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Abstract

Let Ck =
(

2k

k

)

/(k +1) denote the k-th Catalan number and

put ak(x) = Ck+Ck−1x+· · ·+C0x
k. Define the (n+1)×(n+1)

Hankel determinant by setting Hn(x) = det[ai+j(x)]0≤i,j≤n.
Even though Hn(x) does not admit a product form evaluation
for arbitrary x, the recently introduced technique of γ-operators
is applicable. We illustrate this technique by evaluating this
Hankel determinant as

Hn(x) =

n
∑

i=0

(−1)i

(

n + i

n − i

)

xi .

The Hankel determinant of the polynomial sequence where the
coefficients are central binomial coefficients instead of Catalan
numbers can also be evaluated in a similar form.

1 Introduction

Given a sequence a0, a1, . . ., the sequence of Hankel determinants H0, H1, . . . ,
defined in terms of the ak’s by

Hn = det[ai+j ]0≤i,j≤n

is sometimes referred to as the Hankel transform of the original sequence
[12]. Many interesting properties and instances of the Hankel transform are
known [3, 16, 2]. In particular, for the Catalan sequence

1, 1, 2, 5, 14, 42, 132, 429, 1430, . . .

taking ak = Ck =
(

2k
k

)

/(k + 1) for k ≥ 0, it is well-known that the Hankel
transform is the constant sequence Hn = 1 [18]. Hankel matrices of Catalan
and Catalan-like numbers of combinatorial interest have been studied by
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many authors; we can only give a few references: [18, 1, 20, 17, 8, 11, 5, 7].
Define

ak(x) =
k

∑

m=0

Ck−mxm (1)

so that ak(0) = Ck. We have

a0(x) = 1

a1(x) = x + 1

a2(x) = x2 + x + 2

a3(x) = x3 + x2 + 2x + 5

a4(x) = x4 + x3 + 2x2 + 5x + 14

a5(x) = x5 + x4 + 2x3 + 5x2 + 14x + 42

Let
Hn(x) = det[ai+j(x)]0≤i,j≤n . (2)

First few of these Hankel determinants are as follows:

H0(x) = 1

H1(x) = −x + 1

H2(x) = x2 − 3x + 1

H3(x) = −x3 + 5x2 − 6x + 1

H4(x) = x4 − 7x3 + 15x2 − 10x + 1

H5(x) = −x5 + 9x4 − 28x3 + 35x2 − 15x + 1

Since ak(x) − xak−1(x) = Ck, elementary row operations give

Hn(x) = det















a0(x) a1(x) · · · an(x)
C1 C2 · · · Cn+1

C2 C3 · · · Cn+2

...
... · · ·

...
Cn Cn+1 · · · C2n















(3)

and therefore Hn(x) is a polynomial of degree n. In this paper we make
use of the technique of γ-operators introduced in [6] to explicitly evaluate
Hn(x) in the following form:

Theorem 1 Suppose ak(x) and the Hn(x) are as defined in (1) and (2).
Then

Hn(x) =

n
∑

i=0

(−1)i

(

n + i

n − i

)

xi . (4)
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The γ-operator technique to find the explicit form of Hn(x) relies on
differential-convolution equations, and in this case establishes a second or-
der differential equation for Hn(x). We show that y = Hn(x) satisfies

x(x − 4)y′′ + 2(x − 1)y′ − n(n + 1)y = 0 (5)

from which the solution (4) follows by the Frobenius method.
For product form evaluations of various combinatorially interesting de-

terminants, LU decomposition, continued fractions and Dodgson conden-
sation are the classical methods that have been used successfully. There
exists an extensive literature on this topic, going back to the treatise of
Muir [13, 14]. We direct the reader to Krattenthaler [9, 10] for a modern
treatment of the theory of determinant evaluation including Hankel deter-
minants.

The γ-operator method introduced in [6] is applicable to a number of
Hankel determinant evaluations including those that do not admit a product
form evaluation, but which can be evaluated as an almost product; a sum
of a small number of products [5]. Examples of such evaluations in product
and almost product forms involving various binomial coefficients can be
found in [8, 5, 6, 7].

2 Preliminaries

A partition λ of an integer m > 0 is a weakly decreasing sequence of integers
λ = (λ1 ≥ λ2 ≥ · · · ≥ λp > 0) with m = λ1 +λ2 + · · ·+λp. Each λi is a part
of λ. We use the notation λ = mαm · · · 2α21α1 , indicating that λ has αi

parts of size i. Given n > 0, each partition (λ1 ≥ λ2 ≥ · · · ≥ λp > 0) with
p ≤ n+1 defines a determinant of a matrix obtained from the (n+1)×(n+1)
Hankel matrix An = [ai+j ]0≤i,j≤n by shifting the column indices of the
entries up according to λ as follows: Let µi = λi for i = 1, . . . , p and µi = 0
for i > p. Then

Hn(x, λ) = det[ai+j+µn+1−j
]0≤i,j≤n . (6)

We use the special notation 0 to denote the sequence µi = 0 for i =
1, . . . , n + 1. For example when n = 3,

Hn(x, 0) = det







a0 a1 a2 a3

a1 a2 a3 a4

a2 a3 a4 a5

a3 a4 a5 a6







, Hn(x, 312) = det







a0 a2 a3 a6

a1 a3 a4 a7

a2 a4 a5 a8

a3 a5 a6 a10







.

Note that with this notation, Hn(x) of (4) is denoted by Hn(x, 0). We will
keep the notation Hn(x) for the determinant itself instead of Hn(x, 0).

3



Let ak(x) be as in (1). We define the convolution polynomials cn = cn(x)
by

cn =

n
∑

k=0

akan−k

with c−1 = 0.
The γ-operator is a multilinear operator defined on m-tuples of matrices:

Definition 1 Given (n+1)× (n+1) matrices A and X1, X2, . . . , Xm with
m ≥ 1, define γA( ) = det(A) and

γA(X1, . . . , Xm) =

∂t1∂t2 · · · ∂tm
det(A + t1X1 + t2X2 + · · · + tmXm)|t1=···=tm=0

where t1, t2, . . . , tm are variables that do not appear in A or X1, X2, . . . , Xm.

The γ-operators behave well with respect to differentiation; the deriva-
tive of a γ is a sum of γ’s.

Proposition 1 For m ≤ n,

d

dx
γA(X1, . . . , Xm) = γA(

d

dx
A, X1, . . . , Xm)

+

m
∑

j=1

γA(X1, . . . , Xj−1,
d

dx
Xj, Xj+1, . . . , Xm) .

The reader is referred to [6] for the proofs of various properties of γ-
operators. It is worth mentioning that the values of the γ-operators need
not be calculated from scratch for different Hankel determinant evalua-
tions. Let An = [ai+j ]0≤i,j≤n be a Hankel matrix in the generic symbols
ak. Extensive tables of of values of γ-operators on various kinds of ma-
trices as well as a computationally feasible combinatorial interpretation of
γA(X1, . . . , Xm) for small m can be found in [6]. Suppressing the depen-
dence on n for the moment for notational convenience, denote the shifted
Hankel matrices defined via the right hand side of (6) by Hλ. The γ-
operator evaluations needed for the derivations in this paper are given in
Tables 1 and 2 with this notation.

3 Identities and expansions

The bulk of the work for the derivation of the differential equation (5) relies
on three essential identities, which are characteristic of the method. The
first is a differential-convolution equation. The second involves convolutions
and the ak but no derivatives. The third identity is a relation between
shifted columns of the matrix An.
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γA([ai+j ]) = (n + 1)H0

γA([ai+j+1]) = H1

γA([ai+j+2]) = H2 − H12

γA([(i + j)ai+j ]) = n(n + 1)H0

γA([(i + j)ai+j+1]) = 2nH1

γA([(i + j)ai+j+2]) = 2nH2 − 2(n − 1)H12

γA([ci+j−1]) = 0

γA([ci+j ]) = (2n + 1)a0H0

γA([ci+j+1]) = 2a0H1 + 2na1H0

Table 1: γA(∗) computations.

γA([ai+j+1], [ai+j ]) = nH1

γA([ai+j+1], [ai+j+1]) = 2H12

γA([ai+j+1], [(i + j)ai+j ]) = n(n − 1)H1

γA([ai+j+1], [(i + j)ai+j+1]) = 2(2n− 1)H12

γA([ai+j+1], [ci+j−1]) = −2na0H0

γA([ai+j+1], [ci+j ]) = (2n − 1)a0H1 − (2n − 1)a1H0

Table 2: γA(([ai+j+1], ∗) computations.

Lemma 1 (First Identity (FI))

x(x − 4)
d

dx
an = (n + 1)an+1 − (2 + 4n + x)an + cn − xcn−1 .

Lemma 2 (Second Identity (SI))

2(2n + 3)xan − (6 + 4n + 3x + nx)an+1 + (n + 3)an+2 = 0 . (7)

Lemma 3 (Third Identity (TI))

n+2
∑

j=0

wn,j(x)ai+j(x) = 0 (8)

for i = 0, 1, . . . , n where

wn,j = (−1)n−j

[(

n + j + 1

2j − 1

)

+

(

n + j + 2

2j + 1

)

x

]

. (9)
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From (9), we have that in particular

wn,n+2 = 1

wn,n+1 = −(2 + 2n + x) (10)

wn,n = n + 2n2 + 2x + 2nx .

Proofs of the lemmas

We sketch the proofs of these three lemmas. FI and SI can be proved readily
by generating function methods. We compute

f(x, y) =
∑

n≥0

ak(x)yk

=
∑

k≥0

xk
∑

n≥k

1

n − k + 1

(

2(n − k)

n − k

)

yn

=
∑

k≥0

xkyk

(

1 −√
1 − 4y

2y

)

=
1 −√

1 − 4y

2y(1 − xy)

Denoting differentiation with respect to y by primes below, we make the
substitutions

d

dx
an → d

dx
f

an → f

nan → yf ′

an+1 → (f − 1)/y

nan+1 → y((f − 1)/y)′

an+2 → (f − 1 − (1 + x)y)/y2

nan+2 → y((f − 1 − (1 + x)y)/y2)′

cn−1 → yf2

cn → f2

in the first two lemmas. The proofs of the FI and the SI become algebraic
verification of two functional identities involving f(x, y). These verifica-
tions can be carried out easily on any symbolic algebra package such as
Mathematica or Maple.

The weights in Lemma 3 are typical of the λ-operator method for Hankel
determinant evaluation. We do not give the proof of the third identity in
Lemma 3 but remark that once the weights are guessed as we have in
(9), the proofs of the identities can be left to automatic binomial identity
provers such as MultiZeilberger supplied by Doron Zeilberger (in Maple
[21]), and MultiSum by Wegschaider (in Mathematica [19]). •
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3.1 Equation from the SI

Apply γA(∗) to the (n+1)×(n+1) matrix whose (i, j)-th entry is obtained
from the second identity (7) evaluated at i + j and expand using linearity.
In other words, if we denote the matrix so obtained from the second identity
by [SI(i+j)], then the computation is the expansion of γA([SI(i+j)]) = 0.
For notational convenience, we can write [SI(n)] for the (n + 1) × (n + 1)
matrix [SI(i + j)], [nSI(n)] for the matrix [(i + j)SI(i + j)], etc. Making
use of the entries in the γA(∗) computations from Table 1, we get

0 = 6xγA([an]) + 4xγA([nan]) − (3x + 6)γA([an+1])

−(4 + x)γA([nan+1]) + 3γA([an+2]) + γA([nan+2]).

Therefore

0 = 6x(n + 1)Hn(x) + 4xn(n + 1)Hn(x) − (3x + 6)Hn(x, 1)

−(4 + x)2nHn(x, 1) + 3(Hn(x, 2) − Hn(x, 12))

+2nHn(x, 2) − 2(n − 1)Hn(x, 12)

and this can be simplified as

0 = 2(n + 1)(2n + 3)xHn(x) − (6 + 8n + 3x + 2nx)Hn(x, 1)

−(2n + 1)Hn(x, 12) + (2n + 3)Hn(x, 2). (11)

The identity (11) is a linear relation between the four determinants Hn(x),
Hn(x, 1), Hn(x, 2) and Hn(x, 12).

3.2 Equation from the TI

We will use the third identity in a determinantal form. Let

vj = [aj , aj+1, . . . , aj+n]T .

The third identity (8) says that the vectors v0, v1, . . . , vn+2 are linearly
dependent with coefficients wn,j , i.e.

n+2
∑

j=0

wn,jvj = 0 . (12)

Now consider the determinant of the (n + 1) × (n + 1) matrix whose first
n columns are the columns of A, and whose last column is the zero vector.
Writing the zero vector in the form (12) and expanding the determinant by
linearity, we find

wn,n+2Hn(x, 2) + wn,n+1Hn(x, 1) + wn,nHn(x) = 0 . (13)
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Substituting the particular weights (9) of the third identity we have

Hn(x, 2) − (2 + 2n + x)Hn(x, 1) + (n + 2n2 + 2x + 2nx)Hn(x) = 0. (14)

This is a linear relation between Hn(x), Hn(x, 1) and Hn(x, 2). Solving
the system (11), and (14) for Hn(x, 12), Hn(x, 2) in terms of Hn(x) and
Hn(x, 1),

Hn(x, 12) = −n(3 + 2n)Hn(x) + 2nHn(x, 1) (15)

Hn(x, 2) = −(n + 2n2 + 2x + 2nx)Hn(x) + (2 + 2n + x)Hn(x, 1)

4 The derivatives of Hn(x) and Hn(x, 1)

We now calculate the derivatives of Hn(x) and Hn(x, 1). We will find an
expression for d

dx
Hn(x) in terms of Hn(x) and Hn(x, 1); and then find an ex-

pression for d
dx

Hn(x, 1) in terms of Hn(x), Hn(x, 1), Hn(x, 2) and Hn(x, 12).
In view of (15), we can eliminate Hn(x, 2) and Hn(x, 12). This results in
a linear system involving d

dx
Hn(x), d

dx
Hn(x, 1), Hn(x) and Hn(x, 1), from

which the second order differential equation for Hn(x) can be constructed.

4.1 The derivative of H
n
(x)

Since Hn(x) = γA(·), using Proposition 1 we obtain

d

dx
Hn(x) = γA([

d

dx
ai+j ]).

From the first identity at i + j (i.e. FI(n)) we obtain

x(x − 4)
d

dx
Hn(x) = −(2 + x)γA([an]) − 4γA([nan])

+γA([an+1]) + γA([nan+1]) − xγA([cn−1]) + γA([cn]).

Making the replacements from the γ tables, we have

x(x − 4)
d

dx
Hn(x) = −(2 + x)(n + 1)Hn(x) − 4n(n + 1)Hn(x)

+Hn(x, 1) + 2nHn(x, 1) + (2n + 1)Hn(x)

and therefore

x(x − 4)
d

dx
Hn(x) = −(1 + 4n + 4n2 + x + nx)Hn(x)

+(2n + 1)Hn(x, 1). (16)
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4.2 The derivative of H
n
(x, 1)

To differentiate Hn(x, 1) we use the expression Hn(x, 1) = γA([ai+j+1])
from Table 1 and Proposition 1:

d

dx
Hn(x, 1) = γA([ai+j+1], [

d

dx
ai+j ]) + γA([

d

dx
ai+j+1]) .

Therefore, to compute d
dx

Hn(x, 1)

γA([ai+j+1], [FI(i + j)]) and γA([FI(i + j + 1)])

are needed. For the first one of these we obtain

x(x − 4)γA([an+1],
d

dx
A) = −(x + 2)γA([an+1], [an])

−4γA([an+1], [nan]) + γA([an+1], [an+1])

+γA([an+1], [nan+1]) − xγA([an+1], [cn−1]) + γA([an+1], [cn]).

Using the entries in the γA([ai+j+1], ∗) computations from Table 2, we get

x(x − 4)γA([an+1],
d

dx
A) = −(x + 2)nHn(x, 1) − 4n(n − 1)Hn(x, 1)

+2Hn(x, 12) + 2(2n− 1)Hn(x, 12) − x(−2nHn(x)) (17)

+(2n − 1)Hn(x, 1) − (2n − 1)(x + 1)Hn(x).

We evaluate γA( d
dx

[ai+j+1]) as

x(x − 4)γA(
d

dx
[an+1]) = −(x + 6)γA([an+1]) − 4γA([nan+1])

+2γA([an+2]) + γA([nan+2]) − xγA([cn]) + γA([cn+1]).

Therefore

x(x − 4)γA(
d

dx
[an+1]) = −(x + 6)Hn(x, 1) − 8nHn(x, 1)

+2(Hn(x, 2) − Hn(x, 12)) + 2nHn(x, 2) − 2(n − 1)Hn(x, 12) (18)

−x(2n + 1)Hn(x) + 2Hn(x, 1) + 2n(x + 1)Hn(x).

Adding the expressions in (18) and (19),

x(x − 4)
d

dx
Hn(x, 1) = Hn(x) − (5 + 4n + 4n2 + x + nx)Hn(x, 1)

+2(1 + n)Hn(x, 2) + 2nHn(x, 12). (19)
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5 The differential equation for Hn(x)

Differentiating (16) and substituting d
dx

Hn(x, 1) as given above in (19), and
eliminating Hn(x, 2) and Hn(x, 12) via (15),

x2(x − 4)2
d2

dx2
Hn(x) = (x − 4)x(3 − 4n − 4n2 − 3x − nx)

d

dx
Hn(x)

+(1 − 16n2 − 32n3 − 16n4 − 12nx − 20n2x − 8n3x − x2 − nx2)Hn(x)

−(1 + 2n)(1 − 4n − 4n2 − x − nx)Hn(x, 1).

Using this identity and the expression for d
dx

Hn(x) in (16), we eliminate
Hn(x, 1) to obtain

x(x − 4)
d2

dx2
Hn(x) + 2(x − 1)

d

dx
Hn(x) − n(n + 1)Hn(x) = 0,

which is (5). After some manipulation, the Frobenius solution is found to
be

Hn(x) = k0

n
∑

i=0

(−1)i

(

n + i

n − i

)

xi . (20)

The constant of integration k0 = Hn(0) is the Hankel transform of the
Catalan sequence. Therefore k0 = 1 for all n [18] and we have (4).

6 Evaluation at special values and additional

results

The general result on Hankel determinants ([5], Section 3, Proposition 1)
in our case becomes:

Proposition 2

Hn−1(x)Hn+1(x) = Hn(x)Hn(x, 2) + Hn(x)Hn(x, 12) − Hn(x, 1)2 . (21)

This identity allows us to evaluate Hn(x) easily for special values of x. For
example at x = 0, from (16), we obtain

Hn(0, 1) = 2n + 1 .

Using (19) and (15), we also find the evaluations

Hn(0, 12) = n(2n − 1)

Hn(0, 2) = (n + 2)(2n + 1).
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Note that at x = 0 identity (21) reads

1 = Hn(0, 2) + Hn(0, 12) − Hn(0, 1)2

which of course agrees with the values computed. The same equations we
used for the above specialization at x = 4 give

Hn(4, 1) =
4n2 + 8n + 5

2n + 1
Hn(4)

Hn(4, 12) =
n(4n2 + 8n + 7)

2n + 1
Hn(4) (22)

Hn(4, 2) =
4n3 + 20n2 + 33n + 22

2n + 1
Hn(4).

Let γn = Hn(4, 0). Using (22) and identity (21) we get

γn−1γn+1 =
(2n − 1)(2n + 3)

(2n + 1)2
γ2

n.

Solving the resulting recurrence relation for γn

γn−1
with γ0 = 1 and γ1 = −3,

we find
γn

γn−1

= −2n + 1

2n − 1

from which it follows that

γn = (−1)n(2n + 1) .

In this case

ak(4) = 22k+1 −
(

2k + 1

k + 1

)

and this particular evaluation of the Hankel determinant is known [15].
We collect these specializations of Hn(x) in the following theorem:

Theorem 2 Suppose ak(x) and the Hn(x) are as defined in (1) and (2).
Then

det[ai+j(0)]0≤i,j≤n = 1,

det[ai+j(1)]0≤i,j≤n =







−1 if n ≡ 2, 3 (mod 6)
0 if n ≡ 1, 4 (mod 6)
1 if n ≡ 0, 5 (mod 6),

det[ai+j(2)]0≤i,j≤n = (−1)
n(n+1)

2 ,

det[ai+j(4)]0≤i,j≤n = (−1)n(2n + 1).
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6.1 The generating function of H
n
(x)

It is useful to have the generating function of the sequence Hn(x) itself.
Specializations of the determinant at various x can be found directly from
the generating function. We have

∑

n≥0

(

n + k

n − k

)

yn =
yk

(1 − y)2k+1

and using this we compute that

∑

n≥0

Hn(x)yn =
1 − y

1 + (x − 2)y + y2
.

6.2 The central binomial case

It can be shown that taking

ak(x) =
k

∑

m=0

(

2k − 2m

k − m

)

xm, (23)

the corresponding Hankel determinant Hn(x) also satisfies the differential
equation (5). Therefore Hn(x) is of the form (20). The constant of inte-
gration k0 is now the Hankel transform of the sequence ak =

(

2k
k

)

, which
is known to be Hn(0) = 2n [4]. We record this evaluation in the following
theorem.

Theorem 3 Suppose ak(x) and the Hn(x) are as defined in (23) and (2).
Then

Hn(x) = 2n

n
∑

i=0

(−1)i

(

n + i

n − i

)

xi .

6.3 Interlacing of the zeros

Since we have an explicit expression for Hn(x) in terms of binomial co-
efficients, and we know the differential equation that it satisfies, we can
derive additional properties of the determinants. We used Mathematica
for alternate expressions for Hn(x). Hn(x) can be written in terms of the
trigonometric functions as

Hn(x) =
2 cos

(

(2n + 1) sin−1

(√
x

2

))

√
4 − x

. (24)
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In view of the differential equation (5), this can also be written in terms
of the associated Legendre function of the second kind. Additional prop-
erties such as the simplicity and the location of its roots and interleav-
ing of the zeros of Hn(x) and Hn+1(x) can also be fairly directly found.
For example the Hn(x) has n real simple zeros on the interval (0, 4) and
forms a Sturm sequence. For the interlacing property, we can show that
H ′

n+1Hn − Hn+1H
′
n < 0 on (0, 4) directly. Using the expression (24) for

Hn(x), we compute the expression on the left hand side as

−2

(4 − x)
√

(4 − x)x

[

(n + 1)
√

(4 − x)x + sin
(

4(n + 1) csc−1(2/
√

x)
)

]

Therefore the interlacing property is a consequence of the inequality

(n + 1)
√

(4 − x)x + sin

(

4(n + 1) csc−1

(

2√
x

))

> 0

valid for n ≥ 0 and 0 < x < 4.

6.4 Alternate expansion of H
n
(x)

Let Dj denote the determinant of the n × n matrix obtained by omitting
the j-th column of the n × (n + 1) matrix











C1 C2 · · · Cn+1

C2 C3 · · · Cn+2

...
... · · ·

...
Cn Cn+1 · · · C2n











. (25)

Expanding the determinant (3) for Hn(x) by the first row and using (4),

n
∑

j=0

(−1)jaj(x)Dj+1 =

n
∑

j=0

(−1)j

(

n + j

n − j

)

xj .

Equating coefficients of xi,

n
∑

j=0

(−1)jCj−iDj+1 = (−1)i

(

n + i

n − i

)

.

This can be rewritten as the matrix equation




















C0 C1 C2 · · · Cn

0 C0 C1 · · · Cn−1

0 0 C0 · · · Cn−2

...
... · · · . . .

...

0 0 · · · · · · C0









































D1

−D2

D3

...

(−1)nDn+1





















=





















(

n
n

)

−
(

n+1

n−1

)

(

n+2

n−2

)

...

(−1)n
(

2n
0

)





















.
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By Cramer’s rule, (−1)nDn+1 = (−1)n, which is a restatement of the known
[18] result det[Ci+j−1]1≤i,j≤n = 1.
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