
Dynami-Programming-Based ApproximationAlgorithms for Sequene Alignment with ConstraintsAbdullah N. ArslanDepartment of Computer Siene, University of Vermont, Burlington, Vermont 05405, USA,aarslan�s.uvm.edu�Omer E�geio�gluDepartment of Computer Siene, University of California, Santa Barbara, Santa Barbara, California93106, USA, omer�s.usb.eduGiven two sequenes X and Y , the lassial dynami-programming solution to the loalalignment problem searhes for two subsequenes I � X and J � Y with maximum similaritysore under a given soring sheme. In several appliations, variants of this problem arisewith di�erent objetives and with length onstraints on the subsequenes I and J . Thisonstraint an be expliit, suh as requiring jIj + jJ j � t, or jJ j � T , or may be impliitsuh as in yli sequene omparison, or as in the maximization of length-normalized sores,and driven by pratial onsiderations. We present a survey of approximation algorithmsfor various alignment problems with onstraints, and several new approximation algorithms.These approximations are in two distint senses: in one the onstraints are satis�ed butthe sore omputed is within a presribed tolerane of the optimum instead of the exatoptimum. In another, the alignment returned is assured to have at least the optimum sorewith respet to the given onstraints, but the length onstraints are satis�ed to within apresribed tolerane from the required values. The algorithms proposed involve appliationsof tehniques from frational programming and dynami programming.Key words: loal alignment; yli sequene omparison; normalized loal alignment; length-restrited loal alignment; approximation algorithm; dynami programming; ratio maximiza-tion; frational programmingHistory: Aepted by Harvey J. Greenberg, Guest Editor; reeived August 2003; revisedFebruary 2004; aepted February 2004.1. IntrodutionDeteting loal similarities in two given strings has beome an inreasingly important om-putational problem, partiularly due to its appliations in biologial sequene analysis.1



Table 1: Loal Alignment Problems LA (Waterman 1995), (Setion 2), and ANLA (Arslanet al. 2001) (Setion 4)AlignmentProblem Objetive Algorithm Time Spae Sore ReturnedLA maximize s(I; J) Smith-Waterman O(nm) O(m) LA�ANLA maximize s(I;J)jIj+jJj+Lfor parameter L �0 Dinkelbah O(nm)(experi-mental) O(m) ANLA�RationalANLA O(nm logn)O(m) ANLA�The objetive of loating similar fragments in a given pair of strings an be formulatedin several ways. The formulations lead to new optimization problems, some of whih involea length onstraint on the fragments. In most ases, there are simple dynami-programmingformulations for the exat version of a given alignment problem with length onstraints.However, the resulting algorithms require ubi time whih is unaeptably high for pratialpurposes sine the sequene lengths an be on the order of millions. Approahes based onlassial algorithms (e.g. Karp's minimum mean-weight yle algorithm) on general graphssu�er from the same anomalies beause they do not readily speialize to highly struturedbut large graphs used for sequene analysis, and they do not yield algorithms more eÆientthan naive dynami-programming algorithms. To ope with high omplexity, approximationsare onsidered in both de�nitions of similarity, and resulting omputations.In this paper we survey onstrained alignment problems as summarized in Tables 1 and2, and present new approximation algorithms for these problems, for whih we summarizethe results in Table 3.Given two strings X and Y the loal alignment (LA) problem seeks substrings I � X, andJ � Y with the highest similarity sore s(I; J), where � indiates the substring relation.We assume that the length of the sequenes are n = jXj, m = jY j, and n � m. Forany optimization problem P, we denote by P� its optimum value, and sometimes drop theparameters from the notation when they are obvious from ontext. An optimization problemP is alled feasible if it has a solution with the given parameters.A lassial algorithm for LA is the well-known Smith-Waterman algorithm that uses dy-nami programming. The algorithm essentially disards poorly onserved initial and terminalfragments. Sine it is not designed to exlude non-similar internal fragments, an alignment2



Table 2: The LRLA (Arslan and E�geio�glu 2002) (Setion 5) and the CLA (Arslan andE�geio�glu 2002) (Setion 5.1) ProblemsAlignmentProblem Objetive Algorithm Time Spae Sore Re-turnedLRLA maximize s(I; J)suh that jJ j �T HALF O(nm) O(m) � 12LRLA�APX-LRLA O(nmT=�) O(mT=�) � LRLA� �2�CLA LRLA with The same LRLA algorithms, omplexity, and resultsparametersX, Y Y , andT = jY j
Table 3: New Loal Alignment Problems LAt (Setion 6), Qt (Setion 7), and New ImprovedApproximation Algorithms (Setion 8) for NLAt (Arslan et al. 2001) (Setion 3)AlignmentProblem Objetive Algorithm Time Spae Returned align-ment satis�esLAt maximize s(I; J) APX-LAt O(rnm) O(rm) sore � LAt�,length � (1 � 1r )tsuh thatjIj + jJ j � tQt �nd (I; J) suh APX-LAt O(rnm) O(rm) nor.-sore > �,length � (1 � 1r )tthat s(I;J)jIj+jJj > �,and jIj+ jJ j � t,for parameter� > 0NLAt maximize s(I;J)jIj+jJj Dinkelbah O(rnm)(experi-mental) O(rm) nor.-sore� NLAt�, length� (1 � 1r )tRationalNLAt O(rnm logn)O(rm) nor.-sore� NLAt�, length� (1 � 1r )tsuh thatjIj + jJ j � t
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Sequence 2

Sequence 1

SCORE > XSCORE > X SCORE = - XFigure 1: The Inlusion of an Arbitrarily Poor Region in an Alignment (Zhang et al. 1999)returned may ontain a mosai of well-onserved fragments arti�ially onneted by poorlyonserved or even unrelated fragments, as shown in Figure 1. If a region of negative sore�X is sandwihed between two regions soring more than X, then the Smith-Watermanalgorithm will join the three regions into a single alignment that may not be biologiallyadequate.It is well known that this may ause two forms of anomalies:� Mosai e�et in an alignment is observed when a very poor region is sandwihedbetween two regions with high similarity sores.� Shadow e�et is observed when a biologially important short alignment is not detetedbeause it overlaps with a signi�antly longer yet biologially inadequate alignmentwith higher overall sore.These anomalies may lead to unertainties in omparison of long genomi sequenes andomparative gene predition, and loating oding regions in genes. As a result, appliationsof the Smith-Waterman algorithm to omparison of related genomes (partiularly with shortintrons as C.elegans and C.briggsae) may lead to problems (Zhang et al. 1999).Attempts to �x the problem of mosai e�et undertaken by Goad and Kanehisa (1982)(who introdued alignment with minimal mismath density) and Sellers (1984) did not leadto suessful algorithms and were later abandoned. The mosai e�et was �rst analyzed byWebb Miller and led to some studies trying to �x this problem at the post-proessing stage(Huang et al. 1994, Zhang et al. 1999). Zhang et al. (1999) proposed to deompose a loalalignment into sub-alignments that avoid the mosai e�et. Post-proessing is also usedin determining length-onstrained heaviest segments (Lin et al. 2002) . However, the post-proessing approah annot detet the alignments missed by the Smith-Waterman algorithm.As a result, highly similar fragments may be ignored if they are not parts of larger alignmentsthat dominate other loal similarities. 4



Another approah to �xing the problems with the Smith-Waterman algorithm is basedon the notion of an X-drop, a region within an alignment that sores below X. Alignmentsthat ontain no X-drops are alled X-alignments. Although X-alignments are expensive toompute in pratie, Altshul et al. (1997) and Zhang et al. (1998) used some heuristis forsearhing databases with this approah.In both the problems of mosai and shadow e�ets, the main issue is the ability ofthe underlying similarity measure to take into aount the lengths of the strings mathed.For example, if only the sores are onsidered, a loal alignment with sore 1,000 and length10,000 (long alignment) is hosen over a loal alignment with sore 998 and length 1,000 (shortalignment), although the latter is probably more important biologially. Moreover, if theorresponding alignment paths overlap, the more biologially important \short" alignmentwill not be deteted even by suboptimal sequene alignment algorithm (the shadow e�et).To reet the length of the loal alignment in soring, sore s(I; J) of loal alignmentinvolving substrings I and J may be adjusted by dividing s(I; J) by the total length of thealigned regions (alignment length), jIj+ jJ j. Arslan et al. (2001) introdued the normalizedloal alignment problem, whih aims to �nd substrings I and J that maximize s(I; J)=(jIj+jJ j) among all substrings I and J with jIj + jJ j � t, where t is a threshold for the minimaloverall length of I and J . The length onstraint is neessary beause length normalizationfavors short alignments but the alignments should be suÆiently long to be biologiallymeaningful.Arslan et al. (2001) also proposed the adjusted normalized loal alignment (ANLA) prob-lem, whih is a variant of the normalized loal alignment problem. The objetive of theproblem is the same as that of the NLA problem, whih is to obtain suÆiently long align-ments with maximum length normalized sore. In the ANLA problem the objetive funtionis modi�ed: the length onstraint is dropped and the lengths of the optimal alignmentsare ontrolled by an arti�ial parameter inluded in the objetive funtion. This modi�-ation allows for fast algorithms based on frational programming, and Megiddo's searhtehnique. There are two algorithms for the ANLA problem (Arslan et al. 2001). The �rstalgorithm is a Dinkelbah algorithm. Experimental results suggest that this algorithm isonly three to �ve times slower on average than the standard Smith-Waterman algorithm.The other algorithm, Algorithm RationalANLA, is based on binary searh. This algorithmruns in O(nm logn) time. We summarize these results in Table 1. Loal alignment problemsLA (Waterman 1995), (Setion 2), and ANLA (Arslan et al. 2001) (Setion 4) have exat5



solutions. The Smith-Waterman algorithm uses dynami programming (2). The Dinkel-bah algorithm (Figure 4) for ANLA uses a frational-programming tehnique. AlgorithmRationalANLA (Figure 5) is based on Megiddo's searh tehnique. Both ANLA algorithmsiteratively solve LA problems.Another attempt to eliminate problems assoiated with loal alignment introdued thelength restrited loal alignment (LRLA) problem (Arslan and E�geio�glu 2002), whih searhesfor substrings I and J that maximize the sore s(I; J) among all substrings I and J withjJ j � T , where T is a given upper limit on the length of J . Indiretly, an optimal alignmentis fored to have a high normalized sore. The limit is plaed on only the substring J of Y .The underlying soring sheme should limit the length of the other substring involved in anoptimal alignment automatially, and therefore having two limits, one for jIj and anotherfor jJ j is redundant. That is, the bound T allows for a ontrol over the length of the optimalloal alignment sought.The LRLA problem an be solved by extending the dynami-programming formulationof the loal alignment problem. However the resulting time omplexity is O(Tnm), whihmay be impratial for large values of n, m, and T , eah of whih may be on the orderof millions. Two approximation algorithms for LRLA have been proposed (Arslan andE�geio�glu 2002). The �rst one is Algorithm HALF, whih returns a sore whose di�erenefrom the optimum is within half of the optimum, and whose omplexity is the same asthat of the loal alignment problem. The seond algorithm is Algorithm APX-LRLA. Itreturns a sore guaranteed to be within 2� of the optimum for a given � � 1. The timeomplexity of this algorithm is O(nmT=�), with O(mT=�) spae. These two approximationalgorithms an also be used to solve approximately the yli loal alignment (CLA) problem(Arslan and E�geio�glu 2002) of maximizing s(I; J), where I is a substring of X. The CLAproblem was introdued as a dual approah to the well-known yli edit distane, whih hasappliations in two-dimensional shape reognition, and in deteting irular permutationsin proteins. These results are summarized in Table 2. Approximation algorithms HALF(Setion 5), and APX-LRLA (Figure 8) for the LRLA problem (Arslan and E�geio�glu 2002)(Setion 5) are based on extending the dynami-programming formulation of loal alignmentby using slab deomposition of the alignment graph. The same algorithms, and results areappliable to the CLA problem (Arslan and E�geio�glu 2002) (Setion 5.1) sine CLA is aspeial ase of LRLA (12).In this paper we introdue new loal alignment problems with length onstraints, and6



present approximation algorithms by using the ideas in Algorithm APX-LRLA. We alsouse these results to develop approximation algorithms for the NLAt problem. All these ap-proximation algorithms return alignments whose sores are at least optimal with respetto the length onstraints, but the length of the resulting alignments di�er from the desiredlength only by a presribed fration. These results are summarized in Table 3. In the lastolumn of the table, nor.-sore � normalized sore. New loal alignment problems intro-dued in this paper are LAt (Setion 6) and Qt (Setion 7). New improved approximationalgorithms for the NLAt problem (Arslan et al. 2001) (Setion 3) are presented in Setion8. The approximation algorithms for LAt (Figures 11 and 14) use the slab-deompositiontehnique. Problem Qt an be approximated by solving an LAt problem (Proposition 3).The Dinkelbah algorithm for NLAt (Figure 16) and RationalNLAt (Figure 15) are similarto the orresponding ANLA algorithms exept that they iteratively solve LAt problems.The �rst problem we introdue is the loal alignment with length threshold (LAt), in whihthe objetive is to �nd a suÆiently long loal alignment with a high sore, where the lengthof a given alignment is de�ned as the sum of the lengths of the subsequenes involved in thealignment. We present Algorithm APX-LAt, whih �nds an alignment with ordinary sore� LAt�, and length � (1 � 1r )t for a given r in time O(rnm) and spae O(rm). Althoughthe problem itself is not very interesting, for pratial purposes an algorithm for the probleman be used to solve the next problem we introdue, namely the query problem Qt, and italso leads to improved approximation algorithms for the NLAt problem.We de�ne Problem Qt as �nding long alignments with high normalized sore. The moti-vation for the problem an be expressed by the following typial query: \Do X and Y sharea (suÆiently long) fragment with more than 70% of similarity?" The problem is feasible ifthe answer to this query is not empty, i.e., there exists a pair of subsequenes I and J withsuÆiently large total length (i.e. jIj+ jJ j � t for a given threshold t), and suÆiently highnormalized sore (i.e. s(I; J)=(jIj+ jJ j) > � for a given � > 0). We show that, for a feasibleproblem, Algorithm APX-LAt an be used to �nd subsequenes with normalized sore > �and total length � (1 � 1r )t. The approximation ratio is ontrolled by a free parameter r.The algorithm takes O(rnm) time and O(rm) spae.We present new approximation algorithms for the NLAt problem using frational pro-gramming, and applying Algorithm APX-LAt. The resulting algorithms are the Dinkelbahalgorithm for NLAt and Algorithm RationalNLAt. Both algorithms obtain an alignmentwhose sore is no smaller than NLAt�, the optimum sore of the original NLAt problem,7



and whose length is at least (1 � 1r )t for a given r provided that the original NLAt problemis feasible. In both resulting algorithms the spae omplexity is O(rm). Test results sug-gest that the time omplexity of the Dinkebah algorithm for NLAt is O(rnm). AlgorithmRationalNLAt has proven time omplexity O(rnm logn).The outline of the paper is as follows. In Setion 2 we give the basi bakground forsequene omparison. Following this, we desribe various alignment problems and orre-sponding algorithms. Setions 3, 4, and 5 are respetively for normalized loal alignmentNLAt, adjusted normalized loal alignment ANLA, and length-restrited loal alignmentLRLA. In Setions 6 and 7 we introdue new loal alignment problems, respetively, loalalignment with length threshold LAt problem, and the query problem Qt. In Setion 8 wepresent new improved approximation algorithms for the NLAt problem. Finally, we makesome �nal remarks in Setion 9.An extended abstrat of Setions 6, 7, and 8 of this paper was presented at the 9th Inter-national String Proessing and Information Retrieval Conferene (SPIRE 2002), Portugal,September 2002.2. Framework for Pairwise Sequene ComparisonGiven two strings X = x1x2 : : : xn and Y = y1y2 : : : ym with n � m, we use the alignmentgraph GX;Y to analyze alignments between all substrings of X and Y . The alignment graphis a direted ayli graph having (n+1)(m+1) lattie points (u; v) as verties for 0 � u � nand 0 � v � m. Figure 2 shows an alignment graph for xi � � �xk = ATTGT and yj � � � yl =AGGACAT . Mathing diagonal ars are drawn as solid lines while mismathing diagonalars are shown by dashed lines. Dotted lines are used for horizontal and vertial ars. Anexample alignment path is shown. Labels of the ars on this path are the orresponding editoperations where � denotes the null string. An alignment path for substrings xi � � �xk andyj � � � yl is a direted path from the vertex (i � 1; j � 1) to (k; l) in GX;Y , where i � k andj � l. To eah vertex there is an inoming ar from eah neighbor, if it exists. Horizontaland vertial ars orrespond to insert and delete operations respetively. The diagonal arsorrespond to substitutions that are either mathing (if the orresponding symbols are thesame), or mismathing (otherwise). If we trae the ars of an alignment path for substringsI and J and perform the indiated edit operations in the given order on I, we obtain J .Bloks of insertions and deletions are also referred to as gaps . The alignment in Figure 28
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Then LA�(X; Y ) = maxi;j Si;j : (3)Note that LA� an be omputed using the Smith-Waterman algorithm (Smith and Waterman1981) in time O(nm). The spae omplexity is O(m) beause only O(m) entries of thedynami-programming matrix need to be stored at any given time.The simple soring sheme an be extended suh that the sores an vary depending onthe individual symbols within the same edit operation type. This leads to arbitrary soringmatries. In this ase there is a dynami-programming formulation similar to (2).AÆne gap penalties is another ommon soring sheme in whih the total penalty for agap of size k, i.e. a blok of k insertions (or deletions), is �+(k�1)�, where � is the gap openpenalty, and � is alled the gap extension penalty. The dynami-programming formulationfor this ase an be desribed as follows (Waterman 1995): Ei;j = Fi;j = Si;j = 0 when i orj is 0, and de�ne Ei;j = maxfSi;j�1 � �; Ei;j�1 � �g;Fi;j = maxfSi�1;j � �; Fi�1;j � �g;Si;j = maxf0; Si�1;j�1 + s(xi; yj); Ei;j; Fi;jg : (4)AÆne gap penalties do not inrease the asymptoti omplexity of the loal alignment prob-lem.We assume that only the mathes have nonnegative sores, so on any alignment the soreannot exeed the length.For some of the tehniques explained below it is also useful to express alignment problemsas linear optimization problems. We de�ne an alignment vetor as the vetor of edit-operationfrequenies suh that the sores and the lengths of alignments an be expressed as linearfuntions over alignment vetors. For example, under the basi soring sheme, we saythat (x; y; z) is an alignment vetor if there is an alignment path between subsequenesI � X and J � Y with x mathes, y mismathes, and z indels. In Figure 2, (3; 1; 4) isan alignment vetor orresponding to the path shown in the �gure. Let AV, under a givensoring sheme, denote the set of alignment vetors. Then s(I; J) an be expressed as alinear funtion SCORE over AV for the soring shemes we study, namely, the basi soringsheme, arbitrary soring matries, and aÆne gap penalties. For example, when simplesoring is used, SCORE(a) = x� Æy � �z for a = (x; y; z) 2 AV;10



where x, y, and z of alignment vetor a represent the number of mathes, mismathes, andindels, respetively.The loal alignment problem LA an be rewritten as follows :LA : maximize SCORE(a) s.t. a 2 AV :3. Normalized Loal AlignmentUsing length-normalized sores in the loal alignment is suggested (Arslan et al. 2001) toope with the mosai and shadow e�ets. The degree of similarity is noted in statistis ofsequene omparison. For example the similarity between nuleotide sequenes of relatedhuman and mouse exons is 85% on average, while similarity between introns is 35% onaverage.The objetive of the normalized loal alignment (NLAt) problem (Arslan et al. 2001) isNLAt�(X; Y ) = maxfs(I; J)=(jIj+ jJ j) j I � X; J � Y; jIj+ jJ j � tg : (5)The length of an alignment an appropriately be de�ned as the sum of the lengths ofthe substrings involved in the alignment. For an alignment vetor a 2 AV, the length of theorresponding alignment an be expressed as a linear funtion LENGTH. For example whenthe simple soring sheme is used,LENGTH(a) = 2x + 2y + z for a = (x; y; z) 2 AV;where x, y, and z represent the number of mathes, mismathes, and indels, respetively.Let AVt � AV be a set of alignment vetors orresponding to alignments with length� t. The normalized loal alignment problem NLAt an be rewritten as follows :NLAt : maximize SCORE(a)LENGTH(a) s.t. a 2 AVt :Clearly, optimal alignments for LA and NLAt may be di�erent. When ordinary sores areused, optimal long alignments may inlude very poor regions (mosai e�et), and they mayovershadow important alignments with relatively lower sores. If we use normalized sores,then the desired alignments depend on the value of t. The need to have ontrol over thealignment lengths beomes apparent when we use normalized sores. Without ontrolling thedesired alignment lengths, with normalized sores short alignments destroy the optimality ofimportant long alignments, whih, as a result, are not deteted, ausing yet another anomaly.11
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in the �gure, t = 200 is a separating value in determining the optimality of short and longalignments.To solve the NLAt problem we an extend the dynami-programming formulation for thesoring shemes that we address in this paper by adding another dimension. At eah entryof the dynami-programming matrix we an store optimum sores for all possible alignmentlengths up to m + n. This inreases the time and spae omplexity to O(n2m) and O(nm),respetively. These are unaeptably high beause, in pratie, the values of both n and mmay be on the order of millions.It may seem feasible to apply well-known graph algorithms to �nd long regions witha high degree of similarity. For example, we may formulate an objetive with whih weaim to minimize a length-normalized weighted edit distane for substrings, and inlude alength threshold as a lower bound for the desired length. For solving this problem, Karp'sO(jV jjEj)-time minimum mean-weight yle algorithm (Cormen et al. 2001) seems a naturalandidate. Solution requires adding extra edges to ause yles of a ertain minimum length,determined by the given length threshold. For an alignment graph for a pair of strings oflength n eah, the number of verties jV j and number of edges jEj (exluding the additionaledges) are both O(n2). This is not more eÆient than naive dynami programming.There are approximation algorithms for the problem, whih we will address in Setion 8.4. Adjusted Normalized Loal AlignmentThe objetive of NLA may be ahieved by a reformulation. In the adjusted normalizedloal alignment problem, we an modify the maximization ratio funtion to drop the lengthonstraint, yet ahieve a similar objetive: obtain suÆiently long alignments with a highdegree of similarity. The adjusted length normalized sore of an alignment is omputed byadding some L � 0 to the denominator in the alulation of the quotient of ordinary soresby the length. Thus, the adjusted normalized loal alignment (ANLA) problem (Arslan etal. 2001) is a variant of a normalized loal alignment problem in whih the length onstraintis dropped, and the optimization funtion is modi�ed by adding a parameter L to thedenominator:ANLA�(X; Y ) = maxfs(I; J)=(jIj+ jJ j + L) j I � X; J � Y; L � 0g : (6)The adjusted normalized loal alignment problem ANLA an be rewritten as follows:13



ANLA : maximize SCORE(a)LENGTH(a)+L s.t. a 2 AV :The objetive is still to obtain suÆiently long alignments with high length-normalizedsores. Parameter L provides some ontrol over the resulting alignment lengths. WhenL = 0, ANLA is equivalent to NLAt with no onstraint on the length, in whih ase a singlemath is an optimal alignment. With larger values of L, the optimal alignments are fored tohave larger ordinary alignment sores, and they tend to beome longer, and yet have smallerlength-normalized sores. In eah example in Figure 3, the shorter alignment(s) with a soreof 80 and length 200 has adjusted normalized sore 80200+L , and the long alignment with a soreof 120 and length 600 has adjusted normalized sore 120600+L . In these ases, in ANLA settingL to a value smaller than 600 distinguishes shorter alignments as optimal; otherwise (forL � 600), the longer alignments are optimal. Although the optimal alignments for ANLAand NLAt may be di�erent, to approximate the goal of NLAt we may use ANLA insteadand obtain suÆiently long alignments with high normalized sores, provided that we havehosen proper values for L suh that the lengths of the optimal alignments of ANLA meet thelength onstraint in NLAt. Using L = 2000 in ANLA reveals many interesting alignmentsbetween orthologous human (GenBank A. No. AF030876) and mouse (GenBank A. No.AF121351), and in bli-4 lous in C.elegans and C.briggsae (Arslan et al. 2001).For ANLA, faster algorithms are possible using a frational-programming tehnique. Thetime omplexity of ANLA is O(nm logn) using one algorithm. In another algorithm, thetest results suggests that the time omplexity is O(nm), though this has not been proven.Compared to O(n2m) time omplexity of NLAt, ANLA an be solved muh faster.One ANLA algorithm (Arslan et al. 2001) is a Dinkelbah algorithm, whih uses theparametri method of frational programming. The algorithm iteratively solves a so-alledparametri problem LA�, whih is the following optimization problem: for a given �,LA��(X; Y ) = maxfs(I; J) � �(jIj + jJ j+ L) j I � X; J � Y g : (7)LA�(X;Y ) an also be written asLA(�) : maximize SCORE(a) � � LENGTH(a) � �L s.t. a 2 AV :A parametri loal alignment problem an be desribed in terms of the loal alignmentproblem. 14



Algorithm DinkelbahPik an arbitrary alignment, and let �� be the adjusted length-normalized soreof this alignmentRepeat� ��Solve LA(�) and let �� be the adjusted length-normalized sore ofan optimal alignmentUntil �� = �Return(��) Figure 4: Dinkelbah Algorithm for ANLAProposition 1 (Arslan et al. 2001) For � < 12 , the optimum value LA�(�) of the parametriLA problem an be formulated in terms of the optimum value LA� of an LA problem.Proof Under the basi soring sheme the optimum value of the parametri problem, when� < 12 , is LA�Æ;�(�) = (1� 2�)LA�Æ0;�0 � �L where Æ0 = Æ + 2�1 � 2�; �0 = � + �1 � 2� : (8)We an easily verify that a similar relation exists in the ase of arbitrary soring matries, andaÆne gap penalties. Thus, omputing LA�(�) involves solving the loal alignment problemLA, and performing some simple arithmeti afterward.We assume without loss of generality that for any alignment the sore does not exeed thenumber of mathes. Therefore for any alignment, its normalized sore � � 12 . We onsider� = 12 as a speial ase sine it an only happen when the alignment is omposed of mathesonly and L = 0.An optimal solution to a ratio-optimization problem ANLA an be ahieved via a seriesof optimal solutions of the parametri problem with di�erent parameters LA(�). In fat� = ANLA� i� LA�(�) = 0. That is, an alignment vetor v 2 AVt has the optimumnormalized sore � i� v is an optimal alignment vetor for the parametri problem LAt(�)with optimum value zero. (See Arslan et al. 2001 for details; also see Craven 1988 andSniedovih 1992 for many interesting properties of frational programming.) The Dinkelbahalgorithm for the ANLA problem is shown in Figure 4. Solutions of the parametri problemsthrough the iterations yield improved (higher) values to � exept for the last iteration. Whenthe algorithm terminates, the �nal alignment is optimal with respet to both the ordinary15



Algorithm RationalANLALet � be the smallest gap between two adjusted length normalized soresInitialize [e; f ℄ [0; 12��1℄While (e+ 1 < f) dok  b(e + f)=2If LA�(k�) > 0 then e k else f  kEnd fwhilegReturn(e�) Figure 5: ANLA Algorithm RationalANLA for Rational Soressores used at that iteration, and the length-normalized soring with the original sores.This mimis the manual operation of hanging the sores until the result is satisfatory.As reported by Arslan et al. (2001), experiments suggest that the number of iterationsis a small onstant: three to �ve on average. However, a theoretial bound is yet to beestablished. If we assume that the sequenes involved in alignments are �xed (for example,onsider the normalized global alignment), and the simple soring sheme is used, then thenumber of iterations is bounded by the size of the onvex hull of lattie points whose diameteris bounded by the length of the strings. In this ase, eah parametri problem is optimized atone of the extreme points of the onvex hull, and eah extreme point is visited at most oneduring the iterations. It is known that the size of a onvex hull of diameter N is O(N2=3) (Seefor example Arslan and E�geio�glu 2001). Even this rough estimate shows that the algorithmin the worst ase is better than the straightforward dynami-programming extension.In pratie the sores are rational, and in the ase of rational sores there is a provablybetter result (Arslan et al. 2001), whih is ahieved by Algorithm RationalANLA given inFigure 5. The algorithm uses Megiddo's tehnique (Megiddo 1979) to perform a binary searhfor optimum normalized sore over an interval of integers. The searh is based on the sign ofthe optimum value of the parametri problem. In this ase, if LA�(�) = 0, then � = ANLA�,and an optimal alignment vetor of LA(�) is also an optimal solution of ANLA. On theother hand, if LA�(�) > 0 then a larger � should be tested, and if LA�(�) < 0 a smaller �should be tested (i.e., Problem LA(�) should be solved with a di�erent value of �). Whenthe sores are rational numbers the e�etive searh spae inludes O(n2) integers beausethe gap between any two distint length normalized sores is 
(1=n2). The algorithm solvesO(logn) parametri problems. Therefore, the resulting time omplexity is O(nm logn), andthe spae omplexity is O(m). 16
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Figure 6: Candidates for I and J in the Computation of LRLA�(X; Y; T )5. Length-Restrited Loal AlignmentIn the length-restrited loal alignment (LRLA) problem, the objetive is to �nd substrings Iand J that maximize the sore s(I; J) among all substrings I and J with jJ j � T , where Tis a given upper limit on the length of J . The objetive is similar to that of the normalizedloal alignment in that it aims to irumvent the undesirable mosai and the shadow e�ets.Indiretly, an optimal alignment is fored to have a high normalized sore. The length ofsubsequene J in an optimal alignment is ontrolled by the bound T . Deteting a numberof important loal alignments of di�erent horizontal lengths may require solving a series ofLRLA problems with di�erent values of T .Formally, given a limit T , the LRLA problem (Arslan and E�geio�glu 2002) between Xand Y is de�ned as follows:LRLA�(X; Y; T ) = maxfs(I; J) j I � X; J � Y; and jJ j � Tg : (9)Figure 6 illustrates the length onstraint shematially. In the LRLA problem, the hori-zontal lengths of the resulting alignments are ontrolled by the upper limit T on the lengthof one of the substrings, whih in pratie will be determined experimentally, or by otheronsiderations.LRLA an be solved by extending the dynami-programming formulation of the loalalignment problem as before. However, the resulting time omplexity is O(Tnm), whih isimpratial for large values of n, m, and T .There are two approximation algorithms (Arslan and E�geio�glu 2002) for the LRLAproblem. The �rst is Algorithm HALF, whih returns a sore whose di�erene from theoptimum is guaranteed to be within half of the optimum. The algorithm's omplexity is thesame as that of the ordinary loal-alignment problem. The seond algorithm, APX-LRLA,17
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Figure 7: Slabs with Respet to Column j, and Alignments Ending at Node (i; j) Startingat Di�erent Slabsreturns a sore guaranteed to be within 2� of the optimum for a given � � 1. The timeomplexity of this algorithm is O(nmT=�), with O(mT=�) spae.In some ases we an ontrol the approximation ratio of Algorithm APX-LRLA with thehelp of Algorithm HALF. Suppose that there exists a onstant  suh that for the soresof alignments of interest we an set a lower limit T . Then �rst running HALF, and thenrunning APX-LRLA with � = HALF�=(2r) for any positive r we hoose, we an obtainan alignment with sore � (1 � 1r )LRLA� in time O(nmr) and spae O(mr). That is, theapproximation ratio, and omplexity of Algorithm APX-LRLA, an be ontrolled throughthe parameter r.In Algorithm HALF, the alignment graph GX;Y is imagined as grouped into vertialslabs of horizontal length T eah. Consider a horizontal window of size 2T at a time, andonsider all suh windows separated from eah other by horizontal distane T . The algorithmomputes optimal alignments for eah window. The alignment with maximal sore over thesealignments has horizontal length not exeeding 2T , and when split into two horizontally, oneof its halves has a sore within half of the optimum.Similarly, Algorithm APX-LRLA assumes that the olumns of the graph GX;Y aregrouped into vertial slabs of � + 1 olumns eah, starting with the leftmost olumn (i.e.j = 0). Two onseutive slabs share a olumn that we all a boundary. The left and theright boundaries of the slabs are de�ned as the leftmost and rightmost olumn positions inthe slab. A slab does not ontain the vertial edges among the verties on the left boundary.Figure 7 inludes sample slabs with respet to olumn j, and alignments ending at somenode (i; j).Algorithm APX-LRLA is shown in Figure 8. The algorithm extends the dynami-programming formulation in (2) by onsidering at eah node a list of sores of optimal18



Algorithm APX-LRLA(Æ; �)1: Run a modified Smith-Waterman algorithm. If the maximum sore isahieved within horizontal length � T then return this sore and exit2: Initialization:set LRLA� = 0set S0;j;k = 0 for all j; k, 0 � j �m, and 0 � k � bT=� � 13: Main omputations :for i = 1 to n do fset Si;0;k = 0 for all k, 0 � k � bT=� � 1for j = 1 to m do fif (j mod � = 1) thenfset Si;j;0 = maxf0; s(xi; yj);Si�1;j;0 � �gset LRLA� = maxfLRLA�;Si;j;0gfor k = 1 to bT=� � 1 do fset Si;j;k = maxf0;Si�1;j;k � �;Si�1;j�1;k�1 � s(xi; yj);Si;j�1;k�1 � �gset LRLA� = maxfLRLA�;Si;j;kgggelsef for k = 0 to bT=� � 1 do fset Si;j;k = maxf0;Si�1;j;k � �;Si�1;j�1;k � s(xi; yj);Si;j�1;k � �gset LRLA� = maxfLRLA�;Si;j;kggggg3: Return LRLA�Figure 8: Algorithm APX-LRLA, whih Approximates LRLA� Within 2�
19



alignments, eah starting in a di�erent slab. At the heart of the algorithm is a step thatonsiders two ases at eah node (i; j):� If the urrent node (i; j) is not on the �rst olumn after a boundary, then nodes(i � 1; j), (i � 1; j � 1), and (i; j � 1) share the same slabs with node (i; j). In thisase, for 0 � k � bT=� � 1, Si;j;k is alulated in an obvious way by using Si�1;j;k,Si�1;j�1;k and Si;j�1;k asSi;j;k = maxf0;Si�1;j;k � �;Si�1;j�1;k � s(xi; yj);Si;j�1;k � �g;where Si�1;j�1;k � s(xi; yj) = Si�1;j�1;k + s(xi; yj) if Si�1;j�1;k > 0 or k = 0, and 0otherwise. This is beause a loal alignment neessarily has a positive sore, and itis either a single math, or it is an extension of an alignment whose sore is positive.Therefore, an alignment with no sore is not extended unless the resulting alignmentis a single math in the urrent slab.� If the urrent node is on the �rst olumn following a boundary (j mod � = 1), thenthe slabs for the nodes involved in the omputations for node (i; j) di�er. In thisase, slab k for node (i; j) is slab k � 1 for the nodes at olumn j � 1. Moreover,any alignment ending at (i; j) starting at slab 0 for (i; j) an either inlude only oneof the edges ((i � 1; j); (i; j)), ((i � 1; j � 1); (i; j)), or ((i; j � 1); (i; j)), or extend analignment from node (i� 1; j). The edges ((i� 1; j); (i; j)) and ((i; j � 1); (i; j)) bothhave negative weight ��. Therefore, Si;j;0 is set to maxf0; s(xi; yj);Si�1;j;0 � �g. Forslab 1 � k � bT=� � 1 Si;j;k is alulated bySi;j;k = maxf0;Si�1;j;k � �;Si�1;j�1;k�1 � s(xi; yj);Si;j�1;k�1 � �g :During these omputations, the running maximum sore is also updated whenever a newlyomputed sore Si;j;k is larger than the urrent maximum, and the �nal value is returned inStep 3. The alignment position ahieving this sore may also be desired. This an be doneby maintaining for eah optimal alignment its start and end positions, in addition to itssore. In this ase, in addition to the running maximum sore, the start and end positionsof a maximal alignment should be stored and updated.For the approximation result about the algorithm to hold, i.e., to prove that the algorithmapproximates LRLA� within 2�, we �rst need to assume that the maximum positive sore forany individual operation is at most one. In the soring shemes we address in this paper, this20



an be satis�ed by normalizing all the sores by dividing them by the maximum individualpositive sore, whih does not a�et the optimality of the alignments. Next, to establish thatthe algorithm returns an alignment whose sore is within 2� of LRLA�, we use indution onnodes (i; j), and analyze the di�erent ases for the orientation of optimal alignments endingat eah node (i; j). We omit these details, and refer the reader to Arslan and E�geio�glu(2002).There are variants of Algorithm APX-LRLA for the ases of arbitrary soring matries,and aÆne gap penalties (Arslan and E�geio�glu 2002). Eah algorithm extends the orre-sponding dynami-programming formulation for ordinary loal alignment. For example, thevariant for aÆne gap penalties is based on the formulation in (4). These algorithms have thesame approximation guarantee and omplexity (Arslan and E�geio�glu 2002). Although thealgorithms use di�erent formulations, the approximation and omplexity results are shownsimilarly. For example, in the ase of aÆne gap penalties, at eah entry of matries E , F ,and S, we maintain a list of sores of optimal alignments, eah starting in a di�erent slab.5.1 Appliation to Cyli Sequene ComparisonThe yli edit distane (CED) (Maes 1990) between X and Y is the minimum edit distanebetween X and any yli shift of Y ,CED�(X; Y ) = minfed(X; �k(Y )) j 0 � k < mg; (10)where ed denotes the edit distane, and �k(Y ) is the yli shift of Y by k, whih is de�nedas follows: �0(Y ) = Y , and for 0 < k < m, �k(Y ) = yk+1 : : : ymy1 : : : yk.Cyli edit distane appears in many appliations. Bunke and B�uhler (1993) presenteda method that uses the yli edit distane for two-dimensional shape reognition. Ulielet al. (1999) suggested using it for deteting irular permutations in proteins. Figure 9shematially desribes the problem.There are many algorithms for this problem. The most general algorithm was proposed byMaes (1990). There are other algorithms that are either output-size sensitive, or sub-optimal,or that assume some restrition on the weights. A list of referenes for these algorithms anbe found in Arslan and E�geio�glu (2002).As a dual approah to the CED problem, we an de�ne the yli loal alignment (CLA)
21
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(n,m+i)Figure 9: De�nition of CED�(X; Y )problem (Arslan and E�geio�glu 2002) by expressing its objetive in the formCLA�(X; Y ) = maxfs(I; J) j I � X; J � �k(Y ) for some k; 0 � k < mg : (11)Note that CLA is a speial ase of LRLA. More spei�ally,CLA�(X; Y ) = LRLA�(X; Y Y; jY j) : (12)Maes' (1990) algorithm uses the \non-rossing" property of shortest paths. We note thatthis idea does not generalize to the ase of aÆne gap penalties, whereas the approximationand omplexity results of Algorithm APX-LRLA readily holds for the ase of aÆne gaps forthe approximation of CLA�, sine CLA is a speial ase of LRLA.6. Long Alignments with High Ordinary SoreFor a given t, we de�ne the loal-alignment-with-length-threshold sore between X and Y asLAt�(X; Y ) = maxfs(I; J) j I � X; J � Y; and jIj+ jJ j � tg : (13)Equivalently LAt : maximize SCORE(a) s.t. a 2 AVt :Although the problem itself is not very interesting, an algorithm for the problem an beused to �nd a long alignment with length-normalized sore > � for a given positive �, as weexplain in Setion 7. We also show that the algorithm for the loal alignment with length22



threshold leads to improved approximation algorithms for the normalized loal alignmentproblem, as we explain in Setion 8.To solve LAt we an extend the dynami-programming formulation in (2) by addinganother dimension. At eah entry of the dynami-programming matrix we store optimumsores for all possible lengths up to m + n, inreasing the time and spae omplexity toO(n2m) and O(nm), respetively, whih are unaeptably high in pratie.We give an approximation algorithm APX-LAt that omputes a loal alignment whosesore is at least LAt�, and whose length is at least (1 � 1r )t provided that the LAt problem isfeasible, i.e., the algorithm �nds two sequenes bI and bJ suh that s(bI; bJ) � LAt� and jbIj +j bJ j � (1 � 1r )t: The algorithm runs in time O(rnm) using O(rm) spae. For simpliity, weassume a basi soring sheme. Our approximation idea is similar to that of AlgorithmAPX-LRLA. Instead of a single sore, we maintain at eah node (i; j) of GX;Y a list ofalignments with the property that for positive s, where s is the optimum sore ahievableover the set of alignments with length � t and ending at (i; j), at least one element of the listahieves sore s and length t��, where � is a positive integral parameter. We show that thedynami-programming formulation an be extended to preserve this property through thenodes. In partiular, an alignment with sore � LAt� and length � t � � will be observedin one of the nodes (i; j) during the omputations.We imagine the verties of GX;Y as grouped into b(n+m)=� diagonal slabs at distane� from eah other, as shown in Figure 10.Sine we de�ne the length of an alignment as the sum of the lengths of the substringsinvolved in the alignment, on a given alignment the ontribution of eah diagonal ar tothe alignment length is two (eah math, or mismath, involves two symbols, one from eahsequene), while that of eah horizontal, or vertial ar is one (eah indel involves one symbolfrom one of the sequenes). Equivalently, we say that the length of a diagonal ar is two,and the length of eah horizontal, or vertial ar is one. The length of an alignment a is thetotal length of the ars on a. Eah slab onsists of b�=2 + 1 diagonals. Two onseutiveslabs share a diagonal that we all a boundary. The left and the right boundaries of slab bare, respetively, the boundaries shared by the left and right neighboring slabs of b. As asubgraph, a slab ontains all the edges in GX;Y inident to the verties in the slab exept forthe horizontal and vertial edges inident to the verties on the left boundary (whih belongto the preeding slab), and the diagonal edges inident to the verties on the �rst diagonalfollowing the left boundary. 23
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Figure 10: Slabs with Respet to Diagonal d, and Alignments Ending at Node (i; j) Startingat Di�erent SlabsNow to a given diagonal d in GX;Y , we assoiate a number of slabs as follows. Let slab0 with respet to diagonal d be the slab that ontains the diagonal d itself. The slabs to theleft of slab 0 are then ordered onseutively as slab 1, slab 2, : : : with respet to d. In otherwords, slab k with respet to diagonal d is the subgraph of GX;Y omposed of verties plaedinlusively between diagonals bd=� and d if k = 0, and between diagonal (bd=� � k)�and (bd=� � k + 1)� otherwise. Figure 10 inludes sample slabs with respet to diagonald, and alignments ending at some node (i; j) on this diagonal.Let Si;j;k represent the optimum sore ahievable at (i; j) by any alignment starting atslab k with respet to diagonal i + j for 0 � k < dt=�e. For k = dt=�e, Si;j;k is slightlydi�erent: it is the maximum of all ahievable sores by an alignment starting in or before slabk. Also, let Li;j;k be the length of an optimal alignment starting at slab k, and ahieving soreSi;j;k. A single slab an ontribute at most � to the length of any alignment. At eah node(i; j) we store dt=�e+ 1 sore-length pairs (Si;j;k;Li;j;k) for 0 � k � dt=�e orresponding todt=�e+1 optimal alignments that end (i; j). Figure 11 shows the steps of our approximationalgorithm APX-LAt. The proessing is done row by row starting with the top row (i = 0)of GX;Y .Step 1 of the algorithm performs the initialization of the lists of the nodes in the top row(i = 0). Step 2 implements omputation of sores as ditated by the dynami-programmingformulation in (2). Let maxp of a list of sore-length pairs be a pair with the maximum24



Algorithm APX-LAt(Æ; �)1: Initialization:set dLAt = 0set (S0;j;k;L0;j;k) = (0; 0) for all j; k, 0 � j � m, and 0 � k � dt=�e2: Main omputations:for i = 1 to n dofset (Si;0;k;Li;0;k) = (0; 0) for all k, 0 � k � dt=�efor j = 1 to m dof if (i+ j mod � = 1) thenfset (Si;j;0;Li;j;0) = (0; 0)for k = 1 to dt=�e � 1 do2:a:1 set (Si;j;k;Li;j;k) = maxpf (0; 0); (Si�1;j;k�1;Li�1;j;k�1) + (��; 1);(Si�1;j�1;k�1;Li�1;j�1;k�1)� (s(xi; yj); 2);(Si;j�1;k�1;Li;j�1;k�1) + (��; 1) gfor k = dt=�e2:a:2 set (Si;j;k;Li;j;k) = maxpf (0; 0); (Si�1;j;k�1;Li�1;j;k�1) + (��; 1);(Si�1;j�1;k�1;Li�1;j�1;k�1)� (s(xi; yj); 2);(Si;j�1;k�1;Li;j�1;k�1) + (��; 1);(Si�1;j;k;Li�1;j;k) + (��; 1);(Si�1;j�1;k;Li�1;j�1;k)� (s(xi; yj); 2);(Si;j�1;k;Li;j�1;k) + (��; 1) gg elsef for k = 0 to dt=�e do2:b set (Si;j;k;Li;j;k) = maxpf (0; 0); (Si�1;j;k;Li�1;j;k) + (��; 1);(Si�1;j�1;k;Li�1;j�1;k)� (s(xi; yj); 2);(Si;j�1;k;Li;j�1;k) + (��; 1) ggfor k = dt=�e � 1 if Li;j;k � t�� then set dLAt = maxfdLAt;Si;j;kgfor k = dt=�e set dLAt = maxfdLAt;Si;j;kggg3: Return dLAt Figure 11: Algorithm APX-LAt
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have negative weight ��. Therefore, (Si;j;0;Li;j;0) is set to (0; 0). Steps 2:a:1 and 2:a:2 showthe alulation of (Si;j;k;Li;j;k) respetively for 0 < k < dt=�e and for k = dt=�e.The running maximum sore dLAt is updated whenever a newly omputed sore for analignment with length � t�� is larger than the urrent maximum, whih an only happenwith alignments starting in or before slab dt=�e� 1. The �nal value dLAt is returned in Step3. The alignment position ahieving this sore may also be desired. This an be done bymaintaining for eah optimal alignment information on its start and end position in additionto its sore and length. In this ase, in addition to the running maximum sore, the startand end positions of a maximal alignment should be stored and updated.We �rst show that Si;j;k alulated by the algorithm is the optimum sore ahievable, andLi;j;k is the length of an alignment ahieving this sore over the set of all alignments endingat node (i; j) and starting with respet to diagonal i + j: (1) at slab k for 0 � k < dt=�e,(2) in or before slab k for k = dt=�e. This laim an be proved by indution. If we assumethat the laim is true for nodes (i � 1; j), (i � 1; j � 1), and (i; j � 1), and for their slabs,then we an easily see by following Step 2 of the algorithm that the laim holds for node(i; j) and its slabs.Let optimum sore LAt� for the alignments of length � t be ahieved at node (i; j).Consider the alulations of the algorithm at (i; j) at whih an optimal alignment ends.There are two possible orientations of an optimal alignment, as shown in Figure 13: (1) Itstarts at some node (i0; j 0) of slab k = dt=�e�1. By our previous laim, an alignment startingat slab k with sore Si;j;k � LAt� is aptured in Step 2. The length of this alignment Li;j;k isat least t � � sine the length of the optimal alignment is � t, and both start at the sameslab and end at (i; j). (2) It starts at some node (i00; j 00) in or before slab k = dt=�e. Again,by the previous laim, an alignment starting in or before slab k with sore Si;j;k � LAt� isaptured in Step 2. The length of this alignment Li;j;k is at least t � � sine slab k is atdistane � t�� from (i; j). Therefore the �nal value dLAt returned in Step 3 is � LAt� andit is ahieved by an alignment whose length is � t � �. We summarize these results in thefollowing theorem.Theorem 1 For a feasible LAt problem, Algorithm APX-LAt returns an alignment (bI; bJ)suh that s(bI; bJ) � LAt� and jbIj+ j bJ j � (1 � 1r )t for any r > 1. The algorithm's omplexityis O(rnm) time and O(rm) spae.Proof Algorithm APX-LAt is similar to the Smith-Waterman algorithm exept that at27
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Figure 13: Two Possible Orientations of an Optimal Alignment of Length � t Ending at(i; j): it Starts Either at Some (i0; j 0) at Slab dt=�e � 1, or (i00; j 00) in or Before Slab dt=�eeah node, instead of a single sore, dt=�e + 1 entries for sore-length pairs are storedand manipulated. Therefore, the resulting omplexity exeeds that of the Smith-Watermanalgorithm by a fator of dt=�e+ 1. That is, the time omplexity of APX-LAt is O(nmt=�).The algorithm requires O(mt=�) spae sine the omputations proeed row by row, andwe need the entries in the previous and the urrent row to alulate the entries in theurrent row. When the LAt problem is feasible, it is guaranteed that Algorithm APX-LAtreturns an alignment (bI; bJ) suh that s(bI; bJ) � LAt� > 0 and jbIj + j bJ j � t � � for anypositive �. Therefore, setting � = maxf2; bt=rg for a hoie of r, 1 < r � t, and usingAlgorithm APX-LAt we an ahieve the approximation and omplexity results expressed inthe theorem. We also note that for � = 2 the algorithm beomes a dynami-programmingalgorithm extending the dimension by storing all possible alignment lengths.A variant of APX-LAt for arbitrary soring matries an be obtained by simple modi�a-tions. Figure 14 shows Algorithm APX-LAt-AFFINE, whih is a variation of our algorithmAPX-LAt for aÆne gap penalties. The algorithm is essentially quite similar to AlgorithmAPX-LAt. It uses the same idea, that at eah entry of a dynami-programming matrix,instead of a single sore, a number of sores (and lengths) are maintained and manipulatedas ditated by the dynami-programming formulation in (4). Algorithm APX-LAt is basedon the formulation in (2), whih only involves matrix S. The formulation (4) involves two28



Algorithm APX-LAt-AFFINE(Æ; �; �)1: Initialization:set dLAt = 0set (E0;j;k;LE0;j;k) = (F0;j;k;LF0;j;k) = (S0;j;k;LS0;j;k) = (0; 0)for all j; k, 0 � j � m, 0 � k � dt=�e2: Main omputations :for i = 1 to n do fset (Ei;0;k;LEi;0;k) = (Fi;0;k;LFi;0;k) = (Si;0;k ;LSi;0;k) = (0; 0)for all k, 0 � k � dt=�efor j = 1 to m do fif (i+ j mod � = 1) then fset (Ei;j;0;LEi;j;0) = (Fi;j;0;LFi;j;0) = (Si;j;0;LSi;j;0) = (0; 0)for k = 1 to dt=�e � 1 do fset (Ei;j;k ;LEi;j;k) = maxf (Si;j�1;k�1 ;LSi;j�1;k�1) + (��; 1);(Ei;j�1;k�1;LEi;j�1;k�1) + (��; 1) gset (Fi;j;k;LFi;j;k) = maxf (Si�1;j;k�1;LSi�1;j;k�1) + (��; 1);(Fi�1;j;k�1;LFi�1;j;k�1) + (��; 1) gset (Si;j;k ;LSi;j;k) = maxf (0; 0);(Si�1;j�1;k�1;LSi�1;j�1;k�1)� (s(xi; yj); 2);(Ei;j;k;LEi;j;k); (Fi;j;k;LFi;j;k) ggfor k = dt=�e do fset (Ei;j;k ;LEi;j;k) = maxf (Si;j�1;k�1 ;LSi;j�1;k�1) + (��; 1);(Ei;j�1;k�1;LEi;j�1;k�1) + (��; 1);(Si;j�1;k ;LSi�1;j;k) + (��; 1);(Ei;j�1;k;LEi;j�1;k) + (��; 1) gset (Fi;j;k;LFi;j;k) = maxf (Si�1;j;k�1;LSi�1;j;k�1) + (��; 1);(Fi�1;j;k�1;LFi�1;j;k�1) + (��; 1);(Si�1;j;k;LSi�1;j;k) + (��; 1);(Fi�1;j;k;LFi�1;j;k) + (��; 1) gset (Si;j;k ;LSi;j;k) = maxf (0; 0); (Si�1;j�1;k�1;LSi�1;j�1;k�1)� (s(xi; yj); 2);(Si�1;j�1;k ;LSi�1;j�1;k)� (s(xi; yj); 2);(Ei;j;k;LEi;j;k); (Fi;j;k;LFi;j;k) gggelse f for k = 0 to dt=�e do fset (Ei;j;k ;LEi;j;k) = maxf (Si;j�1;k ;LSi;j�1;k) + (��; 1);(Ei;j�1;k ;LEi;j�1;k) + (��; 1) gset (Fi;j;k;LFi;j;k) = maxf (Si�1;j;k ;LSi�1;j;k) + (��; 1);(Fi�1;j;k;LFi�1;j;k) + (��; 1) gset (Si;j;k ;LSi;j;k) = maxf (0; 0); (Si�1;j�1;k ;LSi�1;j�1;k)� (s(xi; yj); 2);(Ei;j;k ;LEi;j;k); (Fi;j;k;LFi;j;k) gggfor k = dt=�e � 1 if LEi;j;k � t�� then set dLAt = maxfdLAt;Si;j;kgfor k = dt=�e set dLAt = maxfdLAt;Si;j;kggg3: Return LAt� Figure 14: Algorithm APX-LAt-AFFINE29



additional matries E and F , in addition to the main matrix S. Matries E and F keep trakof optimal sores belonging to alignments ending with, respetively, at least one or more in-sertions, and at least one or more deletions. The overall optimum values are olleted inmatrix S. In Algorithm APX-LAt, the dynami-programming formulation is translated intolist operations on matries E ;F , and S.We an prove that Algorithm APX-LAt-AFFINE returns an alignment with sore� LAt� and length � (1 � 1r )t by using arguments very similar to those in the proof ofapproximation results for AlgorithmAPX-LAt. The laim for every node (i; j) about optimalsores, and alignments ahieving these sores, are made separately on eah of the pairs ofEi;j;k and  LEi;j;k, Fi;j;k and  LFi;j;k, and Si;j;k and  LSi;j;k. These an be proved by indution on allnodes (i; j) by assuming the truth of the laims at neighboring nodes, (i�1; j); (i; j�1), and(i�1; j�1) in the indution step. This way we an establish that for some node (i; j), Si;j;k �LAt� (i.e., the algorithm returns an alignment whose sore is � LAt�), and  LSi;j;k is the lengthof the alignment ahieving this sore. Next we an show that the alignment returned by thealgorithm has length � (1� 1r )t. This essentially involves the same alignment-orientationanalysis we did in the ase of the approximation proof for Algorithm APX-LAt. Therefore,the same approximation and omplexity results of Theorem 1 hold in this ase as well.7. Long Alignments Satisfying Normalized Sore Thresh-oldWe onsider the problem Qt of �nding two subsequenes with normalized sore higher than�, and total length at least t. More formally,Qt : �nd (I; J) suh that I � X; J � Y; s(I; J)jIj+ jJ j > � and jIj+ jJ j � t : (14)The following simple query explains the motivation for the problem: \Do two sequenesshare a (suÆiently long) fragment with more than 70% similarity?"We present an approximation algorithm that (provided that Qt is feasible) �nds twosubsequenes bI � X and bJ � Y with normalized sore higher than �, and jbIj+j bJ j � (1 � 1r )t.The problem is feasible for given thresholds t and � > 0, if the answer to this query isnot empty, i.e., there exists a pair of subsequenes I and J with total length jIj + jJ j � t,and normalized sore s(I; J)=(jIj + jJ j) > �. We note that Qt is feasible i� NLAt� > �.We present an algorithm that returns, for a feasible problem, two subsequenes bI � X and30



bJ � Y with normalized sore higher than �, and total length jbIj + j bJ j � (1 � 1r )t. Theapproximation ratio is ontrolled by the parameter r. The omputations take O(rnm) timeand O(rm) spae.For a given �, we de�ne the parametri-loal-alignment-with-length-threshold problemLAt(�) as: LAt(�) : maximize SCORE(a) � � LENGTH(a) s.t. a 2 AVt :A parametri-loal-alignment-with-length-threshold problem an be desribed in termsof a loal-alignment-with-length-threshold problem.Proposition 2 For � < 12 , the optimum value LAt�(�) of the parametri LAt problem anbe formulated in terms of the optimum value LAt� of an LAt problem.Proof The proof is very similar to that of Proposition 1. Under the basi soring sheme,the optimum value of the parametri problem, when � < 12 , isLAt�Æ;�(�) = (1 � 2�)LAt�Æ0;�0 where Æ0 = Æ + 2�1 � 2�; �0 = � + �1� 2� : (15)We an easily see that a similar relation exists in the ase of arbitrary soring matries andaÆne gap penalties. Computing LAt�(�) involves solving the loal alignment with lengththreshold problem LAt and performing some simple arithmeti afterward.Under the soring shemes we study, we assume without loss of generality that for anyalignment, its normalized sore is � 12 . We onsider � = 12 as a speial ase that an onlyhappen when the alignment is omposed of mathes only.Proposition 3 When solving LAt(�), the underlying algorithm for LAt returns an align-ment (bI; bJ) with normalized sore higher than �, and jbIj + j bJj � (1 � 1r )t if Problem Qt isfeasible.Proof Assume that Problem Qt is feasible. Then LAt�(�) > 0, whih implies that thealgorithm that solves the orresponding LAt problem (of Proposition 3) returns an alignment(bI; bJ) suh that its sore is positive (i.e., s(bI; bJ) � �(jbIj + j bJ j) > 0) and jbIj + j bJj � (1 � 1r )tby the approximation results of Algorithm APX-LAt .Thus, solving Qt requires a single appliation of Algorithm APX-LAt.31



8. Approximation Algorithms for Normalized LoalAlignmentThe approximation algorithm APX-LAt an be applied to solving the parametri problemsthat arise in omputing NLAt�.We present algorithms to obtain an alignment that has a normalized sore no smaller thanthe optimum sore of the original normalized-loal-alignment problem with total length atleast (1 � 1r )t for a given r, provided that the original problem is feasible (Theorem 2). Thealgorithms are similar to those developed for adjusted normalized-loal-alignment problemsin struture, but instead of ordinary loal-alignment problems they solve loal alignmentwith length threshold problems using Algorithm APX-LAt presented in Setion 6.In both of the resulting algorithms, the spae omplexity is O(rm). The number of sub-problems that need to be solved is the same as in the adjusted normalized-loal-alignmentANLA problem de�ned in Setion 4: while one algorithm establishes that O(logn) invo-ations of our approximation algorithm is suÆient, experiments suggest that the otheralgorithm performs only three to �ve iterations on average, resulting in observed O(rnm)time omplexity.We reiterate the de�nitions of the loal-alignment-with-length-thresholdLAt, normalized-loal-alignment NLAt, and the parametri-loal-alignment LAt(�) problems as the followingoptimization problems de�ned in terms of SCORE and LENGTH funtions that are linearover AVt under the soring shemes we study:LAt : maximize SCORE(a) s.t. a 2 AVt:NLAt : maximize SCORE(a)LENGTH(a) s.t. a 2 AVt:LAt(�) : maximize SCORE(a) � � LENGTH(a) s.t. a 2 AVt:If we apply frational programming to the normalized loal alignment omputation, thenwe an obtain an optimal solution to NLAt via a series of optimal solutions of the parametriproblem with di�erent parameters LAt(�) suh that � = NLAt� i� LAt�(�) = 0.Theorem 2 If NLAt� > 0 then an alignment with normalized sore at least NLAt�, andtotal length at least (1 � 1r )t, an be omputed for any r > 1 in time O(rnm logn) and spaeO(rm).Proof Algorithm RationalNLAt given in Figure 15 aomplishes this. The algorithm is32



Algorithm APX-RationalNLAtIf there is an exat math of size (1� 1r )t then return(12) and exitLet � be the smallest gap between two length-normalized sores[e; f ℄ [0; 12��1℄��  0While (e+ 1 < f) dok  d(e+ f)=2eAPX-LAt�(k�) > 0 then fe k��  the normalized sore of an optimal alignment obtainedg else f  kEnd fwhilegReturn(��) Figure 15: APX � RationalNLAt Algorithm for Rational Soresbased on a binary searh for optimum normalized sore over an interval of integers. This takesO(logn) parametri problems to solve. The algorithm is similar to the RationalANLA algo-rithm in Figure 5, and the results are derived similarly. It �rst determines if there is an exatmath of size (1 � 1r )t, whih an easily be done by using the Smith-Waterman algorithm.If the answer is yes, then the algorithm returns the maximum possible normalized sore andexits. The skeleton of the rest of the algorithm is the same as Algorithm RationalNLAtin Figure 5, based on Megiddo's searh tehnique (Megiddo 1979). The di�erene is thatthe parametri alignment problems now have a length onstraint. The algorithm omputesthe smallest possible gap � between any two distint possible normalized sores, whih is
(1=(n+m)2) (Arslan et al. 2001). It maintains an interval [e; f ℄, on whih a binary searhis done to �nd the largest � for whih LAt�(�) is positive where e and f are integer variables.Initially e is set to zero, and f is set to 12��1 sine NLAt� is in [0; 12 ℄. A parametri LAtproblem with parameter k� is iteratively solved, where k is the median of integers in [e; f ℄.At eah iteration the interval is updated aording to the sign of the value of the parametriproblem. The e�etive searh spae is the integers in [e; f ℄, and eah iteration redues thisspae by half. The iterations end whenever there remains no integer between e and f . ByTheorem 1 and Proposition 3 in Setion 6, for every k� < NLAt�, Algorithm APX-LAtreturns an alignment with a positive sore, and length at least (1 � 1r )t as a solution to theparametri problem. After the searh ends, �� � NLAt�, and �� is ahieved by an align-ment whose length is at least (1 � 1r )t for NLAt feasible. Note that if NLAt� = 0 then thealgorithm returns 0. 33



Algorithm DinkelbahIf APX-LAt�(0) > 0 thenset �� to the length-normalized sore of an optimal alignmentelse exitRepeat� ��If APX-LAt�(�) > 0 then set �� to the length normalized soreof an optimal alignmentUntil �� � �Return(��) Figure 16: Dinkelbah Algorithm for NLAtThe asymptoti spae requirement is the same as that of Algorithm APX-LAt, andthe loop iterates O(logn) times. Therefore the omplexity results are as desribed in thetheorem.If NLAt� > 0 then we an also ahieve the same approximation guarantee by using aDinkelbah algorithm given by Arslan et al. (2001) as the template. The details of theresulting algorithm appear in Figure 16. At eah iteration, exept for the last, AlgorithmAPX-LAt returns an alignment with a positive sore, and length at least (1 � 1r )t as asolution to the parametri problem, by Theorem 1 and Proposition 2 in Chapter 6, sine� < NLAt�. Solutions of the parametri problems through the iterations yield improved(higher) values of � exept for the last iteration. The resulting algorithm performs no morethan three to �ve iterations on average (never more than nine in the worst ase) in our tests.When the algorithm terminates, the optimal alignment whose length-normalized sore is ��has total length of at least (1� 1r )t, and �� � NLAt�.We have implemented versions of Algorithm APX-LAt-AFFINE and the Dinkelbahalgorithm and tested the Dinkelbah program on bli-4 lous in C. elegans and C.briggsae forvarious values of parameters t and r. We have observed that the program performs threeto �ve invoations of the APX-LAt-AFFINE implementation on average. Therefore, fora reasonable hoie of r, its time requirement is 3r to 5r times that of a Smith-Watermanimplementation, on average. In Figure 17 we inlude results for optimal alignments obtainedas t runs from 1; 000 to 22; 000 in inrements of 1; 000, and from 30; 000 to 90; 000 in inre-ments of 10; 000, and for �xed r = 5. On a Beowulf lass super-omputer omposed of aluster of 42 linux-based 400-500 MHz workstations, it took about eight days to ompletethe tests. We note that if we used a fast heuristi algorithm to solve the parametri loal34



Figure 17: Ordinary vs. Normalized Sores for 16 Di�erent Alignments. The Lengths of theAlignments are Shown on the x-Axis while the y-Axis Represents the Similarity Sores.alignment problems, then we would have improved the running time by orders of magnitude,but the approximation guarantee of the results may no longer hold.In our tests we have used a sore of 1 for a math, �1 for a mismath, and �6:2�0:2(k�1)for a gap of length k. Figure 17 inludes information about 16 di�erent alignments, eah ofwhih is obtained for a di�erent pair of t and r. For eah alignment, we show its length onthe x-axis, and both its ordinary and normalized sores on the y-axis. We have multipliedthe normalized sores by 10; 000 to be able to display them on the same sale as the ordinarysores. As expeted in general, normalized sores steadily derease with inreasing alignmentlengths. The alignments whose lengths exeed 32; 100 inlude regions with very poor sores.Test runs like this an generate important statistial information. For instane, in thisase, we an infer from our approximation results and from the normalized sore 0:33 of thealignment with length 16; 048 that 0:33 annot be obtained by any alignment whose lengthexeeds 16; 048=(1� 1=5) � 20; 000.As a �nal remark in this setion, we point out the relation between the length-normalizedloal alignment, and a problem known as parametri sequene alignment (Fith and Smith1983) (whih is di�erent from our parametri loal alignment problem) in the literature. Thefrational-programming-basedNLA algorithms iteratively and systematially hange the fourparameters (i.e., math sore, mismath, gap-open, and gap-extension penalties) until theresulting alignment is satisfatory (i.e., optimal with respet to ordinary sores at the last35



iteration, and with respet to length-normalized sores with the original sores). It is knownthat sequene alignment is sensitive to the hoie of these parameters as they hange theoptimality of the alignments. Parametri sequene alignment studies the relation betweenthe parameter settings and optimal alignments. The goal is to partition the parameterspae into onvex polygons suh that the same alignment is optimal at every point in thesame polygon. Clearly, a point in one of the polygons omputed yields an optimal length-normalized alignment. The following results are summarized by Gus�eld (1997): a polygonaldeomposition requires O(nm) time per polygon when sores are uniform (i.e., not dependenton individual symbols). When only two parameters are hosen to be variable, then thepolygonal deomposition an ontain at most O(nm) polygons. When all four parametersare variables, then there is no known reasonable upper bound on the number of polygons.When the alignment is global and no soring matries are used, the number of polygons isbounded from above by O(n2=3) (Gus�eld et al. 1994).9. ConlusionFor a given pair of sequenes X and Y with lengths n � m, we have addressed a number ofproblems that are variants of the loal-alignment problem, namely normalized loal alignment(NLAt), length-restrited loal alignment (LRLA), and yli loal alignment (CLA). Theyall involve a length onstraint. All of these problems have simple dynami-programmingformulations with resulting time omplexities that are not pratial.The adjusted normalized loal-alignment ANLA problem is suggested to approximate theNLAt problem by reformulating the objetive funtion, and dropping the length onstraint.For the ANLA problem, the frational-programming tehnique o�ers alternate solutions.One solution is a Dinkelbah algorithm, whih has been experimentally veri�ed to be fast.The other solution is based on binary searh and it is provably fast. The time omplexityof the frational programming solution is open. We believe that in this ase the existingapproximation algorithms are eÆient and e�etive.For the LRLA problem there exist simple approximation algorithms that are obtainedby extending the original dynami-programming formulations by onsidering the alignmentgraph in groups of vertial or diagonal slabs, and maintaining information about a numberof optimal alignments instead of a single one.For the LAt problem we present an approximation algorithm that omputes a loal align-36



ment whose sore is at least LAt�, and whose length is at least (1 � 1r )t, provided that theLAt problem is feasible, The algorithm runs in time O(rnm) using O(rm) spae.Using this algorithm, we have proposed an algorithm that, given thresholds � > 0 and t,�nds an alignment with a normalized sore higher than � and with total length no smallerthan (1� 1r )t, provided that the orresponding normalized loal-alignment problem is feasi-ble. The length of the result an be made arbitrarily lose to t by inreasing r. This is doneat the expense of alloating more resoures, sine the time and spae omplexities dependon the parameter r as O(rnm) and O(rm), respetively.Based on tehniques previously proposed by Arslan et al. (2001) and using our approxi-mation algorithm for the LAt problem, we have further developed ways to �nd an alignmentwith normalized sore no smaller than the maximum normalized sore ahievable by align-ments with length at least t. The alignment returned by the algorithm is guaranteed to havetotal length � (1 � 1r )t. In our experiments, we have observed that the time requirement ofthe Dinkelbah implementation is O(rnm), on average. This is better than the worst-asetime omplexity O(n2m) of the naive algorithm.We believe that our approximation algorithms have made normalized sores a viablesimilarity measure in pairwise loal alignment sine they provide approximate ontrol overthe desired alignment lengths. Sine the omputed normalized sore for a partiular valueof t is an upper bound for the atual normalized sores ahievable by sequenes of lengthat least t, these algorithms an also be used to ollet statistis about sores of alignmentsversus length for a partiular pair of input sequenes. A number of interesting problems areopen for further study:� How many iterations do the Dinkelbah ANLA or NLAt algorithms perform in theworst ase?� Are there (provably) faster algorithms for the NLA problems based on other tehniquessuh as utting planes?� Are there faster exat, or better approximation, algorithms for LRLA, LAt, or Qt?Our algorithms for NLA omputations use as subroutine algorithms for LA and APX-LAt, both of whih are dynami-programming-based. Clearly, one way to improve the om-plexity of NLA algorithms is to develop more eÆient algorithms for LA and LAt. Theordinary loal-alignment problem LA has been studied extensively in the literature. For37



this problem, there are several fast heuristi algorithms, suh as FASTA (Lipman and Pear-son 1985) and BLAST (Altshul et al. 1990, 1997; Altshul and Gish 1996). FASTA startswith loating exat short mathes (subalignments), and ombines them if they are lose (indot matrix, or the alignment graph). In this way, it aims to �nd the high-soring ungappedalignments, and �nally the gapped alignments, by joining the ungapped alignments. BLASTstarts with a short streth of identities and uses them as seeds (subalignments) for largeralignments. These subalignments are extended as long as the resulting sore is positive,hoping that they yield optimal loal alignments. Use of these or similar algorithms in ourNLA algorithms an be empirially studied. It may be possible to devise heuristis diretlyfor NLA omputations, whih may start with some set of subalignments, and assemble themprogressively.AknowledgmentsThis work was supported in part by the seond author's NSF Grant No. EIA{9818320.ReferenesAltshul, S., W. Gish. 1996. Loal alignment statistis. Methods in Enzymology 266 460{480.Altshul, S., W. Gish, W. Miller, E. Myers, J. Lipman. 1990. Basi loal alignment searhtool. Journal of Moleular Biology 215 413{410.Altshul, S., T.L. Madden, A.A. Sha�er, J. Zhang, Z. Zhang, W. Miller, D.J. Lipman. 1997.Gapped Blast and Psi-Blast: a new generation of protein database searh programs.Nulei Aids Researh 25 3389{3402.Arslan, A.N., �O. E�geio�glu. 2001. An improved upper bound on the size of planar onvex-hulls. Leture Notes in Computer Siene 2108 (COCOON 2001) 111{120.Arslan, A.N., �O. E�geio�glu. 2002. Approximation algorithms for loal alignment with lengthonstraints. International Journal of Foundations of Computer Siene 13 751{767.Arslan, A.N., �O. E�geio�glu, P.A. Pevzner. 2001. A new approah to sequene omparison:normalized loal alignment. Bioinformatis 17 327{337.Bunke, H., U. B�uhler. 1993. Appliations of approximate string mathing to 2d shape38
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