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Abstract 

Egecioglu, ii. and J.B. Remmel, Brick tabloids and the connection matrices between bases of 

symmetric functions, Discrete Applied Mathematics 34 (1991) 107-120. 

Let H, denote the space of symmetric functions, homogeneous of degree n. In this paper we in- 

troduce a new set of combinatorial objects called I-brick tabloids and its variants, which we use 

*to give combinatorial interpretations of the entries for twelve of the transition matrices between 

natural bases of H,. Using these interpretations, it is possible to give purely combinatorial 

proofs of various identities between these connection matrices. Also as a consequence, the so 

called forgotten basis of Doubilet and Rota is shown to admit a natural combinatorial description 

in terms of brick tabloids and the monomial symmetric functions. 

Introduction 

Let H,, denote the space of symmetric functions, homogeneous of degree n. It is 

well known that the dimension of H,, is the number of partitions of n. Here we 

write~~nif~isapartitionofn,i.e.,if~=(O<I,~...I~~)and13~+...+~k=n. 

We shall also write A = (1”12a2... nafl) to mean that 1 has (pi parts of size 1, a2 parts 

of size 2, etc. There are five bases of H, which are normally considered, namely 

l { mA}A cn (the monomial symmetric functions), 

l { eA} i ,_ n (the elementary symmetric functions), 

l {h,}, cn (the homogeneous symmetric functions), 
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l {P~}~+-, (the power symmetric functions), 

l {s~}~~~ (the Schur symmetric functions). 

One defines the so called Hall inner product on H,, by declaring that 

(mA, $1 = X(A ‘P), (0.1) 

where for any statement A, we let x(A)= 1 if A is true and x(A)=0 if A is false. 

One can then show that under this inner product, the bases (s,) and Qn/fi) are 

self-dual where Q= ai! . ..a.! lal....an if ,l =(la12a2...n”n). In other words, we have 

and 

(0.3) 

Now a sixth basis for H,,, {fA}l+n, may be introduced by declaring that (fL}A+n is 

the dual basis of {en}l+n, i.e., by the requirement that 

(e,& = ~(1 =P). (0.4) 

MacDonald [6] calls the basis {fA}A+n the forgotten symmetric functions and says 

“they have no particularly simple direct description”. A combinatorial interpreta- 

tion of A1!A2! . ..)3.!fL(xl,..., x,,,) was given by Doubilet [l]. In Section 3, we will 

provide a simple combinatorial description of f,(xi, . . . , xN) as a linear combination 

of the monomial symmetric functions. 

The main purpose of this paper is to introduce certain combinatorial objects, 

which we call A-brick tabloids (or A-domino tabloids), and show how these tabloids 

can be used to give combinatorial interpretations to the entries of twelve of the tran- 

sition matrices between various bases of H, mentioned above. That is, first impose 

some total order on the set P,, of all partitions of n, say the lexicographic order. 

Next, given a basis {u~}~+, of H,, let (u,$~,_,, denote the row vector formed by 

ordering the basis {u~}~+~ according to the ordering of P,,. Then given two bases 

]Ul)l+n and {Gcn of H,, we let M(u, u) denote the transition matrix which 

transforms {u~}~,, into {u~}*+~. In other words, 

so that 
(u,$lrn = (uL),%,,M(u, u) (0.5) 

01 = c u,M(u,u)J. (0.6) 
Pkfl 

Equivalently, M(u, u)@, I = (Us, ti,) is the coefficient of uP in ul, where ti denotes the 

dual basis of u with respect to the Hall inner product on H,. 
For various pairs (u*)*,, and (u~)~+~ of the six bases of H,, mentioned above, 

the entries M(u, u)~,~ have interesting combinatorial interpretations. It is well 

known that all of these transition matrices can be algebraically expressed in terms 

of essentially two matrices (see MacDonald [6]). Doubilet in [l] also gave interpreta- 

tions for transition matrices between various multiples of the natural bases, in terms 

of the Mobius function of the partition lattice. 
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It turns out that by introducing certain simple combinatorial objects (brick 

tabloids and others), direct combinatorial interpretations for the entries M(u, u)~,~ 

for all thirty possible transition matrices can be given [3]. In this paper we consider 

twelve of these matrices which can be interpreted directly by brick tabloids and their 

variants. 

Next we introduce A-brick tabloids. First we must establish some notation. Given 

a partition A = (0 < Ai 5 ... I A,) of n, we let k(A) = k denote the number of parts of 

A. The Ferrers’ diagram FA of A. is the diagram which consists of left justified rows 

of squares or cells of lengths A,, . . . , Ak reading from top to bottom. See for exam- 

ple Fig. 1. 

F (l.2.3.3) = 

Bb 

Fig. 1 

Given partitions A = (0 < Ai 5 ... <Ak) and p, a A-brick tabloid T of shape p is a 

filling of FD with bricks bl, . . . , bk of lengths Ai, . . . , Ak, respectively, such that 

(i) each brick b; covers exactly Ai squares of FP all of which lie in a single row 

of F,, 
(ii) no two bricks overlap. 

b,=n,b,=m. b3=m.b4=I 

Fig. 2. 

T4 TS 7-6 T, 

Fig. 3. 

For example if A = (1,2,2,3) and p = (3, S), then we must cover FP with the bricks 

of Fig. 2. Here, bricks of the same size are indistinguishable. Then there are seven 

A-brick tabloids of shape p (see Fig. 3). 

We let BA,D denote the set of A-brick tabloids of shape p. Define a weight w(T) 
for each A-brick tabloid TEBJ+ by 
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(0.7) 

where for each brick b in T, lb1 denotes the size of b and 

wT(b) = 

1, if b is not at the end of a row in T, 

lb/, if b is at the end of a row in T. 
(0.8) 

Thus w(T) is the product of the lengths of the rightmost bricks in T. For example, 

for our seven (1,2,2,3)-brick tabloids of shape (3,5) given in Fig. 3, the weights are 

computed to be w(T,)= 6, w(T,)= 6, w(T3)= 3, w(T,)= 6, w(T5)= 3, w(T6)=4, and 

w(T,)= 2. 

We let 

w(B,,,) = c w(T). (0.9) 
TE Bi:,, 

Finally we introduce one further variation on A-brick tabloids which we call 

ordered A-brick tabloids. Ordered A-brick tabloids differ from A-brick tabloids in 

two ways. First, we want to be able to distinguish between various A-bricks. To this 

end we subscript all of the i-bricks with 1, . . . , A(k) in such a way that the subscripts 

on smaller size bricks precede subscripts on larger size bricks. For example if A = 

(1, 1,2,3,3), then our set of bricks consists of the ones shown in Fig. 4. Second, in 

ordered A-brick tabloids we insist that the subscripts on the bricks increase from left 

to right in each row. More precisely, an ordered A-brick tabloid is a filling of Fp 

with subscrinted A-bricks such that 

(9 

(ii) 

(iii) 

each brick bj covers exactly Ai squares of Fp all of which lie in a single row 

of F,, 
no two bricks overlap, 

in each row, the subscripts on the A-bricks increase from left to right. 
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For example, if A = (1 , 1,2,3,3) and fi = (4,6), then there are five ordered A-bricks 

of shape p as given in Fig. 5’. 

OBA,, denotes the set of ordered h-brick tabloids of shape p. 

The main purpose of this paper is to show that up to sign, the numbers IBA,/r 1, 
w(B,,,), and 1 OBA,, 1 can be used to interpret the entries of the twelve of the transi- 

tion matrices between various bases of symmetric functions. In particular, 

(1) M(e,h),,,=(-l)“-k(~)lB~,~l, 

(2) M(h,e)~,,=(-l)“-k(~)IB,,~I, 

(3) M(m,f),,~=(-l)“~k(~‘jB~,~,, 

(4) M(f,m),,=(-l)“-k(~)lB~,~,I, 

(5) M(e,p),~=(-l)“~k(~)w(B~,~), 

(6) M(h,p),~=(-l)k(~“)~k(“)w(B,,~), 

(7) M(m, P),, I = I OBA, fl 1, 

(8) M(f,~),,=(-l)“-~(“)lOB~,~l, 
(9) M(P, h), A = I OBp, A I /z/i, 

(10) M(p,e),,=(-l)“-k(~)IOB,,,l/z,, 
(11) M(~,m),*=(-l)~(“)-~(~‘w(B~,,)/z,, 

(12) M(p,f),~=(-l)“-k(“)w(B~,,)/z,. 

The outline of this paper is as follows. In Section 1, we summarize a number of 

facts about H, that we shall subsequently need. It turns out that once we can prove 

(l), (5), and (7) above, all of the other results will follow. Section 2 will be devoted 

to proving (l), (5), and (7). Then in Section 3 we shall consider a number of conse- 

quences of our combinatorial interpretations. 

1. The Hall transformation 

The definitions of the five bases {ml}lcn, {eA}A,,, {hA}A,_n, {P~}~+~, and 

{%11+-n for H, mentioned in the introduction can be found in MacDonald [6]. In 

our treatment we will make use of an important isometry o : H,, + H,, often called 

the Hall transformation. o is constructed by defining it on the basis {h,},,, by 

setting 

o(hJ = eA, (1.1) 

and then extending it to H,, by linearity. 

The following result summarizes the basic facts about o which we shall need. 

Proofs of all these properties may be found in MacDonald [6]. 

Theorem 1.1. o : H,, --f H,, has the following properties: 
(i) a2 = identity; in particular o(eJ = hA, 

(ii) cc) is an isometry, i.e., for anyJ;gEH,,, <f,g>=(o(f),co(g)), 
(iii) o(pA) = (-l)“-k’A)pA, 
(iv) w(m,) =fA and w(fA) = mA. 
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As we have remarked in the introduction, it is known that the following pairs of 

bases are dual for the Hall inner product in H,,: hA and m,, pA \zA and pP/.zP, fP 
and e,. In conjunction with Theorem 1.1, one can show that the following rela- 

tions hold between the connection matrices M(u, IJ): 

Mu, U),,A = Ma(u), MU)),A, (1.2) 

M(u, V),J = M(& fi)&,, (1.3) 

where the hat denotes the dual basis. 

By applying Theorem 1.1, and the identities (1.2) and (1.3), it is not difficult to 

show that for the combinatorial interpretations of the matrices (l)-(12) of Section 0, 

we only need to show the following three 

(1) M(e,h),i=(-l)“-k(~‘)lB~,~I, 

(2) M(e,p),n=(-l)n-k’~U)w(B~,~), 

(7) M(m, P),, i = I 04, /i I . 

2. The matrices M(e,h), M(e,p), and M(m,p) 

In the derivation of the combinatorial interpretations of these three matrices, our 

point of departure is the following pair of simple identities: 

kgo (-l)khken-k = 0, (2-l) 

(2.2) 

The proofs of (2.1) and (2.2) can be found in [6]. These and similar identities can 

also be given purely combinatorial proofs by a tableaux interpretation (see [2,3]). 

We start this section by proving 

Mk 4, I = (-l)“-k(fl’)IBP,nl. (2.3) 

We shall show that (2.3) can be derived from the identity (2.1). Note that another 

way of writing (2.1) is 

h, = i (-l)kmlekhn_k. 
k=l 

(2.4) 

Now (2.4) easily allows us to give recursions for the entries of M(e, h) for H,, as n 
varies. To state our recursions precisely, we must first establish some notation. 

Given A +n, we let A/k equal the partition which is formed by removing a part of 

size k from I if 1 has a part of size k, and we say A/k is undefined if A has no part 

of size k. For any pair of our six bases of H,, we make the convention that M(u, D)~+ 

denotes 0 if either J. or ,u is undefined. Given two partitions L and ,LI, Iz Up denotes 

the partition of IL1 + 1,~ I whose parts are the union of the parts of A and the parts 
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of ,LL For example if A=(1,2,3,3) and ~=(1,3,4), then AU~=(1,1,2,3,3,3,4). 

Given this, we have the following recursions: 

Lemma 2.1. Let A=@,, . . . . A,) and ,U=(LQ ,..., pk) be two partitions of n with at 
least two parts and let y be an arbitrary partition of n. Then 

(9 M(e,h)(,,,(,,=(-l)“-‘, 
(ii) M(e, h)A, cn) = IL;:,’ (- I>‘- ’ Me, h),t/j, (n -j)t 

(iii> MW$,,= Ca+p,,B+u2+... +pk Me h),,(JWeA,(,,, . . . ..d~ UP= r)- 

Proof. Note that for n = 1, hl = el so that M(e, h)(l,,(l) = 1. Next by (2.4), 

n-l 
c (-l)k-‘ekhn_k +(-l)n-‘e, 

k=l > 

n-l 

= (-l)nP1e,+ C eA 
Al-n 

F1 (-l)j~‘M(e,h)l,j,~~-j~). (2.5) 

Thus (2.5) shows that 

M(e, h)cnJ,cnj = (-l)“-’ for all n, 

and 
n-1 

We, hh, cn) = jC, (-l)‘-‘M(e,h),,j,(,_j, if k(A)92. 

Finally observe that if ,Y = (pi,. . . , ii(k) where kl2, then 

(2.6) 

(2.7) 

h, = c Me, h),,e, 
Y+n 

= h,, . h (Lk....&) 

= C ~WOa,(,,)ea ( >( C M(e,h),(,,,...,,,)h, 
at-w fi+n-Pl > 

= M(e,h),(,,)M(e,h),(, 2,..., fl,)x(aUB=y) 
> 

. (2.8) 

P+n-w 

Thus (2.8) shows that for such P 

Mk My, p = c M(e,h),(,,)M(e,h),(,,,...,,,)X(aUP=v). (2.9) 
a+/& 

P+n-LQ 

It is easy to see that (2.6), (2.7), and (2.9) completely determine M(e, h)A,D. To 

establish our combinatorial interpretation for the entries M(e,h),,,, we need only 

show that the numbers (-l)“- kcA) BA ) ) satisfy the same recursions. To this end, let 

us define the sign e(T) of a A-brick’rabloid T by 

(2.10) 
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where for any brick 6, c(b) = (- 1) 

(-l)“PkU). Thus 

lb’-‘. It is then easy to see that if TEB~,,, E(T)= 

(-l)n-k(A)lB~,Pl = rE;j,flW). (2.11) 

Similarly, 

(- l)“+*)w(Bn,,) = c E(T) w(T). (2.12) 
7-E &I 

For the moment let EA,P = C TEBA p E(T), and w(E)*,~ = C TEBi B E(T) w(T). Then we 

have the following: 

Lemma 2.2. Let A =(A,, . . . . A,) and ,u =(pul, . . . . L(~) be two partitions of n with at 
least two parts and let y be an arbitrary partition of n. Then 

(a) E~n~,~n~=(-l)“~l, and ~(E)(~),(~)=(-l)~-‘n, 
(b) EA,(,)=CJZ,’ (-l)jPIE~/j,(nPj)v and w(E),,(,) = ZyZ: (-1P’ W(E)A/j,(n-j,, 

(cl EY>P=Lp,,pcn-~, E~,(,,)E~,(~,,...,W)X(a”p=y), and 

ME),, = & W(E)% (ii(l) w(E),,,,,...,,,,~(aUp=y). 

p+,1-m 

Proof. For (a), note that there is only one brick tabloid T in B,,,,,,, namely the 

one where the brick of size n covers the row of size n. Thus Ecnj,cnj = E(T) = (- l)n-l, 

and w(E)~~~,~~~ = E(T) w(T) = (- l)“-‘n. The right-hand sides in (b) result from 

organizing the sums 1 rEBn (n) E(T) and C TEBi (n) E(T) w(T) according to the size of 

the first brick b in T. Note’that since k(A)~2, b is not at the end of a row in T so 
that E(b) =E(b) w(b) = (-l)lb’-‘. Similarly, the right-hand sides in (c) result from 

organizing the sums CTEB,, E(T) and CTEByp E(T) w(T) according to the bricks 

that lie in the top row of ?. 0 

Note that Lemma 2.2. together with (2.11) show that (-l)“-k(fi) lBp,A] satisfy ex- 

actly the same recursions as M(e, h),* and M(h, e)P,A. Thus we have proved the 

following: 

Theorem 2.3. For ail partitions A and p of n, 

Me, h),, ,I = M(h, et,, A = (- 1)” - k(p) 1 BP, A / . 

Next we turn to the proof of 

M(e,p),A = (-l)“-k’A’w(Bfl,~). (2.13) 

Just as was the case for the proof of (2.3), we shall show how (2.13) can be derived 

from the relation (2.2) between ek’s and pk’s. First we write (2.2) in the form 

ek&_k +(-l)“-‘ne,,. 
> 

(2.14) 
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Now (2.14) can be used exactly as (2.4) was used in the proof of Lemma 2.2 to derive 

the following recursions for M(e, p),, 1: 

Lemma 2.4. Let A = (A,, . . . , A,> and p = (&, . . . , pk) be two partitions of n with at 
least two parts and let y be an arbitrary partition of n. Then 

6) M(e,p)(n),(n)=(-l)“-‘n, 
(ii) We,&(,) = CJZ; (-l)j-‘M(e,P)~,j,(n-j), 

(iii) M(e,p),,=C,,,,,BC~(2+...+~k We, P),, (,,+(e, p)p, cpz, .fl(k) x(a UP = Y). 

It now follows from (2.12) and Lemma 2.2 that the numbers (-l)“-k’fl)w(B,J 

satisfy the same recursions as M(e,p),,,. Thus since the recursions in Lemma 2.2 

clearly determine M(e, p),, 1 for all p and A, we have proved the following: 

Theorem 2.5. For ail partitions p and A of n, 

M(e,p),,l = (-l)“~k’fi”w(BW,~). 

Remark 2.6. Using Theorem 1 .l(iii) and (1.9), Theorem 2.5 immediately implies 

M(h,p),, = (-l)k(~)~k(*)~(B~,I). (2.15) 

We can however prove (2.15) directly in much the same way as we proved (2.3) 

and (2.13). That is, we can make use of the simple relation 

nh, = i Pkh-k, 
k=l 

which can be obtained by applying o to the identity (2.2). Then (2.16) can be used 

to establish recursions satisfied by the numbers M(h,p),A. We can then show that 

(-l)k(PL)-k(A)~(BP J satisfies the same recursions as M(h,p),,,. The details of such 

a direct proof can be found in [3,5]. 

Remark 2.7. We can also use (2.2) and (2.16) to develop simple recursions for 

M(p, e),,A and M(p, h),,, directly. One defines a new weight ii, on A-brick tabloids 

so that up to a sign M(p, e)u I and M(p, h),A are of the form C rEB W(T) where 

for any TE B,,,, W(T) = flbGT WT(b). In this product, W,(b)=l/k, Ghere k is the 

sum of the lengths of the bricks which are weakly to the right of b in the row of 

T containing 6. However, the weight GJ, is quite cumbersome to calculate. 

Our final result in this section is to establish a combinatorial interpretation for 

Mm, P)& ,I* 

Theorem 2.8. For A, ,LI t- n, M(m, P),,A = 1OBa,, 1. (2.17) 

Proof. For each partition A = (A,, . . . , A,) of n, we have 



116 6. Egecioglu, J.B. Remmel 

(2.18) 

Now if P=(P~, . ...&, then M(m,p),~ is just the coefficient of m, in the expan- 

sion of pA, written pA Im,. But clearly PA Im,=p~ lX;~...X~. Thus 

M(m,p),A =PA JX:‘.-.X~. (2.19) 

If we now think of using the distributive law to muhiply out pi, ---PA,, each term 

in the expansion is of the form A$x~‘*+.x~. Thus 

PA Ixp’._x~ = c x;lx;2-*xi)f Ixp’._$L (2.20) 
i,,...,i/ 

We note that each sequence i,, i,, . . . , i, which occurs on the right-hand side of (2.20) 

row 

4 

5 

Fig. 6. 

naturally corresponds to a placement of A-bricks in N rows indexed 1,2, . . . , N, where 

the indices of the bricks increase in each row from right to left. To see this, we simp- 

ly put brick bj in row ij for j = 1,2, . . . , 1. For example the sequence 1,2,3,5,1 which 

row 

102 

Fig. I. 

gives rise to the monomial X~X~X:X:X~ corresponds to the placement of bricks as 

shown in Fig. 6. Note that the order does make a difference, for example, the se- 

quence 2,1,3,1,5 which corresponds to the monomial xixf x:x:x: is distinguished 

from the sequence 1,2,3,5,1 on the right-hand side of (2.20) even though both se- 

quences give rise to the same monomial. Our placement of bricks reflects this dif- 
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ference. For example, the sequence 2,1,3,1,5 corresponds to the placement of 

subscripted A-bricks as shown in Fig. 7. 

Now a sequence ii, i2, . . . , i, gives rise to a monomial of the form x/‘.x~.**x~ if 

and only if in the corresponding placement of A-bricks, the lengths of the bricks in 

row i add up to pi for i-1,2, . . . . n. In other words, the corresponding placement 

of A-bricks must be of the form of an ordered A-brick tabloid of shape ,u. Thus 

(2.21) 

Now combining (2.21) with (2.19) proves Theorem 2.8. 0 

3. Remarks and conclusions 

In this section we shall consider a number of consequences of our combinatorial 

interpretations. We start with the identity (3) of the introduction 

M(m, f )/I, A = (-l)“-k(“) jBA,,I. (3.1) 
Thus 

X4 = (-l)~~V~ IPA,, m,. (3.2) 

If we assign a monomial weight @z(r) = m, to each A-brick tabloid T of shape ,u, 

then we arrive at the following expansion for fA: 

Theorem 3.1. 

fn = (-l)“-k(A) c m(T), 
TEE.4 

where BA is the collection of all A-brick tabloids. 

(3.3) 

Fig. 8. 
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Remark 3.2. Theorem 3.1 provides a combinatorial interpretation of fA in terms of 

weights of A-brick tabloids much like the combinatorial interpretation of sA in 

terms of weights of column strict tableaux. For example, in Fig. 8 we list the set BA 

of all A-brick tabloids for A = (1 , 1 , 1,3). Then for each TE BA, we simply replace T 
by the monomial Symmetric function msh(T) where sh(T) is the shape of T, sum, 

and then multiply by (-l)n-k(‘) to get f*. Thus in our example, 

From the expressions (9) and (11) of the matrices M(p, h), and M(p, m) of the in- 

troduction, we have 

M(P, h), A = IP/&~,~ M@,rn),A =(-l)k(*)-k(~)W(B~,~)/Z~. (3.5) 

We note that in general, M(p, h)P,, is not an integer. For example, if A = (n), then 

there is exactly one ordered p-brick tabloid of shape (n), so that IOBP,cn,I = 1. Thus 

M(P, h),(n) = l/zP, which is never an integer for n>l. Similarly, M(~,rn),~ is not 

in general an integer. For example, if A = (I”), then it is easy to see that there is 

precisely one (l”)-brick tabloid of shape ,D for any p, and the weight of such a 

(l”)-brick tabloid is 1. Thus w(B(,.),,) = 1 and n/r@, m)P,(l”j = (-l)“-k(fl)/zP, which 

is never an integer for n > 1. 

We conclude this paper with a few remarks about the twelve connection matrices 

we have considered. Given partitions A = (A,, . . . , A,) and ,u = (pi, . . . , &), we say that 

I is a refinement of p, written A <r,~, if and only if there is a set partition (At, . . . ,Ak) 

of (1, . ..( I} such that for each isk, pi = CjcA, S. It is easy to prove that there is 

a L-brick tabloid or an ordered A-brick tabloid of shape P if and only if AI+ 

Thus we have the following: 

Theorem 3.3. For partitions A and p of n, 
(i) IB,& #0 if and only if A ~~11, 

(ii) w(BA,,) #O if and only if A qp, 
(iii) IOB,,,/ #O if and only if A r,,u. 

Note that since the lexicographic ordering on partitions is a linear extension of 

sr, Theorem 3.3 implies that each of the twelve matrices we have considered is 

either upper or lower triangular. 

We should also mention that the quantities w(B,,,)/z, and IOB,,JI/Z, which ap- 

pear in matrices (9)-(12) of the introduction have other combinatorial interpreta- 

tions. Given a partition A of n, ~=(n,,...,~,)=(l”‘...nan), let A! =A1!.*-Al! as 

before, and a(A)! = al! -..a,,!. Let S, = SA, x +.. xSA, be the Young subgroup [7] of 

the symmetric group S, where for each i, S,, is the subgroup of all permutations on 

i-l i-l i-l 

1+ C ,J.j,2+ C Ajj,.**lAi+ C Aj ’ (3.6) 

j=l j=l j=l I 
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We let C, denote the conjugacy class corresponding to the partition p. Thus CP is 

set of all 0 E S, such that the partition of n induced by the cycles of (T is ,D. Then 

it is proved in [3] that 

(3.7) 

For a second interpretation for w(B,,,)/z,, we need to define the concept of A- 

brick permutations. Given A = (0 < Ar 5 ... ~;l~), we start with the set of sub- 

scripted A-bricks as in the definition of ordered A-brick tabloids. For example, if 

A = (1, 1,2,3,3), then our set of bricks consists of the ones shown in Fig. 9. We then 

let S(A) denote the set of all permutations of these bricks. We shall write a A-brick 

permutation in its cycle structure. For example, if 0 is as shown in Fig. 10, then cr 

corresponds to the A-brick permutation whose cycle diagram is given in Fig. 11. In 

one line notation, 0 would be written as in Fig. 12. 

Given a cycle c = (b,,, . . . , b,,), we define the shape of c by sh(c) = Cj,, lb;,] where 

lb;,1 denotes the size of the brick b,,. The shape, sh(a), of a A-brick permutation u 

which consists of the cycles ci, . . . , cl in its cycle decomposition, is defined to be the 

partition which is the increasing rearrangement of the sequence sh(cJ, . . . , sh(c,). 

For example for CJ pictured in Fig. 10, sh(a) = (4,6). We let S(A)P denote the set of 

all A-brick permutations of shape ,u. Then it is proved in [5] that 

~(BA,,) _ IW)‘(l -_- 
z, a(A)! * 

(3.8) 

Identities such as (3.7) and (3.8) which provide alternate interpretations for the 

entries of a number of transition matrices for bases of symmetric functions turn out 

to be useful in combinatorial proofs of matrix identities that arise in this setting [3]. 

Fig. 11. 

m4un1,1Ilul3cl* 
Fig. 12. 
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