n)(�4� 9n+ 18n2)F [�2 +m;�1 + n;�1 + i; j℄ +3(�1 +m� n)(m� n)(1 + 3n)(2 + 3n)(�3 + 4n)F [�2 +m;n;�1 + i; j℄ +4(�1 +m)(�1 + n)(�3 + 4n)(�1 + 4n)(1 + 4n)F [�1 +m;�1 + n;�1 + i; j℄ =�[i;�12(�2 + n)(�1 + n)(1 + 4n)(�7 + 6n)(�5 + 6n)F [�2 +m;�2 + n;�1 + i; j℄ �12(m� n)(�1 + n)(�1 + 4n)(�4� 9n+ 18n2)F [�2 +m;�1 + n;�1 + i; j℄�3(�1 +m� n)(m� n)(1 + 3n)(2 + 3n)(�3 + 4n)F [�2 +m;n;�1 + i; j℄℄ + �[j; 0℄The erti�ate for the sum (32) with summand F [n; i; j℄ given by(�1)n+i+j(3j)!(3n+ 3i+ 2)!(i+ j)!(2n+ 2i+ 2j + 1)!(3n� 1)!(4n+ 3)!j!(2j + 1)!(n+ i+ j)!(n� i� j)!(n+ i)!(2n+ 2i+ 2)!(3j + 3i+ 2)!(n� 1)!(2n+ 1)(6n+ 1)!the eletroni journal of ombinatoris 8 (2001), #R36 32



turned out to be muh more ompliated. We ran Kurt Wegshaider's Mathematia programMultiSum with the ommand FindReurrene[summand, n, i, j, 1℄. The resulting erti�-ate proving (32) an be aessed online1. It is safe to bet that this \one-line proof" of (32) isa reord-setter as far as long erti�ates go, as the erti�ate �le is over 1.2MB, and ontainsabout 20,000 lines. �9 ASM, vertial symmetry, lattie path modelsAlternating Sign MatriesAn n� n matrix with entries from f�1; 0; 1g is an Alternating Sign Matrix (ASM) if1. every row and olumn has sum 1,2. in every row and olumn, the non-zero entries start with 1 and alternate in sign.Beause of the seond ondition, the partial sums of elements of every row and olumn of anASM must be 1 or 0. Every permutation matrix is an ASM, and for n = 1; 2 these are the onlyASMs. For n = 3, there are 7 ASMs, the six 3� 3 permutation matries and the matrix264 0 1 01 �1 10 1 0 375The �rst few values of the number of ASMs is1; 2; 7; 42; 429; 7436; : : :Numerous onjetures onerning ASMs were put forward by Mills, Robbins, and Rumsey in[7℄. These are further desribed in [11℄. A general formula for the number of n� n ASMs wasonjetured by Mills{Robbins{Rumsey to ben�1Yk=0 (3k + 1)!(n+ k)! (33)and proved by Zeilberger in 1996 [13℄. Shorter proofs were subsequently given by Kuperberg [5℄and a re�nement by Zeilberger [14℄. There is a substantial amount of ombinatoris onerningASMs that is still not fully understood. Proofs for the number of ASMs having symmetries (e.g.invariant under reetion about a vertial axis, invariant under a 90 degree rotation, et.) forwhih there are onjetured formulas have only reently been announed by Greg Kuperberg[6℄. For example, the number of (2n+ 3)� (2n+ 3) ASMs2 symmetri about a vertial axis isRR(n) = nYk=0 �6k+42k+2�2�4k+32k+2� (34)whih starts out as 1; 3; 26; 646; 45885 for n = 0; 1; 2; 3; 4. A full aount of the history of ASMsan be found in [1℄.1http://www.s.usb.edu/�omer/diagonal-ertifiate.txt2For tehnial reasons we start with the 3� 3 ase in this paper.the eletroni journal of ombinatoris 8 (2001), #R36 33



Lattie PathsIn this setion we onsider lattie paths in the plane with unit steps in the diretion of thehorizontal and vertial axes. The elementary steps are(a; b) ! (a+ 1; b) (horizontal step);(a; b) ! (a; b+ 1) (vertial step): (35)Thus a t-step path � is the union of the losed line segments determined by a sequene of distintlattie points (s0; s1; : : : ; st) suh that if si = (xi; yi), then xi+1 � xi and yi+1 � yi are in f0; 1g.The path � is said to be from s0 to st, denoted by � : s0 ! st. Given lattie points A = (a1; a2)and B = (b1; b2), there is an enoding of a path � : A ! B as a word over f1; 2g onsisting ofb1 � a1 ourrenes of 1 (horizontal steps) and b2 � a2 ourrenes of 2 (vertial steps). Thusthe number of paths from A to B is the binomial oeÆient b1 � a1 + b2 � a2b1 � a1 !Note that this number is zero unless B is weakly to the North-East of A. For sets of pointsAi = (ai1; ai2) and Bi = (bi1; bi2), (1 � i � n), we single out two families of n-tuples of paths� = (�1; : : : ; �n) with �i : Ai ! Bi. � is alled1. Non-interseting if no two paths �i; �j have a ommon point,2. Osulating if the paths are allowed to meet at lattie points only, but without rossing.Figure 7 shows a 4-tuple of non-interseting paths, and the rightmost �gure in Figure 5 showsa 5-tuple of osulating paths where the osulation points are indiated by irles. In all of theseexamples, the path from A0 to B0 is a degenerate path onsisting of a single lattie point withno horizontal or vertial steps.There is a standard tool for representing the number of non-interseting families of pathsas a determinant via involutions, assuming ertain restritions on the relative positions of thepoints Ai and Bi. For a permutation � of the indies i, let �� denote n-tuples of paths �� =(��1 ; : : : ; ��n) with ��i : Ai ! B�(i) and set sign(��) = sign(�). ThenX� X�� sign(��) = det " ai1 � bj1 + ai2 � bj2ai1 � bj1 !#1�i;j�n (36)For any involution on the unrestrited set of n-tuples of paths �� whih is sign-reversing outsideits �xed point set F , the left-hand side of (36) an be written asX��2F sign(��) (37)A sign-reversing involution an be de�ned by loating a anonial pair of interseting paths (suhas the smallest labeled intersetion of the smallest pair in lexiographi order), and swithingthe eletroni journal of ombinatoris 8 (2001), #R36 34



the portions of the paths after the intersetion point. If the position of the points Ai and Biguarantee that any n-tuple �� orresponding to a non-identity � is interseting, suh as whena11 � a21 � � � � � an1 and a12 � a22 � � � � � an2 ;b11 � b21 � � � � � bn1 and b12 � b22 � � � � � bn2 ;then the determinant in (36) ounts the number of n tuples of non-interseting paths � =(�1; : : : ; �n) with �i : Ai ! Bi.ASM and Osulating PathsThe path interpretation of ASMs in terms of osulating paths is diretly based on the ornersum matrix introdued by Robbins and Rumsey in [10℄: Given an n � n matrix A, the ornersum matrix A of A is de�ned by Ai;j =XAk;lwhere the sum is over all pairs of integers (k; l) with k � i and l � j (the interpretation heredi�ers from [10℄ only in the ordering of the row and olumn indies of A). Ak;l is regarded as zeroif k or l is out of the range f1; 2; : : : ; ng. The di�erenes Ai;j �Ai+1;j and Ai;j �Ai;j+1 are thepartial sums of the rows and olumns of A. Using this observation the following haraterizationof ASMs in terms of orner sum matries an be provedLemma 1 ([10℄, lemma 1) An n� n matrix A is an ASM i� A satis�es1. A1;i = Ai;1 = n+ 1� i for i = 1; 2; : : : ; n,2. Ai;j �Ai;j+1 and Ai;j �Ai+1;j are in f0; 1g for 1 � i; j � n.Therefore the orner-sum matrix A of an ASM A has �rst row from right to left, and �rst olumnfrom bottom up the entries 1; 2; : : : ; n. The other entries Ai;j are from f0; 1; : : : ; ng so that theentry above and to the left is either equal to Ai;j or 1 +Ai;j.We think of A as onsisting of n2 ells in the (n+1)� (n+1) grid with label of the ell (i; j)equal to the entry Ai;j. Traing the south and east boundaries of the ells in A orrespondingto eah �xed i 2 f1; 2; : : : ; ng produes n lattie paths Sine the steps of the paths in the �rstrow (a vertial step) and in the �rst olumn (a horizontal step) are predetermined by ondition1 of lemma 1, these an be viewed as paths in the n � n grid. The rows start with the pointsA0; A1; : : : ; An�1 from top to bottom, and the olumns with the points B0; B1; : : : ; Bn�1 Let� = (�0; �1; : : : ; �n�1) where �i : Ai ! Bi is the lattie path obtained from the boundary of theentries n� i in A. Then the path from A0 to B0 is a single point, and the family � is osulating.Next, we onsider ASM with vertial symmetry. The path interpretation that aompaniesRobbins and Rumsey's orner-sum matrix an again be interpreted as an osulating path model.De�nition 1 On denotes the number of (n+ 1)-tuples of osulating paths � = (�0; �1; : : : ; �n)where Ai = (0;�2i); Bi = (i; 0); (38)and �i : Ai ! Bi for i = 0; 1; : : : ; n.the eletroni journal of ombinatoris 8 (2001), #R36 35



An example of suh a 5-tuple � family appears on the right hand side of Figure 5 for n = 4.Lemma 2 On is the number of (2n+ 3)� (2n+ 3) ASM with vertial symmetry.Proof There is a simple one-to-one orrespondene. Label the olumns of A as the n + 1left olumns L1; : : : ; Ln+1, the entral olumn  and the n + 1 olumns to the right of  asR1; : : : ; Rn+1. The proof of the lemma makes use of the orner-sum matrix interpretation forthe general ASM, applied to the (2n+3)�(n+2) matrix that onsists of  andR1; : : : ; Rn+1. Firstof all note that the entries in  must be 1;�1; 1;�1; : : : ;�1; 1 by vertial symmetry. Furthermorethe row sums in R1; : : : ; Rn+1 must alternately be 0 or 1 from top to bottom. These onditionsfore that the entries in  and R1; : : : ; Rn+1 in A satisfy1. In , the entries of A from bottom up are 1; 1; 2; 2; : : : ; n+ 1; n+ 1; n+ 2.2. In R1, the entries of A from bottom up are 0; 1; 1; 2; 2; : : : ; n+ 1; n+ 1.3. In the �rst two rows inR1; R2; : : : ; Rn+1 the entries of A from right to left are 1; 2; 3; : : : ; n+1.4. In the last row in R1; R2; : : : ; Rn+1 the entries of A are 0.These properties imply that the paths that are obtained from the boundaries of the ells labeledf1; 2; : : : ; n + 1g from A as in the ase of the general ASM are now predetermined in the �rsttwo rows, the last row, and the olumns  and R1. This leaves a 2n� n grid de�ning the pointsAi and Bi as in Figure 5. The boundary of the ells labeled n+ 1� i de�nes a path from Ai toBi as given in (38). The path �0 : A0 ! B0 is a degenerate path with one point, and the family� = (�0; �1; : : : ; �n) is osulating. The reverse of this map is straightforward. �
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Figure 5: The olumns , R1; R2; R3; R4; R5 of an 11 � 11 vertially symmetri ASM,the orner sum matrix, and the orresponding 5-tuple of osulating paths.the eletroni journal of ombinatoris 8 (2001), #R36 36



This onstrution is displayed in Figure 5 for the 11� 11 vertially symmetri ASM on the leftof the �gure (the rightmost 6 olumns are shown). The resulting 5-tuple of osulating paths areas given on the right hand side.10 Path Interpretations & Hankel DeterminantsOur path model for Hankel determinants related to ASM with vertial symmetry is as follows.Consider the set of points A0; A1; : : : ; An and B0; B1; : : : ; Bn whereAi = (�i;�2i); and Bi = (i; 2i + 2); (0 � i � n)as displayed in Figure 6 for n = 3. The points Ai are on the line y = 2x in the third quadrant,
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Figure 6: Path model for the (n+ 1)� (n+ 1) Hankel matrix (39) for r = 2 and n = 3.and the points Bi are on the line y = 2x + 2 in the �rst quadrant. The number of paths� : Ai ! Bj is given by  3(i+ j) + 2i+ j !whih is the (i; j)-th entry of the Hankel matrix [ai+j ℄0�i;j�n with determinant �n(3) we onsid-ered before with ak = �3k+2k � (this is the haraterization in part 4 of Theorem 4). In the generalthe eletroni journal of ombinatoris 8 (2001), #R36 37



ase, instead of the lines y = 2x and y = 2x+2, we onsider the lines y = rx and y = rx+ r forr � 1 with Ai = (�i;�ri); and Bi = (i; ri + r); (0 � i � n):In this way we obtain a path model for the (n+ 1)� (n+ 1) Hankel matrix" (r + 1)(i + j) + ri+ j !# : (39)Our results hold for general r in this setup, where the ASM with vertial symmetry orrespondsto the ase r = 2.Theorem 6 For any integer r � 1, det h�(r+1)(i+j)+ri+j �i0�i;j�n is the number of non-intersetingtuples of paths � = (�0; �1; : : : ; �n) with �i : Ai ! Ci whereAi = (�i;�ri); and Ci = (i;�i); (0 � i � n)as shown in Figure 7 for r = 2 and n = 3.
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Figure 7: Tuples of non-interseting paths (Hankel paths) ounted by the Hankeldeterminant det h�(r+1)(i+j)+ri+j �i for r = 2 and n = 3.Proof First we work with tuples of paths from points Ai to Bj in Figure 6, and subsequentlyidentify the tuples enumerated by the determinant as non-interseting paths from points Ai to Ciin Figure 7. Note that the usual anellation of interseting n-tuples via sign reversing involutionsfails for the plaement of points Figure 6, sine it is possible to have non-identity permutations� for whih �� is non-interseting. However the interpretation (37) for the determinant stillholds. We show that all tuples of paths an be paired up to anel out exept for those � =the eletroni journal of ombinatoris 8 (2001), #R36 38



(�0; �1; : : : ; �n) orresponding to the identity permutation for whih �i stays stritly to theNorth-West of �j whenever i < j. Assuming for a moment that we an do this, it is easy to seethat we an identify suh a family with paths from Ai to Ci instead of the Bi as laimed in theTheorem, sine the portion of �i from Ci to Bi must onsist of vertial steps only for every i.We proeed in two steps. First we pair up tuples �� in whih some path �i : Ai ! B�(i)starts out by r (or more) vertial steps (and therefore intersets the line y = rx+ r at x = �i).Consider any bijetion � for the trivial binomial identity (r + 1)kk ! = (r + 1) (r + 1)k � 1k � 1 ! :Loate the largest index i in �� for whih �i passes through (�i;�ri + r), i.e. starts with rvertial steps. Suppose �(i) = k and �(i�1) = l so that �i : (�i;�ri+r)! Bk, �j : Ai�1 ! Bl.Let N = i+ k and M = i+ l. The number of suh �i; �i�1 pairs is (r + 1)NN ! (r + 1)M � 1M � 1 ! : (40)Swithing the endpoints, the number of pairs �i : (�i;�ri+ r)! Bl, �j : Ai�1 ! Bk is (r + 1)MM ! (r + 1)N � 1N � 1 ! ; (41)and these latter pairs of paths have signs opposite to those of the former. Now � an be usedto onstrut a bijetion between these two sets of opposite signed pairs of paths by setting up aorrespondene for (r + 1)NN ! (r + 1)M � 1M � 1 ! = (r + 1) (r + 1)N � 1N � 1 ! (r + 1)M � 1M � 1 !and  (r + 1)MM ! (r + 1)N � 1N � 1 ! = (r + 1) (r + 1)M � 1M � 1 ! (r + 1)N � 1N � 1 !and omposing the two bijetions. Let F be the �xed point of this sign-reversing involution.We an now onsider only �� 2 F . These are tuples �� in whih no �i starts with r vertialsteps. Now by the pigeonhole priniple, either �i stays North-West of �j in suh a �� for all pairsi < j, or �� is an interseting tuple of paths. Suh interseting ones in F an be aneled outby a standard sign-reversing involution, leaving the non-interseting ones (suh as the examplein Figure 7) orresponding to the identity permutation as the tuples of paths enumerated by thedeterminant. �De�nition 2 Pn denotes the number of (n+1)-tuples of non-interseting paths � = (�0; �1; : : : ; �n)with �i : Ai ! Ci whereAi = (�i;�2i); and Ci = (i;�i); (0 � i � n);the eletroni journal of ombinatoris 8 (2001), #R36 39



An example 4{tuple ounted by Pn is shown in Figure 7 for r = 2 and n = 3.As a orollary of Theorem 6 with r = 2, we have thatPn = det " 3(i+ j) + 2i+ j !#0�i;j�nand therefore the sequene Pn starts out as 1; 3; 26; 646; 45885 for n = 0; 1; 2; 3; 4.RemarkThe values of the Hankel determinants in Theorem 6 for small values of n and r are given inFigure 8. The seond row is given by RR(n) for n = 0; 1; 2; 3; 4. For the �rst row, it is easy tornn 0 1 2 3 41 1 1 1 1 12 1 3 26 646 458853 1 6 206 40083 440423014 1 10 950 848465 70963494765 1 15 3200 9604260 403895099151Figure 8: Values of det h�(r+1)(i+j)+ri+j �i0�i;j�n for small values of r and n.see from the path interpretation thatdet " 2(i + j) + 1i+ j !# = 1for every n sine there is only one tuple of paths � enumerated by the determinant, i.e. one inwhih eah � : Ai ! Ci onsists of horizontal steps only. Sinedet " 12(i+ j) + 1 2(i + j) + 1i+ j !# = det " 2(i+ j) + 1i+ j !#we obtain a ombinatorial proof of the well-known result that the Catalan-Hankel determinanton the right evaluates to unity [8℄.RemarkPart of the bijetion onstruted for the proof of Theorem 6 was built upon � proving NN ! =  �  N � 1N � 1 ! (42)Of ourse the equality of (40) and (41) follows from (42) trivially and does not require a bijetion.In partiular onstruting a \nie" bijetion � involves dividing ombinatorially, whih is usuallyproblemati. This is best illustrated by the fat that the q-binomial identity(1 + q + � � � + qN�1) " NN # = (1 + q + � � �+ qN�1)(1 + qN + � � � + q(�1)N ) " N � 1N � 1 #the eletroni journal of ombinatoris 8 (2001), #R36 40



has a straightforward bijetive proof, sine both sides q-ount the number of strings of type1(�1)N2N�131 by inversions, whereas" NN # = (1 + qN + � � �+ q(�1)N ) " N � 1N � 1 #does not.RemarkA related Hankel determinant whih an easily be evaluated via a path model is det[ai+j ℄0�i;j�nwhere ak = �2kk �.Theorem 7 det " 2(i + j)i+ j !#0�i;j�n = 2n : (43)Proof Consider the set of points A0; A1; : : : ; An and B0; B1; : : : ; Bn whereAi = (�i;�i); and Bi = (i; i); (0 � i � n)so that A0 = B0 = (0; 0). Then ai+j is the number of paths from Ai to Bj, and the determinantan be interpreted as in (36). We show that det[ai+j℄0�i;j�n enumerates all (n + 1)-tuples ofpaths � = (�0; �1; : : : ; �n) orresponding to the identity permutation in whih eah pi is a right-angle between Ai and Bi, i.e. eah �i onsists of horizontal steps followed by vertial steps, orvertial steps followed by horizontal steps as shown in Figure 9 for n = 4. Sine there are 2n
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Figure 9: Path model for the Hankel determinant det[�2(i+j)i+j �℄0�i;j�4.suh (n+ 1)-tuples of paths, the Theorem will follow. The key observation is that for any twodistint points Bk and Bl, the number of pairs of paths, one from (�i;�j) to Bk and one from(�j;�i) to Bl is  i+ j + 2ki+ k ! i+ j + 2lj + l !the eletroni journal of ombinatoris 8 (2001), #R36 41



and this an be written as  i+ j + 2kj + k ! i+ j + 2li+ l ! ;whih is the number of pairs of paths, one from (�i;�j) to Bl and one from (�j;�i) to Bk.Note that in this ase there is a trivial bijetion between these two sets of pairs of paths thatwe an use as the part of an involution. We again proeed in two steps. First we pair up tuples�� in whih some pair of paths �r : Ar ! Bk and �s : As ! Bl pass through symmetriallyplaed points (�i;�j) and (�j;�i), respetively. By the above observation, this pairing is signreversing. Let F be the �xed point of this involution. On F , we pair up interseting pairs ofpaths in the usual way. The �nal �xed point set enumerated by the determinant onsist of all(n+ 1)-tuples of paths � = (�0; �1; : : : ; �n) suh that1. � is non-interseting,2. There are no two paths in � suh that one passes through (�i;�j), and the other through(�j;�i) for any i; j (�n � i; j � n).Now notie that in any suh tuple �, we must have �1 : A1 ! B1. Otherwise �1 has to gothrough either (2;�1), or (�1; 2), and in either ase it is then impossible for any other path toreah B1. Now �2 : A2 ! B2, for otherwise �2 has to pass through (3;�2), or (�2; 3), making itimpossible for any other path to reah B2. It follows that �i : Ai ! Bi and eah �i other than�0 an be either type of a right-angle. This proves Theorem 7. �RemarkThere is a straightforward one-to-one orrespondene between the Hankel paths ounted byPn (as de�ned in De�nition 2) and olumn-strit tableaux of stairase shape (n + 1; n; : : : ; 1)in whih the entries in row i are bounded by 2(n + 1) � i. For example, the 4-tuple of non-interseting paths in Figure 7 orresponds to the olumn strit tableau in Figure 10 where thebounds for the row entries are 7; 6; 5; 4 from top to bottom. On the other hand, there is a
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3 4Figure 10: Column-strit tableau orresponding to the 4-tuple of paths in Figure 7.one-to -one orrespondene between the osulating paths orresponding to ASM with vertialsymmetry ounted by On (as de�ned in De�nition 1) and strit Gelfand patterns [11℄ with �rstrow 1; 3; : : : ; 2n� 1. For example, the 5-tuple of osulating paths in Figure 5 orresponds to thestrit Gelfand pattern in Figure 11 with �rst row 1; 3; 5; 7; 9.the eletroni journal of ombinatoris 8 (2001), #R36 42
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3Figure 11: Strit Gelfand pattern orresponding to the 5-tuple of paths in Figure 5.RemarkThe two types of paths in question, the Hankel paths ounted by Pn�1 (as de�ned in De�nition2) and the osulating paths orresponding to ASM with vertial symmetry ounted by On�1 (asde�ned in De�nition 1) an be shown to be in bijetion with the families F1(n) and F2(n) oftableaux de�ned below. First, all a tableau (or a shifted tableau) with n rows good if1. the entries are bounded by n,2. the �rst ell in row i is labeled i,3. entries are weakly-inreasing down the anti-diagonals.Let � = (2n � 1; :::; 3; 1). Then F1(n) is the family of olumn{strit good tableaux of shape �,and F2(n) is the family of shifted good tableaux of shape �. Examples of these are given inFigures 12 and Figure 13 for n = 3.11111 11111 11111 11112 11112 11112 11113 11113 11113 11122 11122 11122 11123222 223 233 222 223 233 222 223 233 222 223 233 2223 3 3 3 3 3 3 3 3 3 3 3 311123 11123 11133 11133 11222 11222 11223 11223 11233 11233 12222 12223 12233223 233 223 233 223 233 223 233 223 233 233 233 2333 3 3 3 3 3 3 3 3 3 3 3 3Figure 12: Family F1(3) of olumn-strit good tableaux of shape (5; 3; 1) ounted byP2.11111 11111 11111 11112 11112 11112 11113 11113 11122 11122 11122 11123 11123222 223 233 222 223 233 223 233 222 223 233 223 2333 3 3 3 3 3 3 3 3 3 3 3 311133 11222 11222 11222 11223 11223 11233 12222 12222 12222 12223 12223 12233233 222 223 233 223 233 233 222 223 233 223 233 2333 3 3 3 3 3 3 3 3 3 3 3 3Figure 13: Family F2(3) of shifted good tableaux of shape (5; 3; 1) ounted by O2.
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11 Higher Order �nWe note again that the Hankel determinants det[ai+j ℄0�i;j�n withak =  2k + 1k !;all have the value 1. It appears that the values det[ai+j ℄0�i;j�n withak =  3k + 2k !;are the same as the onjetured numbers for ASMs with vertial symmetry given by (34).So in two ases, the values of an in�nite lass of determinants are given by smooth arithmetisequenes; i.e., the prime fators of the determinants ome from ratios of produts of binomialoeÆients and are therefore small. This phenomenon seems to be quite extensive.We now return to the ritial value C = 6 of setion 3, the value whih spei�es the polyno-mial sequene qn = xqn�1 � 6qn�2 + 4qn�3 � qn�4with initial polynomials q�3 = q�2 = q�1 = 0, q0 = 1 As in setion 2, we may de�ne a linearfuntional L on the spae of polynomials byL[1℄ = 1L[qn℄ = 0 (n � 1):This funtional has moments �n = L[xn℄ the �rst seven values of whih are�0 = 1�1 = 0�2 = 6�3 = �4�4 = 73�5 = �120�6 = 1164:The assoiated Hankel determinants �n = det[�i+j ℄0�i;j�n begin�0 = 1�1 = 6�2 = 206�3 = 40083:the eletroni journal of ombinatoris 8 (2001), #R36 44



It an readily be shown that these partiular �n an also be realized in other forms, and wemention �n = det[bi+j ℄0�i;j�n, where bk =  4k + 3k !:In the tables, the largest prime fator of these determinants is generally quite large, andsome further numerial data suggests that the Hankel determinants det[hi+j ℄0�i;j�n withhk =  ak + bk ! (a � 4)are never smooth.12 EpilogueThis paper began with the onsideration of a ertain transform of polynomials, whih we havealled the T -transform. From this transform we began our study of families of polynomialssatisfying a Riemann hypothesis. These families our as the terms generated by reursions, andexept in the few ases where the reursions are 3-term, the empirial evidene of the existeneof a Riemann hypothesis and of a familiar interlaing phenomenon annot be studied within theframework of an existing theory. This led us to the onsideration of renormalized reursions, outof whih emerged several new problems, as well as a totally unexpeted onnetion to variousombinatorial objets, whih inlude Alternating Sign Matries with vertial symmetry. As tothe new problems, we mention again the 3-onjeture and the 6-onjeture, whih are merely twoexamples of in�nitely many questions related to renormalized reursions and questions aboutthe nature of interlaing phenomenon, as well as questions about the t-analogues generated byvarious Hankel determinant models presented.We have indiated that to eah renormalized reursion, there is a ritial value, and that thisritial value may be attahed to rather interesting ombinatorial questions. These ombinatorialquestions in turn may be approahed from various di�erent diretions, whih seem to uniteproblems in diverse areas. For example, it is unexpeted that ertain values of Madonald-like integrals we onsider are assoiated to the number of ASMs with vertial symmetry. Thisintegral formulation in turn, is a diret onsequene of our interpretation of the values of ertainHankel determinants ombinatorially by lattie path models in whih the standard sign-reversinginvolutions do not apply.Reently we have disovered a vast generalization of the T -transform, with the attendantRiemann hypothesis and interlaing phenomenon. This new twisted T -transform is a multidi-mensional onvolution de�ned as follows. Given n(n+1)2 positive integers = [ij : 0 � i < j � n℄we de�ne a kernel via W [u; ; n℄ = Y0�i<j�n[1� ui � uj℄ij :the eletroni journal of ombinatoris 8 (2001), #R36 45



Given n+ 1 polynomials P = [pk : 0 � k � n℄;eah having all their zeros on the line Re(s) = 12 , their twisted transform is de�ned asT [P; ℄(s) = �sin�s� �n+1 ZI(n+1) W [u; ; n℄ nYk=0 pk(uk)usk(1� uk)1�s dukuk(1� uk) :The T -transform whih led to the onsiderations in the present paper is the ase n = 0 of thiswith the empty produt W [u; ; n℄ = 1. For T [P; ℄, Redmond [9℄ was able to prove thatpk 2 Rh for eah pk 2 P ) T [P; ℄(s) 2 Rh:However, the apparent interlaing phenomenon onjeture is still unproved. In a futurepaper we plan to address this question. Undoubtedly the general ase will also raise a numberof ombinatorial questions and relations of the nature onsidered in the present paper.
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13 APPENDIX I (Derivation of the 4-term reursion)In this appendix we derive the the 4-term reursion orresponding to the Quadrati PolynomialRiemann hypothesis. We begin with a general framework.Let f(x) be a positive funtion, and g(x) a real funtion, both de�ned on the unit interval0 < x < 1 and hosen so that the integral~gf (s) = Z 10 f(x)sf(1� x)1�sg(x)d�xis an analyti funtion of the omplex variable s = � + it on the ritial strip 0 < � < 1. Themeasure d�x denotes the invariant measure for a group of transformations[y = m�(x) : � > 0℄of the unit interval to itself, de�ned for eah � > 0 viaf(1� y)f(y) = 1� f(1� x)f(x)For eah suh � there is a �-multiplier M�(x) de�ned byf(y) =M�(x)f(x);so that f(1� y) = M�(x)� f(1� x):Of partiular interest are those hoies of f and g for whih ~gf (s) may be extended to ameromorphi funtion in the omplex plane and there satisfying a funtional equation suh as~gf (s) = ~gf (1� s):This funtional equation would follow, for example, from a hoie of g satisfyingg(x) = g(1� x);and of ourse a very speial interest would obtain in those ases in whih ~gf (s) satis�es, ad-ditionally, a Riemann hypothesis; i. e., in those ases of ~gf (s) whose zeros � = � + i in theritial strip satisfy � = 12 .We have onsidered in this paper the speial polynomial ase, f(x) = x, in whihM�(x) = �1 + (�� 1)xm�(x) = xM�(x)d�(x) = = dxx(1� x) ;together with a sequene, gn(x) = [x(x � 1) + r℄n, of powers of a quadrati. The gn satisfydi�erential-di�erene equations, from whih it is readily dedued that the sequene, Pn(s; r) =T [gn℄, satisfy 4-term reursions.the eletroni journal of ombinatoris 8 (2001), #R36 48



To indiate how these reursions are obtained, make the substitution,y = m�(x)in the integral, ~gf (s) = Z 10 f(y)sf(1� y)1�sg(y)d�yto get ~gf (s)�1�s = Z 10 f(x)sf(1� x)1�sD(�; x)d�xwhere D(�; x) =M�(x)g(m�(x)):Evaluating the derivatives with respet to � at � = 1 we get(1� s)~g(s) = Z 10 f(y)sf(1� y)1�s _D(1; x)d�ys(1� s)~g(s) = Z 10 f(y)sf(1� y)1�s �D(1; x)d�yIn the speial (polynomial) ase M1 = 1dd�M(�)j�=1 = 1� xd2d�2M(�)j�=1 = x(x� 1)dd�m(�)j�=1 = x(1� x)d2d�2m(�)j�=1 = x2(x� 1)and d2d�2D(�; x)j�=1 = x2(1� x)2�gn(x) + x(x� 1)(2x � 1) _gn(x) + x(x� 1)gn(x)and the reursion (5) given in setion 1 follows diretly fromgn = gn1_gn = n(2x� 1)gn�11�gn = n(n� 1)(2x � 1)2gn�21 + 2ngn�11(2x� 1)2 = 4(g1 � r) + 1x(x� 1) = g1 � r:We remark that the same method will produe higher order reursions for the T -transforms ofsequenes of powers Q(x)n.the eletroni journal of ombinatoris 8 (2001), #R36 49



14 APPENDIX II (Renormalized 4-term reursion)Renormalization is an attempt to see what is happening in the Pn-reursion (5) of setion 1 forlarge n. As a �rst step we put s = 12 + it, where t is a real variable. The real polynomialsPn(12 + it)are polynomials in u = �t2 and we putpn(u) = Pn(12 + it):The pn satisfy the reursion(2n+ 2)(2n+ 1)pn+1(u) = [�14 + u+ 12rn2 + 8rn+ 2r � n2 � n℄pn(u)� [12r2n2 � 2rn2 � 2r2n℄pn�1(u) (44)+ [n(n� 1)(4r3 � r2)℄pn�2(u):Next, divide the reursion by n2 and throw away the terms in the oeÆients that go to zero asn goes to in�nity. There results a reursion4en+1(u) = ( un2 + 12r � 1)en(u)� (12r2 � 2r)en�1(u) + (4r3 � r2)en�2(u):Next, multiply this reursion by 4n and put fn = 4nen to getfn+1(u) = ( un2 + 12r � 1)fn(u)� 8r(6r � 1)fn�1(u) + 16r2(4r � 1)fn�2(u):Next, put u = n2v to get a reursiongn+1(( nn+ 1)2v) = (v + 12r � 1)gn(v)� 8r(6r � 1)gn�1(( nn� 1)2v)+ 16r2(4r � 1)gn�2(( nn� 2)2v):We replae this reursion withhn+1(v) = (v + 12r � 1)hn(v)� 8r(6r � 1)hn�1(v) + 16r2(4r � 1)hn�2(v):Next, put v + 12r � 1 = u to get a reursionIn+1(u) = uIn(u)�AIn�1(u) +BIn�2(u)with A = 8r(6r � 1)B = 16r2(4r � 1):the eletroni journal of ombinatoris 8 (2001), #R36 50



Finally, if we put u = xB 13A = CB 23Qn(x) = B�n3 In(xB 13 )then we get a polynomial reursionQn(x) = xQn�1(x)� CQn�2(x) +Qn�3(x); (45)with C = 8r(6r � 1)[16r2(4r � 1)℄ 23 :In the reursion (44), we onsidered the range 14 < r < 1, whih is onverted to the range1 > C > 3. This is how the ritial value C = 3 emerges from the alulations.From the asymptoti reursion (45), we obtain a sequene of polynomials, the �rst �ve ofwhih are given by Q0(x;C) = 1Q1(x;C) = xQ2(x;C) = x2 � CQ3(x;C) = x3 � 2Cx+ 1Q4(x;C) = x4 � 3Cx2 + 2x+ C2We note that if a sequene of polynomials qn is de�ned byq0(x;C) = 1q1(x;C) = xq2(x;C) = x2 � Cand thereafter by the reursionqn(x) = xqn�1(x)� Cqn�2(x)� qn�3(x);then the qn are related to the Qn byqn(x) = (�1)nQn(�x):It follows that Qn has real zeros for some pair n and C, if and only if qn has real zeros. In thispaper we preferred to work with the seond reursion, the one with the minus sign, beause themoments that are de�ned by this sequene are non-negative, while the orresponding momentsde�ned by the �rst reursion alternate in sign.the eletroni journal of ombinatoris 8 (2001), #R36 51


