
Billiard Quorums on the Grid�Divyakant Agrawal �Omer E�gecio�glu Amr El AbbadiDepartment of Computer ScienceUniversity of CaliforniaSanta Barbara, CA 93106AbstractMaekawa considered a simple but suboptimal grid based quorum generation scheme in whichN sites in a network are logically organized in the form of a pN �pN grid, and the quorumsets are row-column pairs. Even though the quorum size 2pN of the grid scheme is twice aslarge as �nite projective plane based optimal size quorums, it has the advantage of being simpleand geometrically evident. In this paper we construct grid based quorums which use a modi�edgrid, and paths that resemble billiard ball paths instead of horizontal and vertical line segmentsof rows and columns in the grid scheme. The size of these quorums is p2pN . The constructionand its properties are geometrically evident as in the case of Maekawa's grid, and the quorumsets can be generated e�ciently.Keywords: Distributed system, mutual exclusion, coterie, quorum.1 IntroductionOne of the most fundamental synchronization problems in distributed systems is the problem ofensuring mutually exclusive accesses by competing processes to a critical resource. Several solutionshave been proposed to solve the mutual exclusion problem in distributed systems [Lam78, RA81,CR83, Mae85, SK85, vdS87, Sin88, HPR88, Ray89]. These solutions can be broadly categorized intotwo types: permission based and token based solutions [San87, Ray91]. The advantage of permissionbased mutual exclusion algorithms is that they exhibit excellent fault-tolerance and load-balancingcharacteristics. The general approach underlying this type of algorithms is that a process (orequivalently a site in the network) wishing to enter the critical section obtains permission fromother sites in the network. The group of sites which grant permission is referred to as a quorum forthe requesting site. Any two quorums have a non-empty intersection, thus guaranteeing mutuallyexclusive access to a critical resource by competing sites.The main drawback of permission based mutual exclusion algorithms is that the communicationcost to enter critical section is directly proportional to the size of quorums. Much research has beendone to optimize communication and minimize the size of quorums [Mae85, GB85, AE91, Kum91,CAA92]. Maekawa [Mae85] has shown that under certain conditions (which are strongly desirablein a distributed system), the optimal quorum size is pN , where N is the total number of sitesin the network. This optimal size is achievable when the sites in the network can be organizedlogically as a �nite projective plane. Finite projective planes can be constructed by considering�This work was partially supported by NSF under IRI94-11330 and CCR95-05807 and by NASA under NAGW-3888. 1



certain subspaces of a vector space over a �nite �eld when N is of the form N = k2 + k + 1 wherek is a power of a prime number (called the order of the projective plane). In general however,constructing quorums using arbitrary �nite projective planes is rather involved.In order to avoid the complications of �nite projective planes, Maekawa suggested a simplealternative in which the sites in the network are logically organized in the form of a grid of pN�pNsites. The quorum for a site here would correspond to obtaining permissions from all the sites inthe corresponding row and column of the requesting site. The size of such a set is 2pN (or moreprecisely 2pN � 1 ). It is clear geometrically that any two quorums constructed in this way havea non-empty intersection.In this paper we develop a solution for grid based generation of quorums for mutual exclusionprotocols which brings down the quorum size from 2pN to p2pN . This construction resultsin the same suboptimal quorum size as the Triangular system of Lov�asz [Lov73]. An advantage ofour construction is that it extends Maekawa's grid based approach: once the method for generatingquorums is given, it is geometrically obvious that they satisfy the properties required of quorumsets. Thus although suboptimal from the theoretical point of view, the p2pN quorum size isachieved without resorting to any tool other than grids and paths, similar to Maekawa's grid basedquorum generation.In the next section we present a model of a distributed system and present the mutual exclusionproblem. In Section 3, motivates our quorum generation mechanism, and Section 4 presents thealgorithm for forming what we term billiard quorums. In Section 5, we present a number propertiesand examples of these quorums and give an e�cient procedure for generating them. Section 6concludes the paper.2 The Problem StatementA distributed system consists of a set of distinct sites that communicate with each other by sendingmessages over a communication network. We assume that sites are fail-stop [SS82] and they canbe logically organized to form a structure such as a grid. To have exclusive access to a resource inthe network, a site si is required to receive permission from some set of sites Si in the network. Ifall sites in Si grant permission to si, then si is allowed to access the resource. To ensure mutualexclusion, any Si must have at least one site in common with any other set. This can be statedformally as follows:The Intersection Property. For any two sets Si and Sj, Si \ Sj 6= �.These concepts have been formalized in terms of the notions of quorums [Gif79] and coteries[GB85]. Maekawa [Mae85] has shown that within a constant factor, the quorum size q is optimalwhen q = pN . Furthermore, in the case of a �nite projective plane of N points, each site isassigned a unique quorum Si, and the conditions of intersection and optimality are also satis�ed.Such a plane is known to exist whenever q � 1 is a power of a prime. For other values of q, oneway to create the sets Si is by relaxing some of the conditions imposed on the Si, or by creatingsets for a larger N and then discarding some sets. Using such a construction for the sets Si, amutual exclusion protocol is proposed in [Mae85]. In addition to the intersection property, whichis necessary for mutual exclusion, Maekawa suggested additional properties for quorums to ensurefully distributed solutions and fairness in the workload of the individual sites. One property isreferred to as the equal e�ort property and requires all quorums to be of equal size. Another isthe inclusion property which requires that the quorum being constructed on behalf of a site mustinclude that site. The �nal property is referred to as the equal responsibility property and requiresthat number of times a site appears in di�erent quorums is the same for all sites in the network.Not all quorum generation algorithms satisfy all of these properties, however.2



Although optimal in terms of size, little is know about �nite projective planes for orders otherthan powers of primes. In fact, there are no �nite projective planes of order k if either k�1 or k�2is divisible by 4 and if k cannot be expressed as the sum of two integral squares [Mae85, AS68].Maekawa therefore proposed generating quorums using a simple logical grid structure imposed onthe sites [Mae85].3 MotivationIn order to motivate our approach, it will be useful to consider an idealized representation of asquare grid in the continuous domain. In this way, the grid is represented by the unit square and asite in the network is represented by a point in the unit square. Given such a point s, Maekawa'sapproach of a row and a column including s would correspond to a horizontal line segment Htogether with a vertical line segment V through s as shown in Figure 1. The \quorum" for thepoint s in the continuous case would thus consist of all the points on the union of the line segmentsH and V . Similar to the case of the pN �pN square grid in the continuous case each point s isassigned a distinct quorum, the size (total length) of the quorums is the same (2p1 in this case),and any two quorums intersect.
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Figure 1: The unit square: an idealized gridWe can try to make other choices for line segments associated to a point that would satisfy theabove three properties. For example, instead of choosing horizontal and vertical line segments, wecan explore the possibility of using line segments with slopes �1.Given a point s in the unit square, we de�ne the billiard path through s as the �rst p2 unitsof length of the locus of a billiard ball shot directly towards s from the boundary x = 0 or y = 0of the unit square along a path parallel to the line y = x. Thus a billiard path through s is madeup of 2 line segments, one that starts either on the x or the y axis, has slope 1, and which includess; and a tail end segment of slope �1 which terminates on the boundaries x = 1 or y = 1 of theunit square. Two such paths are shown in Figure 2 (a) and (b). As a limiting case, the cornerpoints are assigned the appropriate diagonal of the unit square as the billiard path through them.However, two points that lie on a line of slope 1 both de�ne the same billiard path. In order tomake the assignment of paths to points unique, we next de�ne a broken billiard path through s.This is obtained from the billiard path through s by the rotation of the line segments after s inthe billiard path by 90� at s. Figure 2 (c) and (d) are broken billiard paths corresponding to thepoints s and s0. Note that the length of a broken billiard path is also p2. Also, note that for eachpoint s above the line y = x, the broken billiard path through s has a local vertical peak at s, andfor each point s0 below the line y = x, the path has a local left-to-right peak at s. These peaksserve to distinguish di�erent broken billiard paths.Our aim is to export the idea of broken billiard paths back to the �nite grid to produce quorums,once the sites are logically organized in an appropriate con�guration. We can show that any two3
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Figure 2: (a), (b): Billiard paths. (c), (d): Broken billiard paths.distinct broken billiard paths in the continuous case necessarily intersect. However, a number ofissues remain to be solved for the discrete case. For example the diagonally opposite corner points(0; 0) and (1; 1) on the unit square (and the points (0; 1) and (1; 0)) produce the same broken billiardpath. Another problem arises when we try to incorporate the notion of broken billiard paths tothe case when the unit square is represented by a discretized square grid of pN �pN cells, eachcell corresponding to a site in the network. In particular, now the length of a diagonal is the sameas the length of a side, indicating that properties that are evident in the continuous domain maybe lost after the discretization process. A more acute problem arises in adapting broken billiard
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(a) (c)(b)Figure 3: Non-intersecting paths in the discrete case.paths to a discrete domain. Figures 3(a) and 3(b) show the broken billiard paths of points s ands0 in a 5� 5 grid. Figure 3(c) illustrates that intersecting paths in the continuous domain becomenon-intersecting when diagonal adjacencies are allowed in the discrete case.However, these complications arise only if we insist on the same grid as in Maekawa's con-4



struction. A more natural grid structure that supports broken billiard paths is obtained from theordinary square grid by considering only every other cell in a checkerboard fashion. We describe indetail the construction of quorums of size p2pN on this modi�ed grid next.4 Broken Billiard Paths on GridsTo eliminate cross-overs of the type shown in Figure 3 in the discrete domain we use only everyother cell of the ordinary square grid, leaving the other ones out. This modi�ed grid constructionfor the q� q case for q = 9 is given in Figure 4. The rows and columns are labeled by i = 1; 2; : : : ; qand j = 1; 2; : : : ; q increasing from top to bottom, and from left to right respectively, as the labelingof entries of a matrix. The assignment of site labels 1; 2; : : : ; N to the cells in this con�gurationis done in row major format. For the example in Figure 4 the number of sites is N = 40. Theyare assigned as follows: in the �rst row, we discard the �rst cell, and allocate site 1 to the second
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Figure 4: The modi�ed grid in the discrete case for q = 9 and N = 40.cell, discard the third, and allocate site 2 to fourth cell, and so on, discarding all odd cells andallocating sites to all even cells of the �rst row in the grid. In the second row, we allocate a siteto every odd cell and leave out the even numbered cells. In general, the cell in position i; j of theordinary square grid is included in the modi�ed grid if and only if i+ j is an odd number.The quorum construction for a given site in the modi�ed grid follows the rules speci�ed forusing line segments that are based on a broken billiard paths of the continuous case. For example,Figure 5(a) shows the quorum set S11 for site 11 which occupies position (i; j) = (3; 4). The quorumset produced for this site is S11 = f11; 15; 16; 18; 19; 21; 22; 23; 26g, which is constructed by takingthe union f23; 19; 15; 11g [ f16; 21; 26g [ f22; 18g corresponding to the sites that lie on threepieces of the broken billiard path at (3; 4). Part (b) of Figure 5 shows the manner of constructionof the quorum set S34 for site 34, which occupies position (8; 5) on the modi�ed grid. In this caseS34 = f38; 34g [ f29; 24; 19g [ f15; 11; 7; 3g = f3; 7; 11; 15; 19; 24; 29; 34; 38g :Note that the quorum size is 9 = dp2p40 e, and the anomalies that appear for the points on thediagonals for the continuous case no longer exist for the modi�ed grid.
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Figure 5: Examples of broken billiard paths on the modi�ed grid: (a) corresponds to s = 11, (b)corresponds to s = 34.5 Properties of billiard quorums and examplesModi�ed grids are obtained from a square grid of size q � q only when q is an odd integer (q isrequired to be odd to maintain symmetry). Each broken billiard path in the q � q modi�ed gridcontains q sites. If q = 2t + 1, then by counting alternate rows, the corresponding modi�ed gridis seen to contain N = t(t+ 1) + (t+ 1)t = 2t(t + 1) cells. Therefore the number of sites and thequorum size obtained by using broken billiard paths in the modi�ed grid are related asN = (q2 � 1)=2;which implies that q = dp2pN e. The fact that any two of the billiard quorums constructed onthe modi�ed grid intersect is geometrically evident. Thus the family of sets generated is mutuallynon-disjoint.Proposition 1 The billiard quorums constructed on the q�q modi�ed grid satisfy the intersection,uniqueness, equal e�ort, and the inclusion properties. The quorums are of size q = dp2pN e.Note that the sites near the boundary of the modi�ed grid participate in fewer quorums than sitesthat are close to the center. In particular billiard quorums do not satisfy the equal responsibilityproperty. Furthermore, as in Maekawa's construction, our development of billiard quorums assignseach site a unique quorum. The resulting coterie is dominated [GB85] since one can easily includemore quorums to the coterie (e.g., the sites in a row and a column of the modi�ed grid) and stillmaintain the intersection property. In terms of availability, the billiard quorum approach su�ersfrom the same problem as Maekawa's grid quorums: it can be shown that as the number of sitesincreases, the probability that a billiard quorum exists asymptotically reaches zero. This will occurin any quorum system unless the number of quorums is at least exponential in their size [PW95].However, the hierarchical structuring approach proposed by Kumar and Cheung [KC91] for gridquorums can also be adapted to billiard quorums. The hierarchical structuring approach potentiallyo�ers asymptotically high availability, while maintaining the quorum sizes.Next, we consider the assignment of sites to cells in a modi�ed grid, which allows for linear timegeneration of billiard quorums. When we use the row-major ordering as we have done here (seeFigure 4), the following result is immediate 6



Proposition 2 Suppose N = (q2 � 1)=2 for some odd integer q. In the row-major assignment ofsites 1; 2; : : : ; N to the cells of the modi�ed grid as shown in Figure 4,1. The site assigned to cell (i; j) is n = ((i� 1)q + j)=2 (note that i+ j is odd),2. Given site n with 1 � n � N , its location on the modi�ed grid is (i; j) wherej = 2n (mod q) ; and i = 1 + (2n� j)=q ;where (mod q) is the standard modulo function except that it returns q instead of 0.For example, when q = 9 and N = 40, the location (8; 5) contains the site 34 = (7 � 9 + 5)=2.The site n = 27 is assigned to cell (i; j) where j = 54 (mod 9) = 9, and i = 1 + (54� 9)=9 = 6.For e�cient generation of billiard quorum sets, we relate the sites assigned to neighboring cellsalong lines of slope �1. Let Ri;j denote the site assigned to a generic cell (i; j) of the modi�ed grid.By Proposition 2, Ri;j = ((i� 1)q+ j)=2, and we can compute the sites assigned to its 4 immediateneighbors along NE, SE, SW and NW directions. These are found to beRi�1;j+1 = Ri;j � (q � 1)=2;Ri+1;j+1 = Ri;j + (q + 1)=2;Ri+1;j�1 = Ri;j + (q � 1)=2; (1)Ri�1;j�1 = Ri;j � (q + 1)=2:Procedure generate (n):n� The quorum size q, the number of sites N , and the variables x1; x2; : : : ; xq areexternal to generate. q is an odd integer and N is of the form N = (q2 � 1)=2. �nvar i; j; k integer;beginj := 2 � n mod q; n� Assume mod returns 1; 2; : : : ; q �ni := 1 + (2 � n� j)=q;if i+ j < q + 1 thenbeginx1 := [(i + j � 2) � q + 1]=2; n� The billiard path starts at (i+ j � 1; 1) �nfor k = 1 to j � 1 do xk+1 := xk � (q � 1)=2;for k = j to q � i do xk+1 := xk + (q + 1)=2;for k = q � i+ 1 to q � 1 do xk+1 := xk � (q � 1)=2;end;if i+ j > q + 1 thenbeginx1 := N � [2 � q � i� j � 1]=2; n� The billiard path starts at (q; i+ j � q) �nfor k = 1 to q � i do xk+1 := xk � (q � 1)=2;for k = q � i+ 1 to j � 1 do xk+1 := xk � (q + 1)=2;for k = j to q � 1 do xk+1 := xk � (q � 1)=2;end;end generate Figure 6: Billiard quorum generation.The formulas in 1 give us an e�cient means of generating billiard quorums. Procedure generategiven in Figure 6 takes as input a site n, and returns the quorum set Sn = fx1; x2; : : : ; xqg. First,7



the location (i; j) of n on the modi�ed grid is computed so that Ri;j = n. The site x1 in the setSn is the �rst cell on the left or the bottom side of the modi�ed grid from which the billiard pathtowards Ri;j starts. In particular x1 is on the leftmost column of the grid whenever i + j < q + 1(i.e. when the cell is above the diagonal y = x), and on the bottommost row whenever i+ j > q+1(i.e. when the cell is below the diagonal y = x). As examples, x1 = 23 for the broken billiard pathin Figure 5 (a), and x1 = 38 for the path in Figure 5 (b). A listing of billiard quorums for smallparameters is given in Figure 7.q = 3 q = 5 q = 7S1 = f1; 2; 3g S1 = f1; 3; 4; 7; 10g S1 = f1; 4; 5; 9; 13; 17; 21gS2 = f2; 3; 4g S2 = f2; 4; 5; 6; 8g S2 = f2; 5; 6; 8; 10; 11; 14gS3 = f1; 3; 4g S3 = f3; 6; 9; 10; 12g S3 = f3; 6; 7; 9; 12; 15; 18gS4 = f1; 2; 4g S4 = f4; 5; 6; 7; 8g S4 = f4; 8; 12; 16; 20; 21; 24gS5 = f2; 5; 7; 9; 11g S5 = f5; 8; 9; 11; 13; 14; 17gS6 = f5; 6; 7; 8; 9g S6 = f6; 7; 9; 10; 12; 15; 18gS7 = f2; 4; 7; 9; 11g S7 = f3; 7; 10; 13; 16; 19; 22gS8 = f5; 7; 8; 9; 11g S8 = f8; 11; 12; 14; 16; 17; 20gS9 = f2; 4; 6; 9; 11g S9 = f7; 9; 10; 12; 13; 15; 18gS10 = f1; 4; 7; 10; 12g S10 = f3; 6; 10; 13; 16; 19; 22gS11 = f2; 4; 6; 8; 11g S11 = f11; 14; 15; 17; 19; 20; 23gS12 = f1; 3; 6; 9; 12g S12 = f7; 10; 12; 13; 15; 16; 18gS13 = f3; 6; 9; 13; 16; 19; 22gS14 = f2; 6; 10; 14; 17; 20; 23gS15 = f7; 10; 13; 15; 16; 18; 19gS16 = f3; 6; 9; 12; 16; 19; 22gS17 = f2; 5; 9; 13; 17; 20; 23gS18 = f7; 10; 13; 16; 18; 19; 22gS19 = f3; 6; 9; 12; 15; 19; 22gS20 = f2; 5; 8; 12; 16; 20; 23gS21 = f1; 5; 9; 13; 17; 21; 24gS22 = f3; 6; 9; 12; 15; 18; 22gS23 = f2; 5; 8; 11; 15; 19; 23gS24 = f1; 4; 8; 12; 16; 20; 24gFigure 7: Billiard quorums for small N .6 DiscussionIn this paper we presented a simple geometric technique for generating quorums. Our approach isbased on the logical organization of sites in the network in the form of a modi�ed grid, and therealization of quorum sets as sites lying on certain paths resembling trajectories of billiard balls.The resulting quorums are of size p2pN , as compared to 2pN of Meakawa's grid based method.Even though both Meakawa's grid based solution and billiard quorums are suboptimal in termsof quorum size when compared to the optimal projective plane based quorum generation method,grid based solutions are simple to realize and geometrically intuitive.8
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