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This paper studies runtime partitioning, scheduling and load balancing tech-
niques for improving performance of online WWW-based information systems
such as digital libraries. The main performance bottlenecks of such a system are
caused by the server computing capability and Internet bandwidth. Our observa-
tions and solutions are based on our experience with the Alexandria Digital Library
(ADL) testbed at UCSB, which provides online browsing and processing of doc-
uments, digitized maps, and other geo-spatially mapped data via the WWW. A
proper partitioning and scheduling of computation and communication in process-
ing a user request on a multiprocessor server and transferring some computation to
client-site machines can reduce network traffic and substantially improve system
response time. We propose a partitioning and scheduling mechanism that adapts
to resource changes and optimizes resource utilization and demonstrate the ap-
plication of this mechanism for online information browsing. We also provide a
performance analysis and experimental results to study the impact of resource
availability and the effectiveness of our scheduling techniques.© 1998 Academic Press

1. MOTIVATIONS

The number of digital library (DL) projects is increasing rapidly at both the national
and the international levels (see, for example, [3, 16]) and they are moving rapidly toward
supporting online retrieval and processing of major collections of digitized documents
over the Internet via the World Wide Web (WWW). Performance and scalability issues
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are especially important for DLs. Many collection items have sizes in the gigabyte
range while others require extensive processing to be of value in certain applications.
Critical performance bottlenecks that must be overcome to assure adequate access over
the Internet involve server processing capability and network bandwidth. Considering
that popular WWW sites such as AltaVista already have several millions of requests a
day, the server performance must scale to match expected demands. While we expect
network communication technology to improve steadily, particularly with the advent of
ATM and B-ISDN, we still need to consider the minimization of network traffic in the
design of a WWW system.

Our research is motivated by the above situation and develops solutions addressing
performance issues of WWW-based applications. In [4, 5], we studied issues in
developing multiprocessor WWW servers dealing with this bottleneck using networked
workstations connected with inexpensive disks. As the WWW develops and Web browsers
achieve the ability to download executable content (e.g., Java), it becomes logical to
think of transferring part of the server’s workload to clients. Changing the computation
distribution between a client and a server may also alter communication patterns between
them, possibly reducing network bandwidth requirements. Such a global computing
style scatters the workload around the world and can lead to significantly improved
user interfaces and response times. However, blindly transferring workload onto clients
may not be advisable, since the byte-code performance of Java is usually 5–10 times
slower than a client machine’s potential. Also a number of commercial corporations are
developing so-called “network computers,” with little or no hard drive and a minimal
processor, but with Java and Internet networking protocols built in. Carefully designed
scheduling strategies are needed to avoid imposing too much burden on these clients. At
the server site, information on the current system load and disk I/O bandwidth affects
the selection of a server node for processing a request. In addition to this, the impact
of available bandwidth between the server and a client needs to be incorporated. Thus
dynamic scheduling strategies must be adaptive to variations of client/server resources in
multiple aspects.

In this paper, we propose a model for characterizing computation and communication
demands of WWW-based information access requests and investigate a partitioning and
scheduling scheme to optimize the use of multiprocessors, parallel I/O, network band-
widths, and client resources. The scheduling decision adapts to dynamically changing
server and client capabilities. We present analytical results on homogeneous environ-
ments examining the impact of client and server resource availability. The paper is orga-
nized as follows: Section 2 gives our computational model and examples of client–server
task partitioning and mapping. Section 3 discusses an adaptive partitioning and schedul-
ing scheme for a multiprocessor WWW server with client resources. Section 4 analyzes
the scheduling performance in a homogeneous environment. Section 5 presents experi-
mental results and verifies our analytical results. Section 6 discusses related work and
conclusions.

2. WWW REQUEST PROCESSING

We first discuss the background of the WWW and present a model for WWW request
processing, then give two applications to demonstrate the use of this model.
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2.1. The Model

The WWW is based on three critical components: the uniform resource locator (URL),
the hypertext markup language (HTML), and the hypertext transfer protocol (HTTP). The
URL defines which resource the user wishes to access, the HTML language allows the
information to be presented in a platform-independent but still well-formatted manner,
and the HTTP protocol is the application-level mechanism for achieving the transfer of
information [8, 9, 17]. An HTTP request would typically activate the following sequence
of events from initiation to completion. First, the client determines the host name from the
URL, and uses the local domain name system (DNS) server to determine its IP address.
The local DNS may not know the IP address of the destination, and may need to contact
the DNS system on the destination side to complete the name resolution. After receiving
the IP address, the client then sets up a TCP/IP connection to a well-known port on
the server where the HTTP server process is listening. The request is then passed in
through the connection. After parsing the request, the server sends back a response code
followed by the results of the query. This response code could indicate the request service
can be performed, or might redirect the request to another server. After the contents of
the request are sent to the client, the connection is closed by either the client or the
server [17]. The results of the request are normally described by HTML, which the client
displays on its local machine. The current client-side browser such as Netscape supports
Java and the results of the request can be a platform-independent program (called applet)
runnable at the client machine to produce results to be displayed.

Our WWW server model consists of a set of nodes connected with a fast network as
shown in Fig. 1 and presented as a single logical server to the Internet. User requests are
first evenly routed to processors via DNS rotation [4, 18]. Each server node may have its
local disk, which is accessible to other nodes via remote file service in the OS. Server
nodes in the system communicate with each other and redirect requests to the proper
node by actively monitoring the usages of CPU, I/O channels, and the interconnection
network.

WWW applications such DLs involve extensive client–server interaction, and some
of the computation can be shifted to the client. In this paper we model the interaction
between client and server using a task chain which is partially executed at the server
(possibly as a CGI program [20]) and partially executed at the client (as a Java applet if
applicable). A task consists of a segment of the request fulfillment, with its associated
computation and communication. Task communication costs differ depending on whether
task results must be sent over the Internet or can be transferred locally to the next task

FIG. 1. The architecture of a multiprocessor WWW server.
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FIG. 2. An illustration of dynamic task chain partitioning and mapping.

in the task chain. The following items appear in a task chain definition: (1) A task chain
to be processed at the server and client site machines. A dependence edge between two
tasks represents a producer–consumer relation with respect to some data items. (2) For
each task, specify the input data edge from its predecessor, data items directly retrieved
from the server disk, and data items available at the client site memory. It should be
noted that if a task is performed at a client machine, some data items may be available
at this machine and slow communication from the server can be avoided. One such an
example is wavelet-based image browsing to be discussed later.

Each task chain is scheduled onto one of the server nodes. Our challenge, then, is to
select an appropriate node within the server cluster for processing, partitioning the tasks of
the chain into two sets, one for the client and another for the server, such that the overall
request response time is minimized. This process is illustrated in Fig. 2. In addition
to considering the balancing between client and server machine load and capability, the
network bandwidth between client and server affects the partitioning point. We assume
that the local communication cost between tasks within the same partition (client or
server) is zero while client–server communication delay is determined by the latency
and current available bandwidth between them.

2.2. Text Extraction from a Postscript File

We demonstrate the use of the above model in Postscript document browsing. The
extraction of the plain text from a Postscript-formatted document is an application
which can benefit greatly from client resources, but requires dynamic scheduling. This
application is useful for the following: (1)content replication. The archives of an
Internet/intranet site would be a logical place to locate useful related work for inclusion
in another publication. Two standard options are either scanning a hard copy of the
document and using OCR or retyping the relevant sections. Automatic text extraction
can be a much more efficient process. (2)Non-Postscript-enabled browsers.Many small
WWW clients, such as personal digital assistants (PDAs) or NetPCs, do not have the
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FIG. 3. The task chain for text extraction from a Postscript file.

capability to display Postscript files. Viewing the text can be the only available option to
examine the content of a Postscript document [15].

Figure 3 depicts a task chain for processing a user request which extracts text from a
subset of Postscript pages. The chain has two tasks that can be performed either at the
server or at the client. (1)Select the pages needed.Eliminating unnecessary postscript
pages reduces the computation needed for Step 2. The time to do this is small compared
to the rendering time in the next task. (2)Extracting the text.A page is rendered via a
software Postscript interpreter, and the text is extracted for the client. This step takes a
significant amount of processing time. Thus there are three possible split points illustrated
in Fig. 3. We explain them as follows:D1, Send the entire Postscript file to the client
and let it do everything.D2, Send over the relevant portions of the Postscript file for
the client to process.D3, Extract the text on the server and send it over to the client
for viewing.

Dynamic scheduling is needed for balancing bandwidth and processing requirements.
Postscript files are typically large and so in most situations require a large amount of time
to transmit. Text extraction dramatically reduces the size of the data to be transferred, but
imposes a large computational burden. For example, extracting the text from a 25-page,
750-KB technical paper takes about 50 s on a Sparc Ultra-1 workstation, with an output
of about 70 KB of text. Thus if the server does the processing, approximately 90% of
the bandwidth requirements can be avoided, but this imposes a large amount of work on
the server. The scheduler must determine a proper split point as a function of bandwidth
and available processing capability.

2.3. Multiresolution Image Browsing

Another application is browsing large digitized images in a DL system. With current
network speeds, it is quite infeasible to consider sending the full contents of an image file
to users for the browsing purposes. An image data file of size 100 MB will take about
8.5 min over a full T1 (1.544 MB/s) connection. For the next generation of the Internet,
e.g., T3 (45 MB/s), TV set-top boxes (10 MB/s), ATM, and vBNS (155 MB/s), the
transmission time will significantly decrease but the demands for larger image files will
continue increasing, especially when there are millions more users on the Internet. The
ADL has adopted progressive multiresolution image delivery and subregion browsing as
strategies to reduce Internet traffic when accessing map images [3, 21]. This approach is
based on the idea that users often browse large images via a thumbnail (coarse resolution)
and desire to rapidly view higher-resolution versions and subregions of those images
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FIG. 4. Reconstructing a high-resolution subregion from the thumbnail and coefficients.

already being viewed. We briefly describe the techniques of wavelet image data retrieval
and transformation for multi-resolution browsing.

Given an image, a forward wavelet transform produces a subsampled image of a lower
resolution called a “thumbnail,” and three additional coefficient data sets. More formally,
for the given quantized imageI1 of resolutionR× R, we specify the input and output
of the forward wavelet transform as follows.

(I2, C1, C2, C3) = Forward Wavelet(I1),

where I2 is the thumbnail of resolutionR/2× R/2, andC1, C2, andC3 are of resolu-
tion R/2× R/2. Figure 4 depicts the result of wavelet transform.

The inverse wavelet transform can be performed to reconstruct the original image on-
the-fly from the coefficient data sets and the thumbnail.

I1 = InverseWavelet(I2, C1, C2, C3).

If image thumbnailI2 is available at the client site, then by requesting that the server
sendsC1, C2, C3, image I1 can be reconstructed at the client site. The image recon-
struction is not time consuming, taking about 1.5 s for a 512× 512 image on a SUN
SPARC 5. The size of compressed dataC1, C2, C3 to be transferred is generally in the
range of 10 to 100 KB, which takes less than 1 s over a T1 link.

If a user wishes to access subregions of an imageI1, then the corresponding
subregions in thumbnailI2, C1, C2, C3 can be retrieved and the reconstruction performed
accordingly. We model such a process as follows.

subregion(I1) = InverseWavelet(subregion(I2), subregion(C1), subregion(C2),

subregion(C3)).
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A detailed definition of forward and inverse wavelet functions can be found in [11]. The
time complexity of wavelet transforms is proportional to the image size. The wavelet
transform can be applied recursively, namely thumbnailI2 can be decomposed further to
produce smaller thumbnails.

The computation involved in multiresolution image construction can be partially
executed at a server and at a client also. The model of computation and communication
described in [6, 21] uses the chain of tasks depicted in Fig. 5: (1)Fetching compressed
wavelet data and extracting the subregion.The wavelet image data is stored in a combined
quadtree/Huffman encoded form on a disk. These compressed files must be fetched. Then
the appropriate subtree of a quadtree with its associated compressed coefficient data must
be extracted in its compressed form. The compressed coefficient data is sent on to the
next stage. (2)Recreating the coefficients.The compressed coefficients must be expanded
to their original form. (3)Reconstructing the pixels.After the coefficients are available,
the inverse wavelet function is called to create the new higher-resolution image from the
thumbnail image. Notice that the thumbnail image needs to be fetched from the server
disk if the reconstruction is conducted on the server. Otherwise, the thumbnail image is
already available on the memory of the client machine. (4)Viewing the image. For our
purposes, we assume the viewing of the image takes no computation time and must be
done on the client.

Figure 5 depicts the above processing steps and four possible cutoff points for
partitioning this chain for the server and client. We discuss the possible computation
and communication scenarios for four partitioning points below [21]. Notice that we also
need to consider that the data sent from the server to the client may be compressed
first for transmission, then decompressed at the client site.D1, The client starts from
subregion extraction.The entire compressed image data needs to be transferred, but
the image thumbnail does not need to be transmitted. The transmitted wavelet data is
not further compressible.D2, The client starts from coefficient data recreation.A part
of compressed image data is retrieved on the server based on the subregion position.
The image thumbnail does not need to be transmitted. The transmitted subimage data is
not further compressible.D3, The client starts with image reconstruction.Coefficient
reconstruction is conducted at the server site. But the derived subregion coefficient
data must be further compressed otherwise the size of uncompressed coefficient data
is similar to that of the original subregion image and it would be more efficient to send
the original image. Thus the overhead of server compression and client decompression
must be incorporated. The image thumbnail does not need to be transmitted.D4, The
client does not do any computation.The image thumbnail needs to be retrieved from the
server disk. The result of image reconstruction is not compressible further.

FIG. 5. A task chain for wavelet image enhancement.Four cutoff points are depicted for possible computation
partitioning between client and server. If the client performs the image reconstruction, the thumbnail is already
available from the client memory and does need to be transmitted from the server.
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3. PARTITIONING AND SCHEDULING FOR REQUEST PROCESSING

Several factors affect response times for processing requests, including file locality,
CPU/disk loads, and network resources. The load of each processing unit must be
monitored so that requests can be assigned to relatively lightly loaded processors. Since
data may need to be retrieved from disks, disk channel usages must be monitored.
Simultaneous user requests accessing different disks can utilize parallel I/O channels
to achieve a higher throughput. The local interconnection network bandwidth affects
the performance of file retrieval since many files may not reside on the local disk of
a processor, so remote file retrieval through the network file system will be involved.
Local network traffic congestion could dramatically slow the request processing. We first
present a cost model for predicting the response time in processing a request, then we
discuss a strategy to select a server node and decide a good split point.

In our scheme request reassignment is implemented using the HTTP “URL redirection”
[4]. When clientC sends a request to serverS0, S0 returns a rewritten URLr ′ and a
response code indicating the information is located atr ′. C then followsr ′ to retrieve
the resulting data. Most Net browsers and clients automatically query the new location,
so redirection is virtually transparent to the user. This reassignment approach requires
a certain amount of time for reconnection. To avoid the dominance of such overhead,
we include the redirection overhead in estimating the overall cost and a reassignment
is made only if the redirection overhead is smaller than the predicted time savings. For
example, if a request involves a small file retrieval, typically no redirection occurs. DNS
rotation is used to provide an initial load distribution [18]. Load rebalancing is effective
under the assumption that our targeted WWW applications (e.g., DLs) involve intensive
I/O and computation in the server and a study on the necessity of rebalancing after DNS
rotation is in [4]. Another approach for implementing reassignment is socket forwarding,
which avoids the overhead of reconnection, but requires significant changes in the OS
kernel or network interface drivers [2]. We have not used it for compatibility reasons.

3.1. A Cost Model for Processing Task Chains

For each request, we predict the processing time and assign this request to an
appropriate processor. Our cost model for a request is

ts = tredirection+ tdata+ tserver+ tnet+ tclient. (1)

tredirection is the cost to redirect the request to another processor, if required.tdata is the
server time to transfer the required data from the server disk drive or from the remote
disk if the file is not local.tserver is the time for server computation required.tnet is the
cost for transferring the processing results over the Internet.tclient is the time for any
client computation required. We discuss the above terms as follows.

•

tdata =


tlstartup+ Size of server disk data needed

bdisk× δ1 if local,

trstartup+ Size of server disk data needed

min(bdisk× δ1, blnet × δ2) if remote.
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If the file is local, the time required to fetch the data is simply the file size divided by
the available bandwidth of the local storage system,bdisk, plus some startup overhead
tlstartup. We also measure the disk channel loadδ1. If there are many concurrent requests,
the disk transmission performance degrades accordingly. We currently ignore the startup
costs for network disk I/O in our implementation, since if the request is large, the other
transfer times dominate, and if the request is small, network overhead dominates.

• If the data is remote, then the file must be retrieved through the interconnection
network. The local network bandwidth,blnet, and loadδ2 must be incorporated, plus the
startup overheadtrstart. Experimentally, we found on the Meiko approximately a 10%
penalty for a remote NFS access and on the SUN workstations connected by Sparc/
Ethernet the cost increases by 50–70%.

•

tserver= CPUload
Number of server operations required

CPUserver speed
.

The number of server operations required depends on how a task chain is partitioned. The
cost estimation is based on the speed of the examined server node, the estimated CPU
load on a destination node (CPUload), and the estimated number of operations required.
CPUload represents the number of active jobs sharing the CPU, thus we multiply the re-
quired computation time by this factor to approximate the server CPU time. It should be
noted that some estimated CPU cycles may overlap with network and disk time and the
overall cost may be overestimated slightly, but this conservative estimation works well
in our experience.

The load estimation of remote processors is based on the periodic updating of infor-
mation given by those remote processors. It is possible that a processorpx is incorrectly
believed to be lightly loaded by other processors, and many requests will be redirected to
it. To avoid this unsynchronized overloading, we conservatively increase the CPU load
of px by σ . This strategy is found to be effective in [22].

•

tclient = Number of client operations required

CPUclient speed
.

The number of client operations required depends on how a task chain is partitioned.
Here we assume the speed reported by the client machine includes client load factors.

•

tnet = tnstart+ Number of bytes for client–server communication

Net bandwidth
.

This term is used to estimate the time necessary to return the results back to the client
over the network. The number of bytes required again depends on how the partitioning
is conducted. For the wavelet application, if the server does image reconstruction, then
the entire subregion image needs to be shipped. If the client only does image reconstruc-
tion, the server only needs to send the compressed coefficient data.tnstart is the startup
time for network connection and is ignored in the current setting for reasons similar to
those given fortlstart and trstart.

In the implementation, we need to collect three types of dynamic load information:
CPU, disk, and network. CPU and disk activity can be derived from the Unixrstat utility,
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as well as some network information. A daemon (loadd) periodically updates the above
information between the server nodes. Latency to the client can be approximated by
the time required for the client to set up the TCP/IP connection over which the request
(with the latency estimate) is passed. Client bandwidth is determined by the client, which
measures the number of bytes per second received from the server for messages over a
minimum size. The client passes both the latency and bandwidth estimates to the server
as arguments to the HTTP request.

3.2. The Procedure for Dynamic Chain Partitioning and Mapping

Given the arrival of HTTP requestr at nodex, the scheduler at processorx goes
through the following steps:

1. Preprocess a request.The server parses the HTTP command and expands the
incomplete pathname. It also determines whether the requested document exists or it is
a CGI program/task chain to execute. If it is not recognized as a task chain, the system
will assign this request to the server node with the lowest load. Otherwise the following
steps will be conducted.

2. Analyze the request.Given this task chainr , the system uses the algorithm
in Fig. 6 to select a partitioning and server node for the minimum response time. The
complexity of this selection algorithm isO(pd) where p is the number of server nodes
andd is the number of all possible split points. No requests are allowed to be redirected
more than once, to avoid the ping-pong effect.

3. Redirection and fulfillment.If the chosen server node is notx, the request is
redirected appropriately. Otherwise, a part of this chain is executed at this server node
and the remaining part of a task chain will be further executed at the client machine.

4. A PERFORMANCE ANALYSIS

It is difficult to analyze the performance of our scheme for general cases. We make a
number of assumptions to provide three facets of analysis: maximum sustained requests
per second (MRPS), expected redirection ratios, and predicted task chain split points.

FIG. 6. The procedure for scheduling a task chain.
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In this way, we can analyze the impact of system resource availability from different
aspects, for example, the number of server-nodes, available Internet bandwidth, and the
CPU speed ratio between client and server machines. We first present our framework,
then demonstrate its use for three sample task chains: text extraction, wavelet processing,
and file fetches. We will present experimental evidence to support our analysis.

4.1. The Framework

Main assumptions. We assume that the system is homogeneous in the sense that all
nodes have the same CPU speed and initial load, and each node has a local disk with the
same bandwidth. We assume that all clients are uniformly loaded with the same machine
capabilities. All requests are uniform, i.e., involving the same task chain. Each server
node processor receives a uniform number of requests and produces a stable throughput
of information requested. In estimating the available local disk or remote disk accessing
bandwidth, we assume a linear model such that the bandwidth is uniformly shared among
processed tasks. We neglect items such as disk and network contention as well as memory
subsystem artifacts such as paging at this time.

Request activity models.We examine the performance assuming that each node
receivesr requests at each second for a period ofL. We denote this as model(r, L).
Two instances of this model are considered.

• (r, 1). This reflects the system performance in responding to a burst in user
requests, which occurs frequently in many WWW sites [7, 13]. All requests are assumed
completed in the same length of time and each server processor is dealing with the
same number of requests until all finish. All task chains are partitioned uniformly on the
same edge.

• (r,∞). We examine the maximum number of requests per second (MRPS) when
L = ∞, which represents the maximum sustained performance when the system enters
a steady state and receives a stable amount of requests for a long period of time. Thus
all requests can be assumed to be completed in the same length of time and each server
processor is dealing with the same number of requests. All task chains are partitioned
uniformly on the same edge.

We define the following terms:

• p—the number of server nodes.
• R—the total number of requests received for all processors per second.
• r —requests received per processor.r = R/p. Notice that we assume that ther

requests arriving at each node after the division via DNS are uniform.
• A—the average overhead in preprocessing a request and deciding a redirection.
• b1—the average bandwidth of local disk access.
• b2—the average bandwidth of remote disk access.
• c—the average probability of a processed request accessing a local disk.
• S—the average slowdown ratio of the client CPU compared to the server node.

S= CPUserver speed/CPUclient speed.
• d—the average redirection probability.
• O—the average overhead of redirection.
• B—the average network bandwidth available between the server and a client.
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• Bs—the maximum aggregated network bandwidth available from the server to
all clients.

Among ther requests arriving at each node, we assume the probability of accessing
one of the server disks is equal to 1/p. Thenr ∗1/p requests are accessing the local disk.
Among thoser requests,dr of them will be redirected to other nodes butdr requests
will be redirected from other nodes to this node (we also assume that redirection is
uniformly distributed because of the homogeneous system). Our experiments show that
in such cases, the redirected requests tend to follow file locality. Thus the total number
of requests processed at each processor after redirection isr requests per second. Among
them, the total number of requests accessing the local disk isr/p from the original arrival
tasks plus an additionald redirected requests. Then the probability of accessing a local
disk for thoser requests is

c =
r

p
+ d ∗ r

r
= 1

p
+ d.

Assume the uniform split point is known. We further define:

• H —the average response processing time for each request (the time from when
the client launches a request to the time when the client receives the desired data).

• Fs—the average size of server disk files needed.
• Fn—the average size of server–client data needed to be transferred.
• Z—the average number of requests processed simultaneously at each processor.

For example,Z = r for model(r, 1).
• Eserver—the average total task time needed at the server site.
• Eclient—the average total task time needed at the client site.

Then

H = c ∗ Fs

b1

Z

+ (1− c) ∗ Fs

b2

Z

+ (A+ d(A+ O))Z + EserverZ + Fn/B+ S∗ Eclient. (2)

Notice thatB ≤ Bs/Z ∗ p.

4.1.1. Expected Redirection Ratios for(r, 1) and (r, ∞)
The scheduler minimizes the response time for each request. The expected redirection

ratio can be derived by comparing the costs of performing the redirection to the expected
benefits.

For H in Eq. (2), we can rewrite the formula in the following format:

d ∗ Z ∗
(

Fs

b1
− Fs

b2
+ A+ O

)
+ constants independent ofd.

We present two scenarios ford:

• Fs/b1− Fs/b2+ A+ O < 0, i.e., A+ O < Fs(1/b2− 1/b1). This corresponds
to the case of a large file access with a slow local network. In this case,H is minimized
with d at its maximum possible value. Note we have a constraint such that
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1− c = 1− 1

p
− d ≥ 0

thend ≤ 1− 1/p. Thusd = 1− 1/p.
• A+ O ≥ Fs(1/b2 − 1/b1). This corresponds to the case where we have a fast

interconnection network and can fetch a file remotely almost as quickly as a local access
or when the redirection overhead is too high. Thend = 0, which minimizesH .

4.1.2. MRPS for(r, ∞)
The MRPS is achieved when the entire server system enters a steady state. Thenr

requests uniformly arrive at each server node at each second and the throughput for each
individual processor is alsor . For this stage, letHs be the part of response time spent
at the server site for each request. Then each request will be processed at a server node
for Hs seconds. Sincer new requests come in at each second, the number of requests
processed at each node simultaneously isz= r Hs.

Based on Eq. (2), we have

Hs ≥ c ∗ Fs

b1

r Hs

+ (1− c) ∗ Fs

b2

r Hs

+ (A+ d(A+ O))r Hs + Eserverr Hs

r ≤ 1

c ∗ Fs

b1
+ (1− c) ∗ Fs

b2
+ A+ d(A+ O)+ Eserver

R≤ p

c ∗ Fs

b1
+ (1− c) ∗ Fs

b2
+ A+ d(A+ O)+ Eserver

.

We also notice that since the throughput ofp server nodes isR, the total data output
per second for the entire system isR ∗ Fn. This is restricted by the available output
bandwidth of the system. NamelyR ∗ Fn ≤ Bs. Thus R≤ Bs/Fn. Using the above two
conditions, we have a bound for the MRPS of the entire system as:

R∗ = min

 p

c ∗ Fs

b1
+ (1− c) ∗ Fs

b2
+ A+ d(A+ O)+ Eserver

,
Bs

Fn


wherec = d + 1/p.

Naturally the MRPS may be maximized by having the client do everything possible to
minimize Eserver. But such a strategy may increaseFn, which also limits the system
throughput. With the advent of improved Internet network technology, we anticipate that
the client–server bandwidth will be improved steadily in the near future, and the MRPS
will be achieved by choosing the split point which lets the client do as much as possi-
ble. In this manner the maximum possible amount of calculation is spread to the clients.

4.1.3. The Expected Split Point for(r, 1)

For this case,Z = r , and the H formula in (2) is simplified as follows.
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H = c ∗ Fs

b1

r

+ (1− c) ∗ Fs

b2

r

+ (A+ d(A+ O))r + Eserverr + Fn/B+ S∗ Eclient.

With different split points, all four termsFs, Fn, Eserver, andEclient may change, affect-
ing the optimum choice. We select the split point minimizingH . Partitioning also affects
the MRPS that can be reached. In this case a philosophical decision must be made regard-
ing the goal of the server—minimizing individual response times or preserving server
resources for future requests. In our current research we assume the former policy.

4.2. Case Analysis

In the following subsections we present an analysis for three applications: file fetch,
Postscript text extraction, and wavelet-based image access.

4.2.1. File Fetches

We study a simple case, the file fetch, to demonstrate the use of the above framework.
The task chain is shown in Fig. 7 and has only two tasks, sending the file and viewing
it. The computational cost for sending the data isg ∗ F where F is the file size to be
fetched. The location of the two tasks is fixed, and the split point is fixed between these
two tasks.

Expected redirection ratio for(r, 1) and (r, ∞).
• If A+ O < F(1/b2− 1/b1), d = 1− 1/p.
• If A+ O ≥ F(1/b2− 1/b1), d = 0.

MRPS for(r, ∞). Then the upper bound for the sustained MRPS of the entire system
at the steady state is:

R∗ = min

 p(
1

p
+ d

)
F

b1
+
(
1− 1

p
− d

)
F

min(b1, b2)
+ A+ d(A+ O)+ g ∗ F

,
Bs

F

.

The expected split point.Fixed.

FIG. 7. The task chain for a file fetch.
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4.2.2. Postscript Text Extraction

Here we analyze the task chain illustrated in Fig. 3. First we define some additional
terms:

• F1—the average size of the Postscript file.
• k1—the average fraction ofF1 actually needed for the pages requested.
• k2–the average ratio of Postscript page size to its text. Sok1 × k2 × F1 is the

size of the text extracted from the Postscript file.
• g—the constant ratio for the cost of sending disk files, e.g.,gF1 is the time for

sending dataF1.
• E1—the average server CPU time for extracting the pages requested from a Post-

script file.
• E2—the average server CPU time for extracting the text from the selected pages.

There are three possible partitions shown above and we mark the response time for
these partitions asH1, H2, and H3. We choose the one with the minimum processing
time, i.e.,

H = min(H1, H2, H3). (3)

Partition D1:

Fs = F1, Fn = F1, Eserver= gF1, Eclient = E1+ E2.

H1 = c ∗ F1

b1

r

+ (1− c) ∗ F1

b2

r

+ (A+ d(A+ O))r + r ∗ gF1+ S∗ E1+ S∗ E2+ F1/B.

Partition D2:

Fs = F1, Fn = k1 ∗ F1, Eserver= E1+ gk1F1, Eclient = E2.

H2 = c ∗ F1

b1

r

+ (1− c) ∗ F1

b2

r

+ (A+ d(A+ O))r + r ∗ (E1+ gk1F1)

+ S∗ E2+ k1 ∗ F1/B.

Partition D3:

Fs = F1, Fn = k1 ∗ k2 ∗ F1, Eserver= E1 + E2+ gk1k2F1, Eclient = 0.

H3 = c ∗ F1

b1

r

+ (1− c) ∗ F1

b2

r

+ (A+ d(A+ O))r + r ∗ (E1 + E2+ gk1k2F1)

+ k1 ∗ k2 ∗ F1/B.

Expected redirection ratio for(r, 1) and (r, ∞). We determine the redirection ratio
d for different partitions in order to minimize the response time.
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For H1, H2, and H3, Fs = F1. According to our analysis in Section 4.1.1, based on
the difference betweenA+O, F1(1/b2−1/b1). d can be selected as either 0 or 1−1/p.
We have two cases:

• Case(a): WhenA+ O ≥ F1(1/b2− 1/b1), d = 0 for all H1, H2, and H3.
• Case(b): WhenA+O < F1(1/b2−1/b1), d = 1−1/p for all H1, H2, andH3.

The primary selection criteria betweenH1 and H2 will be the bandwidth between the
client and server. BetweenH2 and H3, bandwidth is still important, butS becomes very
significant.

MRPS for(r, ∞). The expected MRPS depends on the three choices of partitioning.
We calculate the MRPS boundR∗i for each partitioning and choose the maximum one
as the bound.

For D1,

R∗1 = min

 p

c ∗ F1

b1
+ (1− c) ∗ F1

b2
+ A+ d(A+ O)+ gF1

,
Bs

F1

 .
For D2,

R∗2 = min

 p

c ∗ F1

b1
+ (1− c) ∗ F1

b2
+ A+ d(A+ O)+ E1+ gk1F1

,
Bs

k1F1

 .
For D3,

R∗3 = min

 p

c ∗ F1

b1
+ (1− c) ∗ F1

b2
+ A+ d(A+ O)+ E1 + E2+ gk1k2F1

,
Bs

k1k2F1

.
So

R∗ = max(R∗1, R∗2, R∗3).

Using the above formulae, we can illustrate the impact of server load, client capabili-
ties, and network bandwidth. The following parameters are used:R = 12, E1 = 0.4 s,
E2 = 3.5 s, b1 = 1,100,000 byte/s,b2 = 1,000,000 bytes/s,Bs = 1,000,000 bytes/s,
g = 2.5× 10−7, k1 = 0.1, k2 = 0.1, A = 0.001 s,O = 0.1 s, andF1 = 1.6 MB. The
values ofR∗1, R∗2, R∗3 are depicted in Fig. 8a whenS= 1 and p varies from 1 to 6. No-
tice that R∗ is the maximum among those three values. Whenp is small (p ≤ 3), R∗1
leads to the highestR∗ value because in this case the server has the minimum workload.
When p is getting larger,R∗2 begins to play a role because bandwidthBs limits the R∗1
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FIG. 8. (a) Values ofR∗1, R∗2, and R∗3 when S= 1 and p varies. (b) Values ofH1, H2, and H3 when p = 6
and S varies.

value while forR∗2, Bs is not a limiting factor. As a result, the value ofR∗ scales up as
p increases.

Expected partition points for(r, ∞). The formula in Eq. (3) helps us to compare and
determine partitioning points in different scenarios. Using the same parameters, Fig. 8b
shows results ofH1, H2, andH3 when p = 6 andS is set to range from 0.5 to 3. For the
minimum response time, the best split point isD2 whenS is small and isD3 whenS is
larger than 1.9, which indicates that with a slow client, it is better to retain the workload
on the server. Similarly we can show that with a very slow Internet connection,D3 is
the optimum choice whileD2 is the best choice ifB is reasonably large.

4.2.3. Wavelet Chain Processing

We now analyze the wavelet task chain illustrated in Fig. 5 for retrieval of a subregion
with sizen× n. First we define some additional terms:

• F1—the average size of the compressed wavelet data (quadtree and coefficients).
• k—the average fraction ofF1 actually needed for a subregion.
• g—the constant ratio for the cost of sending disk files, e.g.,gF1 is the time for

sending dataF1.
• F2—the size of the thumbnail. The image size isn/2× n/2.
• E1—the average server CPU time for extracting the subtree information.
• E2—the average server CPU time for creating the subregion coefficient data.
• E3—the average server CPU time for image reconstruction.
• Ec—the average server CPU time for coefficient data compression.
• Ed—the average server CPU time for coefficient data decompression.

We mark the response time for the four partitions asH1, H2, H3, andH4. We choose
the one with the minimum processing time, i.e.,

H = min(H1, H2, H3, H4). (4)
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Partition D1:

Fs = F1, Fn = F1, Eserver= gF1, Eclient = E1 + E2+ E3.

H1 = c ∗ F1

b1

r

+ (1− c) ∗ F1

b2

r

+ (A+ d(A+ O))r + r ∗ gF1+ S∗ E1

+ S∗ E2 + S∗ E3+ F1/B.

Partition D2:

Fs = F1, Fn = k ∗ F1, Eserver= E1+ gkF1, Eclient = E2 + E3.

H2 = c ∗ F1

b1

r

+ (1− c) ∗ F1

b2

r

+ (A+ d(A+ O))r + r ∗ (E1+ gkF1)+ S∗ E2

+ S∗ E3 + k ∗ F1/B.

Partition D3:

Fs = F1, Fn = k ∗ F1, Eserver= E1 + E2+ Ec + gkF1, Eclient = Ed + E3.

H3 = c ∗ F1

b1

r

+ (1− c) ∗ F1

b2

r

+ (A+ d(A+ O))r + r ∗ (E1+ E2 + Ec + gkF1)

+ S∗ E3+ k ∗ F1/B+ Ed ∗ S.

Partition D4:

Fs = F1 + F2, Fn = n2, Eserver= E1+ E2 + E3+ gn2, Eclient = 0.

H4 = c ∗ F1+ F2

b1

r

+ (1− c) ∗ F1 + F2

b2

r

+ (A+ d(A+ O))r + r ∗ (E1+ E2+ E3 + gn2)

+ n2/B.

Expected redirection ratio for(r, 1) and (r, ∞). We determine the redirection ratio
d for different partitions in order to minimize the response time.

For H1, H2, and H3, Fs = F1. For H4, Fs = F1 + F2. According to our analysis
in Section 4.1.1, based on the difference betweenA + O, F1(1/b2 − 1/b1), and
(F1+ F2)(1/b2− 1/b1), d can be selected as either 0 or 1− 1/p. We have three cases:

• Case(a): WhenA+ O ≥ (F1 + F2)(1/b2 − 1/b1), d = 0 for all H1, H2, H3,
and H4.

• Case(b): When A+ O < F1(1/b2 − 1/b1), d = 1− 1/p for all H1, H2, H3,
and H4.

• Case(c): When F1(1/b2 − 1/b1) ≤ A+ O < (F1 + F2)(1/b2 − 1/b1), d = 0
for H1, H2, and H3, and 1− 1/p for H4.

MRPS for(r, ∞). The expected MRPS depends on the four choices of partitioning.
We calculate the MRPS boundR∗i for each partitioning and choose the maximum one
as the bound.
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For D1,

R∗1 = min

 p

c ∗ F1

b1
+ (1− c) ∗ F1

b2
+ A+ d(A+ O)+ gF1

,
Bs

F1

 .
For D2,

R∗2 = min

 p

c ∗ F1

b1
+ (1− c) ∗ F1

b2
+ A+ d(A+ O)+ E1+ gkF1

,
Bs

kF1

 .
For D3,

R∗3 = min

 p

c ∗ F1

b1
+ (1− c) ∗ F1

b2
+ A+ d(A+ O)+ E1+ E2+ Ec + gkF1

,
Bs

kF1

.
For D4,

R∗4 = min p

c ∗ F1+ F2

b1
+ (1− c) ∗ F1+ F2

b2
+ A+ d(A+ O)+ E1+ E2+ E3 + gn2

,
Bs

n2

.

We assume thatn2� k∗ F1 (the size of the original image is normally larger than that
of compressed wavelet data). In comparingR∗1, R∗2, R∗3, and R∗4, we need to consider
thatd is different for Cases (a), (b), and (c). For Cases (a) and (b),d is chosen to be the
same among all partitions, thus it is easy to show thatR∗4 ≤ R∗2 and R∗3 ≤ R∗2.

For Case (c),d is the same forD2 and D3. Thus R∗3 ≤ R∗2. BetweenR∗4 and R∗2, we
can plug ind values, and we have

R∗2 = min

 p

1/p ∗ F1

b1
+ (1− 1/p) ∗ F1

b2
+ A+ E1 + gkF1

,
Bs

kF1



R∗4 = min

 p
F1+ F2

b1
+ A+ (1− 1/p)(A+ O)+ E1 + E2+ E3+ gn2

,
Bs

n2

 .
Since,F1(1/b2− 1/b1) ≤ A+ O in Case (c),
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F1+ F2

b1
+(1−1/p)(A+O) >

F1

b1
+(1−1/p)F1

(
1

b2
− 1

b1

)
= 1/p∗ F1

b1
+(1−1/p)∗ F1

b2
.

Thus R∗4 < R∗2 for Case (c).
In summary, only partitionD1 or D2 could lead to the highest MRPS for all three

cases. Then,

R∗ = max(R∗1, R∗2).

Expected partition points for(r, ∞). Formula (4) can help us to determine the
partitioning points for different scenarios. For example, we can compareH1, H2, H3,
and H4 as follows.

For H1, H2, and H3, d is always the same. Notice thatr = R/p. Thus we have

H2 − H1 = (R/p− S)E4− (1− k)F1

(
1

B
+ g

)
H3 − H2 = (R/p− S)E5+ Ec ∗ R/p+ Ed ∗ S.

BetweenH4 and H2, if d is the same for Cases (a) and (b),

H4− H2 = (R/p− S)(E3+ E2)+ (n2− kF1)

(
1

B
+ g

)
+ F1

(
(1− c)

b2
+ c

b1

)
.

For Case (c),

H4− H2 = (1− 1/p)

(
A+ O − F1

(
1

b2
− 1

b1

))
R/p+ (R/p− S)(E2+ E3)

+ (n2 − kF1)l

(
1

B
+ g

)
.

If R/p ≥ S but B is very small, thenH3 ≥ H2, H4 ≥ H2, and H1 ≥ H2. Namely, H2

will be the minimum andD2 will be chosen. Intuitively, if the server is very busy, it is
always better for the client to do as much as possible. But since the Internet is slow,D2

is better thanD1 sinceD2 involves less client–server communication.
We graph the values ofH1, H2, H3, and H4, illustrating their relationship to server

load, client capabilities, and network bandwidth. We utilize the following parameters
based on our experimental data:n = 512, k = 0.25, R = 6, p = 6, g = 2.5× 10−7,
E1 = 1.4 s, E2 = 0.4 s, E3 = 2.6 s, b1 = 1,100,000 byte/s,b2 = 1,000,000 bytes/s, A
= 0.001 s, O= 0.1 s, F1 = 56,000 bytes,F2 = (n/2)2, Ec = 0.9 s, andEd = 0.9 s.
Figure 9 shows two results ofH1, H2, H3, and H4, when B ranges from 10,000 to
150,000 bytes/s andS is set to range from 0.5 to 3. For points on the left side of the
figure, it is advisable to send over the compressed subtree data for the client to process
if the server is too busy, otherwise the server should send over the completed image. On
the right, the conclusion is similar when the client–server bandwidth increases steadily.
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FIG. 9. Image reconstruction for a subregion. (a) Client power varying and (b) network bandwidth varying;
each server node is twice as powerful as a client.

5. EXPERIMENTAL RESULTS

We have implemented a prototype of our scheduling scheme on a Meiko CS-2
distributed memory machine. The Meiko CS-2 can be viewed as a workstation cluster
connected by the Elan fast network. Each node has a 40-MHz SuperSparc chip with 32
MB of RAM running SUN Solaris 2.3. The TCP/IP layer communication on the Meiko
can achieve approximately 3–15% of the peak performance (40 MB/s). Our primary
experimental testbed consists of six Meiko CS-2 nodes as our server. Each server node
is connected to a dedicated SCSI 1GB hard drive on which test files reside. Disk service
is available to all other nodes via NFS mounts.

We first examine the performance impact of utilizing multiple servers and client
resources and then demonstrate that our scheme can successfully balance processor
loads when a few nodes receive more requests compared with others. We also present
experiments supporting the analytical model presented in Section 4. We primarily
examine the scheduling performance on three applications: file fetches, text extraction for
postscript documents, and wavelet-based subimage retrieval. Each text extraction request
consists of extracting one page of text from a 45-page Postscript file with size 1.5 MB.
The Postscript code for the single page is approximately 180 KB, and the extracted text
is about 2.5 KB. The wavelet operation we choose is to extract a 512× 512 subregion at
full resolution from a 2× 2 K map image, representing the user zooming in on a point
of interest at a higher resolution after examining at an image thumbnail. All results are
averaged over multiple runs, and the test performance is affected by dynamically changing
system loads since the machines are shared by many active users at UCSB. The client
machines are loaded with our custom library implementing some of the basic operations,
including wavelet reconstruction. Clients are located within the campus network to avoid
Internet bandwidth fluctuations over multiple experiments.

The overhead for monitoring and scheduling is quite small for all experiments.
Analyzing a request takes about 2–4 ms, and monitoring takes about 0.1% of CPU
resources. These results are consistent with those in [4].
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FIG. 10. Request response times asp and/or RPS changes. (a) Postscript text extraction, (b) wavelet subim-
age retrieval, and (c) mixed wavelet and postscript text extraction. The period is 30 s.
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Table 1

Relative Scale-up Ratios with Client Resources for Wavelets

12
1 13

2 14
3 15

4 16
5

RPS = 2 250% 200% 93% 106% 125%

RPS = 4 ∞ 109.1% 125.3% 133.3% 175.9%

RPS = 6 ∞ 102.9% 118.2% 117.2%

5.1. The Impact of Adding Multiple Servers

We examine how average response times decrease whenp increases for a test period
of 30 s, and at each secondR requests are launched from clients (RPS= R). Figure 10
shows the average response times in seconds with client resources for processing a
sequence of wavelet, Postscript, or mixed requests. We can see from the experimental
results that response times decrease significantly by using multiple server nodes, and this
is consistent across all types of loads. The extreme slope for the one-node server is due
to the nonlinear effects of paging and system overhead for a very high system load.

We more closely examine the relative scale-up ratio of performance fromi − 1 nodes
to i nodes. This ratio is defined below whereH(i ) is the response time usingi nodes.

1i
i−1 =

H(i − 1)

H(i )
i

i − 1

.

The denominator indicates the server resource’s increasing speed. IfH(i − 1) is too
large, then we use∞ as the result. If1i

i−1 = 100%, it indicates a perfect performance
scale-up.1i

i−1 > 100% indicates a super-linear scale-up. This is possible because in-
creased memory and disk resources reduce paging. Table 1 shows the relative scale-up
ratio for processing a sequence of wavelet requests, which demonstrates that the system
achieves a reasonable speedup with added multiprocessor resources. The scale-up results
are similar for processing file fetching and text extraction requests.

Table 2

Average Response Time with and without Client

Resources for Text Extraction

RPS 0.5 1 2 3 4

Without (s) 73.3 132.5 160 294 407

With (s) 12.8 13.4 15.2 20.6 32.6

Improvement ratio 617% 889% 953% 1327% 1148%

Note. 30 s; period,p = 6.
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Table 3

Average Response Time with and without

Client Resources for Wavelets

RPS 1.0 1.5 2.0 2.5

Without client resources (s) 15.97 57.24 123.76 213.4

With client resources (s) 4.78 5.61 6.45 7.73

Improvement 234% 918% 1818% 2660%

Note. 30 s; period,p = 6.

5.2. The Impact of Utilizing Client Resources

We compare the improvement ratio of response timeH(i ) with client resource over
the response timeH ′(i ) without using client resource (i.e., all operations are performed
at server). This ratio is defined asH ′(i )/H(i ) − 1. The comparison result forp = 6 is
shown in Table 2 for processing a sequence of Postscript text extraction requests. Table 3
is for wavelets. As the server load increases steadily, the response time improvement
ratio increases dramatically.

We also note a significant increase in the maximum number of requests per second a
server system can complete over short periods by using client resources. If we consider
a response time of more than 60 s as a failure in the case of wavelets, then the MRPS for
the system with and without client resource in processing a sequence of wavelet-based
requests is summarized in Table 4. Using client resources improves MRPS of a server
by approximately 5 to 6 times.

5.3. Load Balancing with “Hot Spots”

“Hot spots” is a typical problem with DNS rotation, where a single server exhibits
a higher load than its peers. Various authors have noted that DNS rotation seems to
inevitably lead to load imbalances [18, 19]. We examine how our system deals with hot
spots by sending a fixed number of requests to a subset of nodes in our server cluster,
giving a wide range of load disparities. Without our scheduler, the selected nodes would
have to process all of those requests. The scheduler can effectively deal with temporary
hot spots at various nodes by redirecting requests to other nodes in the cluster. The result
is shown in Fig. 11 for extracting a 512×512 pixel wavelet subimage (left) and extracting
the text from a Postscript page (right). TheX axis shows the range of processors which

Table 4

Bursty MRPS for Processing Wavelets

p = 1 2 3 4 5 6

With client resources 1.5 3.0 4.5 6.0 7.5 9.0

Without 0.3 0.6 0.8 1.2 1.4 1.5
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FIG. 11. System performance with request concentration at fixed server subsets. Tests for a period of 30 s,
4 RPS. The indicated percentage is the redirection rate. (a) 512× 512 wavelet subimage. (b) Postscript text
extraction.

receive requests. The upper curves of Figs. 11a and 11b show the average response time
in seconds when no scheduling is performed and the request processing is limited to
the fixed subset of nodes. The lower curves show the average response time with the
presence of our scheduler. We also mark the redirection rate for the wavelets requests.
We note that redirection rates drop dramatically as load disparity goes down. This trend
matches our expectation, because where the system tends to be homogeneous and the
load is evenly balanced, our analytic model in Section 4 predicts a redirection rate of
zero for both of the above experiments due to the relatively small file sizes.

5.4. Verification of Analytical Results

We further conduct experiments on how the theoretical results presented in Section 4
match the system behavior under the specified assumptions.

Sustained MRPS bound.For Postscript and wavelet requests, we have theoretical
MRPS predictions in Section 4. We ran experiments to determine the actual MRPS by
testing for a period of 120 s and choosing the highest RPS such that the server response
times are reasonable and no requests are dropped. We chose the period of 120 s based
on [13, 19], which indicates most “long” bursts on the Internet are actually relatively
short. Thus the sustained RPS required in practice are for a period shorter than∞. For
this experiment, the clients are simulated within the Meiko machine. The aggregated
bandwidth (Bs) of the 6-node server to the other client nodes is high and does not create
a bottleneck. The results are shown in Fig. 12. In general, the predicted MRPS bounds
reasonably match the trend of actual MRPSs. There is some discrepancy, which is caused
by the following reasons: (1) paging and OS overheads are neglected in our model, and
(2) there are other background jobs running in the system. Still, the overall accuracy of
prediction is very reasonable. It should be noted that the previous load balancing research
[22] normally use simulations to verify performance analysis and it is quite difficult to
predict and match actual performance in a real experimental setting.

Expected redirection ratio.Experiments in Section 5.3 already indicate that the trend
of redirection matches the theoretical prediction for the 512× 512 wavelet extraction.
We further examine the impact of varying file sizes on the redirection ratio. Figure 13



82 ANDRESEN ET AL.

FIG. 12. Sustained MRPS, experimental vs predicted results. The test period is 120 s. (a) Postscript.
(b) Wavelets.

shows the predicted and actual redirection ratios when the fetched file size varies.
Utilizing the formula presented in Section 4.2.1, the difference betweenF/b1 − F/b2

and A + O determines the theoretical switching point. We use the following data:
A+ O ≈ 0.1 s,b1 = 1.1 MB/s, b2 = 1.0 MB/s. Then we can determine that atF ≈ 1.1
MB, d will shift from 0 to 1−1/p. We find that the actual redirection rate curve is quite
close to that predicted, although slightly shifted due to other background system activity
affecting algorithm parameters.

For wavelets, at the present time we do not have compressed wavelet files large enough
to approach the predicted switch point. Thus the predicted redirection is a flat line and
matches the actual ratio very well. Similarly for Postscript text extraction, our largest test
files are very close to the crossover point. For example, utilizing a 1.5-MB file gives a
predicted(1.5 MB/1.1 MB/s − 1.5 MB/1 MB/s) − (0.1+0.001) = 35 ms time advantage
for redirection. Such a small predicted advantage is overwhelmed by other factors during
the scheduling process, such as CPU load, network bandwidth, and reconnection cost.

Expected split points.In Fig. 14, we compare the theoretically predicted split points
with the actual decision made by the system scheduler in the Postscript and wavelet

FIG. 13. Redirection rates for file fetching. Experimental vs predicted results.
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FIG. 14. Effects of CPU speed and network bandwidth on (a) text extraction and (b) wavelet chain partitioning
decisions.R= 18.

experiments. The system with six nodes is processingR concurrent requests (R = 18)
when we artificially adjust the server/client bandwidth and CPU ratio reported by the
client. Each coordinate entry in Figs. 14a and 14b is marked with the decision of
the scheduler and the theoretical prediction. For each entry, if the choices for all
requests agree with the theoretical prediction, we mark the actual selected split decision,
otherwise we mark the percentage of disagreement. For example, in Fig. 14b, when
available bandwidthB is 10,000 bytes/s and server/client CPU ratioS = 2, D2 is the
selected processing option for all requests, matching the analytical model’s result. When
B = 100,000 andS = 2, the percentage of disagreement with the theoretical model
is 76% amongR requests processed; however, this percentage is only for one entry
(corresponding to one setting). For most entries in Figs. 14a and 14b, the theoretical
model matches the scheduler’s selections.

As observed in Fig. 14a, when there is no speed advantage for the client CPU, and the
server is unloaded, the server is instructed to complete all computations (D3). In the first
few columns where the client is faster than the server node, Internet bandwidth plays the
deciding part, since partitionD2 requires more bandwidth thanD3. On the borderline
area between 10,000 and 100,000 bytes/s, the server decision is largely determined on
real-time background tasks and network bandwidth fluctuations, which leads to a partial
disagreement with the analytical model. For Fig. 14b, as client CPU speeds decrease,
the server does more processing (D4). But when client–server bandwidth decreases, the
scheduler increases the percentage of client involvement for data decompression and
image reconstruction (D2), to minimize the size of data sent over the network.

6. RELATED WORK AND CONCLUSIONS

Several projects are related to our work. Projects in [12, 14] are on global computing
software infrastructures. Scheduling issues in heterogeneous computing using network
bandwidth and load information are addressed in [10]. The above work deals with an
integration of different machines as one server and does not have the division of client
and server. Our current project focuses on the optimization between a server and clients
and currently uses tightly coupled server nodes for a WWW server, but results could be
generalized for loosely coupled server nodes. Addressing client configuration variation is
discussed in [15] for filtering multimedia data but it does not consider the use of client
resources for integrated computing.
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Compared to the previous SWEB work [4], the main contributions of this work are
an adaptive partitioning and scheduling scheme for processing requests by utilizing
both client and multiprocessor server resources and analytic results for supporting our
scheduling scheme. The assumptions in the analysis are simplified, but the results help
us understand the performance impact of several system resources and corroborate the
design of our techniques. The experimental results show that properly utilizing server
and client resources can significantly reduce application response times.
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