
Theoretical Computer Science 312 (2004) 379–399
www.elsevier.com/locate/tcs

Catalytic P systems, semilinear sets, and vector
addition systems�

Oscar H. Ibarraa ;∗ , Zhe Dangb , Omer Egecioglua
aDepartment of Computer Science, University of California, Santa Barbara, CA 93106-5110, USA
bSchool of Electrical Engineering and Computer Science, Washington State University, Pullman,

WA 99164, USA

Received 1 May 2003; received in revised form 19 September 2003; accepted 2 October 2003

Abstract

We look at 1-region membrane computing systems which only use rules of the form Ca → Cv,
where C is a catalyst, a is a noncatalyst, and v is a (possibly null) string of noncatalysts. There
are no rules of the form a → v. Thus, we can think of these systems as “purely” catalytic.
We consider two types: (1) when the initial con6guration contains only one catalyst, and (2)
when the initial con6guration contains multiple catalysts. We show that systems of the 6rst
type are equivalent to communication-free Petri nets, which are also equivalent to commutative
context-free grammars. They de6ne precisely the semilinear sets. This partially answers an open
question (in: WMC-CdeA’02, Lecture Notes in Computer Science, vol. 2597, Springer, Berlin,
2003, pp. 400–409; Computationally universal P systems without priorities: two catalysts are
su?cient, available at http://psystems.disco.unimib.it, 2003). Systems of the second type de6ne
exactly the recursively enumerable sets of tuples (i.e., Turing machine computable). We also
study an extended model where the rules are of the form q : (p; Ca → Cv) (where q and p are
states), i.e., the application of the rules is guided by a 6nite-state control. For this generalized
model, type (1) as well as type (2) with some restriction correspond to vector addition systems.
Finally, we brieBy investigate the closure properties of catalytic systems.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Membrane computing; Catalytic system; Semilinear set; Vector addition system; Reachability
problem

� A short version of this paper (without proofs) was presented at the 28th International Symposium on
Mathematical Foundations of Computer Science (MFCS 2003). This research was supported in part by NSF
Grants IIS-0101134 and CCR02-08595.

∗ Corresponding author. Tel.: +1-805-893-4171; fax: +1-805-893-8553.
E-mail address: ibarra@cs.ucsb.edu (O.H. Ibarra).

0304-3975/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2003.10.028

http://psystems.disco.unimib.it
mailto:ibarra@cs.ucsb.edu

380 O.H. Ibarra et al. / Theoretical Computer Science 312 (2004) 379–399

1. Introduction

In recent years, there has been a burst of research in the area of membrane computing
[19], which identi6es an unconventional computing model (namely a P system) from
natural phenomena of cell evolutions and chemical reactions [2]. Due to the built-in
nature of maximal parallelism inherent in the model, P systems have a great potential
for implementing massively concurrent systems in an e?cient way, once future bio-
technology (or silicon-technology) gives way to a practical bio-realization (or a chip-
realization). In this sense, it is important to study the computing power of the model.
Two fundamental questions one can ask of any computing device (such as a Turing

machine (TM)) are: (1) What kinds of restrictions=variations can be placed on the
device without reducing its computing power? (2) What kinds of restrictions=variations
can be placed on the device which will reduce its computing power? For TMs, the
answer to (1) is that TMs (as well as variations like multitape, nondeterministic, etc.)
accept exactly the recursively enumerable (r.e.) languages. For (2), there is a wide
spectrum of the well-known results concerning various sub-Turing computing models
that have been introduced during the past half-century—to list a few, there are 6nite
automata, pushdown automata, linearly bounded automata, various restricted counter
automata, etc. Undoubtedly, these sub-Turing models have enhanced our understanding
of the computing power of TMs and have provided important insights into the analysis
and complexity of many problems in various areas of computer science. We believe
that studying the computing power of P systems would lend itself to the discovery
of new results if a similar methodology is followed. Indeed, much research work has
shown that P systems and their many variants are universal (i.e., equivalent to TMs)
[4,19,20,3,7,9,23] (surveys are found in [15,21,22]; see also the comprehensive bibli-
ography at http://psystems.disco.unimib.it). However, there is little work in addressing
the sub-Turing computing power of restricted P systems. To this end, we present some
new results in this paper, speci6cally focusing on catalytic P systems.
A P system S consists of a 6nite number of membranes, each of which contains

a multiset of objects (symbols). The membranes are organized as a Venn diagram or
a tree structure where a membrane may contain other membranes. The dynamics of
S is governed by a set of rules associated with each membrane. Each rule speci6es
how objects evolve and move into neighboring membranes. The rule set can also be
associated with priority: a lower-priority rule does not apply if one with a higher
priority is applicable. A precise de6nition of S can be found in [19]. Since, from a
recent result in [23], P systems with one membrane (i.e., 1-region P systems) and
without priority are already able to simulate two counter machines and hence universal
[17], for the purposes of this paper, we focus on catalytic 1-region P Systems, or
simply catalytic systems (CSs) [19,23].
A CS S operates on two types of symbols: catalytic symbols called catalysts (denoted

by capital letters C, D, etc.) and noncatalytic symbols called noncatalysts (denoted by
lower case letters a; b; c; d, etc.). An evolution rule in S is of the form Ca→Cv,
where C is a catalyst, a is a noncatalyst, and v is a (possibly null) string (an obvious
representation of a multiset) of noncatalysts. A CS S is speci6ed by a 6nite set of
rules together with an initial multiset (con6guration) w0, which is a string of catalysts

http://psystems.disco.unimib.it

O.H. Ibarra et al. / Theoretical Computer Science 312 (2004) 379–399 381

and noncatalysts. As with the standard semantics of P systems [19], each evolution
step of S is a result of applying all the rules in S in a maximally parallel manner.
More precisely, starting from the initial con6guration w0, the system goes through
a sequence of con6gurations, where each con6guration is derived from the directly
preceding con6guration in one step by the application of a multiset of rules, which are
chosen nondeterministically. Note that a rule Ca→Cv is applicable if there is a C and
an a in the preceding con6guration. The result of applying this rule is the replacement
of a by v. If there is another occurrence of C and another occurrence of a, then the
same rule or another rule with Ca on the left hand side can be applied. We require
that the chosen multiset of rules to apply must be maximally parallel in the sense that
no other applicable rule can be added to the multiset. Con6guration w is reachable if
it appears in some execution sequence. w is halting if none of the rules is applicable
on w. The set of all reachable con6gurations is denoted by R(S). The set of all halting
reachable con6gurations (which is a subset of R(S)) is denoted by Rh(S).
It is important to point out that our CS has only one membrane and does not

use communication. No object is sent out to the environment. Since the catalysts do
not change, we do not include them in R(S) and Rh(S). For some of the results,
we use simple projections or extensions of these reachability sets in order to select
the objects which count in the desired output. Without these projections=extensions, we
might need an additional membrane for collecting the output of the computation, which
could complicate the proofs. However, there is no need to try to extend the results and
proofs for systems with two membranes, as we are interested mostly in showing that
some 1-membrane systems are not universal.
We show that CSs whose initial con6guration contains only one catalyst are equiv-

alent to communication-free Petri nets, which are also equivalent to commutative
context-free grammars [5,13]. They de6ne precisely the semilinear sets in this case.
Hence R(S) and Rh(S) are semilinear. This partially answers an open problem in [23],
where it was shown that when the initial con6guration contains multiple catalysts, S is
universal, and [23] raised the question of what is the optimal number of catalysts for
universality. In fact, very recently, it was shown in [6], that three catalysts (even when
each catalyst appears exactly once in the initial con6guration) are already su?cient for
universality. It remains an interesting open question as to whether the three catalysts
can be reduced to two. Our result shows that one catalyst is not enough. We also
study an extended model where the rules are of the form q : (p;Ca→Cv) (where q
and p are states), i.e., the application of the rules is guided by a 6nite-state control.
For this generalized model, systems with one catalyst in its initial con6guration as well
as systems with multiple catalysts in its initial con6guration but with some restriction
correspond to vector addition systems.
The paper has 6ve sections in addition to this section. Section 2 recalls some de6-

nitions and fundamental results concerning semilinear sets and reversal-bounded mul-
ticounter machines needed in the paper. Section 3 considers CSs whose initial con6g-
uration has only one catalyst as well as systems with multiple catalysts and establish
their connection to semilinear sets and r.e. sets. Section 4 characterizes several variants
of CSs (including systems with “matrix rules”) in terms of various classes of vector
addition systems. Section 5 looks at closure properties. Section 6 is a brief conclusion.

382 O.H. Ibarra et al. / Theoretical Computer Science 312 (2004) 379–399

2. Semilinear sets and reversal-bounded multicounter machines

In this section, we recall the de6nition of a semilinear set and its characterization
in terms of a reversal-bounded multicounter machine. The characterization is useful in
proving some of our results.
Let N be the set of nonnegative integers and k be a positive integer. A set S ⊆Nk

is a linear set if there exist vectors v0; v1; : : : ; vt in Nk such that S = {v | v= v0 +a1v1 +
· · ·+atvt ; ai ∈N}. The vectors v0 (referred to as the constant vector) and v1; v2; : : : ; vt
(referred to as the periods) are called the generators of the linear set S. A set S ⊆Nk

is semilinear if it is a 6nite union of linear sets. The empty set is a trivial (semi)linear
set, where the set of generators is empty. Every 6nite subset of Nk is semilinear—it is
a 6nite union of linear sets whose generators are constant vectors. Clearly, semilinear
sets are closed under union and projection. It is also known that semilinear sets are
closed under intersection and complementation.
There is a simple automata characterization of semilinear sets. Let M be a nonde-

terministic 6nite-state machine without an input tape, but with n counters (for some
n¿1). The computation of M starts with all the counters zero and the machine in the
start state. The counters are reversal-bounded in that each counter can be tested for
zero and can be incremented by one, decremented by one, or left unchanged, but the
number of alternations between nondecreasing mode and nonincreasing mode in any
computation is bounded by a given constant. For example, a counter whose values
change according to the pattern 0 1 1 2 3 4 4 3 2 1 0 1 1 0 is 3-reversal (here the
reversals are underlined). M is called a reversal-bounded multicounter machine (with
n counters). Suppose k6n counters are designated as output counters (note that all
counters can be output counters) De6ne G(M)= {v |M when started from its initial
con6guration halts in an accepting state with v the tuple of values of the k output
counters}. We refer to G(M) as the set generated by M .
The following result is from [14].

Theorem 2.1. (1) Given a semilinear set S, we can e6ectively construct a reversal-
bounded multicounter machine M such that G(M)= S.
(2) Given a reversal-bounded multicounter M , G(M) is an e6ectively computable

semilinear set.

Theorem 2.1, part 2 can be strengthened. Assume that in M one of the counters is
unrestricted (i.e., not reversal-bounded). Call this counter free. Then the following was
also shown in [14].

Theorem 2.2. Let M be a machine with one free counter and several reversal-bounded
counters. Then G(M) is an e6ectively computable semilinear set.

The above result cannot be extended to allow two free counters, since it is known
that a machine with two counters, both of which are free, can simulate the computation
of a TM [17].

O.H. Ibarra et al. / Theoretical Computer Science 312 (2004) 379–399 383

A multicounter machine can also be used as an “acceptor” instead of a generator.
Such a machine is initially given a tuple (i1; : : : ; ik) in its input counters with all other
counters zero. The tuple is accepted if the machine eventually halts in an accepting
state. The equivalences of 1, 2, and 3 of the following theorem follows from the
theorems above. The fact that every semilinear set can be accepted by a deterministic
reversal-bounded multicounter acceptor was also shown in [14].

Theorem 2.3. Let Q ⊆Nk . Then the following statements are equivalent:
(1) Q is a semilinear set;
(2) Q can be generated by some reversal-bounded multicounter generator;
(3) Q can be accepted by some reversal-bounded multicounter acceptor;
(4) Q can be accepted by some deterministic reversal-bounded multicounter acceptor.

Let �= {a1; a2; : : : ; an} be an alphabet. For each string w in �∗, de6ne the Parikh
map [18] of w to be �(w)= (|w|a1 ; |w|a2 ; : : : ; |w|an), where |w|ai is the number of
occurrences of ai in w. For a language (set of strings) L⊆�∗, the Parikh map of L
is �(L)= { �(w) |w∈L}.

3. 1-Region CSs

In this section, we study 1-region membrane computing systems which use only rules
of the form Ca→Cv, where C is a catalyst, a is a noncatalyst, and v is a (possibly
null) string of noncatalysts. Note that we do not allow rules of the form a→ v as in
a P System. Thus, we could think of these systems as “purely” catalytic. As de6ned
earlier, we denote such a system by CS.
Let S be a CS and w be an initial con6guration (string) representing a multiset of

catalysts and noncatalysts. A con6guration x is a reachable con6guration if S can reach
x starting from the initial con6guration w. Call x a halting con6guration if no rule is
applicable on x. Unless otherwise speci6ed, “reachable con6guration” will mean any
reachable con6guration, halting or not. Note that a nonhalting reachable con6guration
x is an intermediate con6guration in a possibly in6nite computation. We denote by
R(S) the set of Parikh maps of reachable con6gurations with respect to noncatalysts
only. Since catalysts do not change in a computation, we do not include them in the
Parikh map. Also, for convenience, when we talk about con6gurations, we sometimes
do not include the catalysts. R(S) is called the reachability set of S. Rh(S) will denote
the set of all halting reachable con6gurations.

3.1. The initial con;guration has only one catalyst

In this subsection, we assume that the initial con6guration of the CS has only one
catalyst C.
A noncatalyst a is evolutionary if there is a rule in the system of the form Ca→Cv;

otherwise, a is nonevolutionary. Call a CS simple if each rule Ca→Cv has at most

384 O.H. Ibarra et al. / Theoretical Computer Science 312 (2004) 379–399

one evolutionary noncatalyst in v. Our 6rst result shows that semilinear sets and simple
CSs are intimately related.

Theorem 3.1. (1) Let Q ⊆Nk . If Q is semilinear, then there is a simple CS S such
that Q is de;nable by S, i.e., Q is the projection of Rh(S) on k coordinates.
(2) Let S be a simple CS. Then Rh(S) and R(S) are semilinear.

Proof. Let Q be a semilinear set, where Q=Q1 ∪ · · · ∪Qm, each Qi is a linear set.
De6ne a simple CS S as follows. S will have catalyst C and noncatalysts a1; : : : ; ak ;
b1; : : : ; bm; c1; : : : ; cm; d, and initial con6guration Cd. The noncatalysts bi and ci will be
used for computing Qi. The rules of S are

Cd → Cb1; Cd → Cb2; : : : ; Cd → Cbm:

And, for each linear set Qi, we have a set of rules. For example, for Q1, we have the
following rules:
if (i1; : : : ; ik) is the constant vector in Q1, then Cb1 →Cc1a

i1
1 : : : aik

k is a rule in S;
if (j1; : : : ; jk) is a generator in Q1, then Cc1 →Cc1a

j1
1 : : : a jk

k is a rule in S;
we also add the rule Cc1 →C in S.
Similar rules can be constructed for Q2; : : : ; Qm. Clearly, the con6guration when the
system halts is Cat1

1 : : : atk
k if and only if (t1; : : : ; tk) is in Q. Thus, the Parikh map of

any halting con6guration is (t1; : : : ; tk ; 0; 0; : : : ; 0; 0) if and only if (t1; : : : ; tk) is in Q.
We now prove the second part of the theorem. Suppose, we are given a simple

CS S with an initial con6guration w. We will construct a multicounter machine M
which simulates the computation of S. We associate a counter with every noncatalyst.
By de6nition of a simple CS, the multiplicity of catalyst C during the computation is
always 1, and the multiplicity of any evolutionary noncatalyst during the computation
is always bounded by the number of evolutionary noncatalysts in the initial con6gu-
ration w. Therefore, M can use the 6nite control to keep track of the multiplicities.
The counters associated with the nonevolutionary noncatalysts are nondecreasing. The
6nite control of M 6rst creates the initial con6guration w of S and then simulates the
computation of S faithfully, using the counters to keep track of the multiplicities of
the nonevolutionary noncatalysts. When S halts, M halts in an accepting state. Since
M ’s counters are nondecreasing (i.e., 0-reversal-bounded), the set of tuples it generates
(when it halts) is exactly Rh(S), and by Theorem 2.1, it is semilinear.
To see that R(S) is semilinear, we modify M so that at any time during the simula-

tion, it has a choice of nondeterministically halting in an accepting state. Hence, any
reachable tuple in R(S) is accepted by M and therefore semilinear.

In Section 4, we will see that, in fact, the above theorem holds for any CS whose
initial con6guration has only one catalyst.
Suppose that we extend the model of a CS so that the rules are now of the form

q : (p;Ca→Cv), i.e., the application of the rules is guided by a 6nite-state control.
The rule means that if the system is in state q, application of Ca→Cv will land the
system in state p. We call this system a CS with states or CSS. In addition, we allow
the rules to be prioritized, i.e., there is a partial order on the rules: a rule r′ of lower

O.H. Ibarra et al. / Theoretical Computer Science 312 (2004) 379–399 385

priority than r cannot be applied if r is applicable. We refer to such a system as a
CSSP. For both systems, the computation starts at (q0; w), where q0 is a designated
start state, and w is the initial con6guration consisting of catalyst C and noncatalysts.
In Section 4, we will see that a CSS can de6ne only a recursive set of tuples. In
contrast, the following result shows that a CSSP can simulate a TM.

Theorem 3.2. Let S be a CSSP with one catalyst and two noncatalysts. Then S can
simulate a TM.

Proof. It is known that a two-counter machine can simulate a TM [17]. Our con-
struction of the system follows from the proof of this result. We brieBy describe the
construction in [12]. In [12] it is 6rst shown that a TM can be simulated by a four-
counter machine. Then a two-counter machine is constructed as follows. Suppose the
four counters have values i; j; k; m. These values can be represented in one counter
by the number n=2i3j5k7m. To increment i; j; k; m by one, the number n is multi-
plied by 2, 3, 5, 7, respectively. We use a second counter, which is initially zero, for
this purpose. The second counter is incremented by 2, 3, 5, 7, respectively, for every
decrement of 1 in the 6rst counter. When the 6rst counter becomes zero, the second
counter has value 2n; 3n; 5n; 7n, respectively. Similarly, decrementing i; j; k; m by one
corresponds to incrementing the second counter by one for every decrement of 2, 3,
5, 7 in the 6rst counter.
The state of the four-counter machine is stored in the 6nite control of the two-counter

machine. To determine the move of the two-counter machine, it has to determine which,
if any, of i; j; k; m are zero. By passing n from one counter to the other, the 6nite control
of the two-counter machine can determine if n is divisible by 2, 3, 5, 7.
We modify the above construction slightly by adding the factor 11 to n. Thus,

n=2i3j5k7m(11). The purpose of the factor 11, which is a dummy, will be seen later.
From the above description of how the two-counter machine operates, we see that

the counters behave in a regular pattern. The two-counter machine operates in phases
in the following way. Let A and B be its counters. M ’s operation can be divided into
phases P1; P2; P3; : : : ; where each Pi starts with one of the counters equal to some
positive integer di and the other counter equal to zero. During the phase, the 6rst
counter is decreasing by one at every step and the other counter is nondecreasing. The
phase ends with the 6rst having value zero and the second counter having a positive
value (note that the positiveness is guaranteed by the factor 11). Then in the next
phase, the modes of the counters are interchanged. Thus, a sequence of con6gurations
corresponding to the phases above will be of the form

(q1; x1; 0); (q2; 0; x2); (q3; x3; 0); (q4; 0; x4); : : : ;

where the qi are states and x1 = 11; x2; x3; : : : are positive integers. Note that the sec-
ond component of the con6guration refers to the value of counter A, while the third
component refers to the value of counter B.
We may assume that the state names of the two counters when it is operating in

(odd) phases P1; P3; : : : are diQerent from the state names when it is operating in (even)

386 O.H. Ibarra et al. / Theoretical Computer Science 312 (2004) 379–399

phases P2; P4; : : : : Clearly, an instruction of the two-counter machine has one of the
following forms:
(1) "(q; positive; na)= (p;−1; d);
(2) "(p; na; positive)= (q; d;−1);
(3) "(q; zero; na)= (p; d;−1);
(4) "(p; na; zero)= (q;−1; d);
where q (respectively, p) is the current state, positive means that the 6rst (respectively,
second) counter is positive, na means that the value of the second (respectively, 6rst)
counter does not matter, p (respectively, q) is the next state, −1 means decrementing
the 6rst (respectively, second) counter by 1, and d∈ {0; 1; 2; 3; 5; 7} means incrementing
the second (respectively, the 6rst) counter by d. (Note that d= 0 or 1 when division
by 2, 3, 5, or 7 is being simulated.)
Let q1; q2; : : : be the states the counter machine uses in the odd phases and p1; p2; : : :

be the states it uses in the even phases. We assume that the qi’s are diQerent from
the pi’s. Assume that q1 is the state of the machine when the 6rst counter has value
20305070(11) and is about to begin phase P1. We construct a system S with catalyst C
and states q1; q′

1; q2; q
′
2; : : : ; p1; p′

1; p2; p′
2; : : : : The noncatalysts are a and b, representing

the two counters. The initial con6guration is (q1; Ca11). (This means that the 6rst
counter has value 11 and the second counter is zero.) The catalytic rules are de6ned
according to the type of rules above:
(1) for a rule of form 1, de6ne the rule q : (p;Ca→Cbd);
(2) for a rule of form 2, de6ne the rule p : (q; Cb→Cad);
(3) For a rule of form 3, de6ne the rule q : (p;Cb→Cad);
(4) For a rule of form 4, de6ne the rule p : (q; Ca→Cbd).
The rules of the form q : (p;Cb→Cad) and p : (q; Ca→Cbd) are of lower priority

than the rules of the form q : (p;Ca→Cbd) and p : (q; Cb→Cad). It is clear that the
system described above simulates the computation of the two-counter machine.

Directly from Theorem 3.2, we have:

Corollary 3.3. Let S be a CSSP with one catalyst and two noncatalysts. Then
R(S)⊆N2 need not be a semilinear set.

We will see later that in contrast to the above result, when the rules are not priori-
tized, i.e., we have a CSS S with one catalyst and two noncatalysts, R(S) is semilinear.

3.2. The initial con;guration has multiple catalysts

In this subsection, we assume that initial con6guration of the CS can have multiple
catalysts.
In general, we say that a noncatalyst is k-bounded if it appears at most k times in

any reachable con6guration. It is bounded if it is k-bounded for some k.
Consider a CSSP whose initial con6guration has multiple catalysts. Assume that

except for one noncatalyst, all other noncatalysts are bounded or make at most r (for
some 6xed r) alternations between nondecreasing and nonincreasing multiplicity in

O.H. Ibarra et al. / Theoretical Computer Science 312 (2004) 379–399 387

any computation. Call this a reversal-bounded CSSP. As in the proof of part 2 of
Theorem 3.1 we can construct a machine with one unrestricted counter and several
reversal-bounded counters simulating such a system. Note that the 6nal multiplicities
of the bounded noncatalysts are stored into their corresponding counters when the CSSP
being simulated halts. Hence we have:

Corollary 3.4. If S is a reversal-bounded CSSP, then Rh(S) and R(S) are semilinear.

Without the reversal-bounded restriction, a CSSP can simulate a TM. In fact, a CS
with multiple catalysts in its initial con6guration can simulate a TM. It was shown in
[23] that a CS augmented with noncooperating rules of the form a→ v, where a is a
noncatalyst and v is a (possibly null) string of noncatalysts is universal in the sense
that such an augmented system with six catalysts can de6ne any r.e. set of tuples. A
close analysis of the proof in [23] shows that all the rules can be made purely catalytic
(i.e., of the form Ca→Cv) using at most eight catalysts. Actually, this number has
been reduced substantially [8,6]. In fact, in [6], the following was shown.

Corollary 3.5. A CS with three catalysts (even when each catalyst appears exactly
once in the initial con;guration) can de;ne any r.e. set of tuples.

It is an open problem whether the three catalysts in the corollary above can be
reduced to two. We show in the next section that one catalyst is not enough.
There is another restriction on a CSSP S that makes it de6ne only a semilinear set.

Let T be a sequence of con6gurations corresponding to some computation of S starting
from a given initial con6guration w (which contains multiple catalysts). A noncatalyst
a is positive on T if the following holds: if a occurs in the initial con6guration or does
not occur in the initial con6guration but later appears as a result of some catalytic rule,
then the number of occurrences (multiplicity) of a in any con6guration after the 6rst
time it appears is at least 1. (There is no bound on the number of times the number of
a’s alternate between nondecreasing and nonincreasing, as long there is at least 1.) We
say that a is negative on T if it is not positive on T , i.e., the number of occurrences
of a in con6gurations in T can be zero.
Any sequence T of con6gurations for which every noncatalyst is bounded or is

positive is called a positive computation.

Corollary 3.6. Any semilinear set is de;nable by a CSSP where every computation
path is positive.

Proof. This follows from the proof of Theorem 3.1, part 1 since every computation
in a simple CS is positive.

Conversely, we have,

Corollary 3.7. Let S be a CSSP. Suppose that every computation path of S is pos-
itive. Then Rh(S) and R(S) are semilinear.

388 O.H. Ibarra et al. / Theoretical Computer Science 312 (2004) 379–399

Proof. As in part 2 of Theorem 3.1, we construct a multicounter machine M to simulate
S. For each positive noncatalyst a, we associate two counters A+

a and A−
a . M simulates

the computation of S, where the 6nite control keeps track of the multiplicities of the
bounded noncatalysts. Increments (respectively, decrements) in the multiplicity of a
positive noncatalyst a is recorded in A+

a (respectively, A−
a). When the computation of

S halts, the value of counter A+
a is reduced by the value of counter A−

a and the 6nal
values of the bounded noncatalysts are stored in the appropriate counters. Clearly, M ’s
counters are 1-reversal bounded. Hence, the set Rh(S) of tuples corresponding to the
6nal values of the counters is semilinear. But the tuples in Rh(S) correspond exactly
to halting reachable con6gurations in S. We can easily modify M to accept R(S).

The previous corollary can further be strengthened.

Corollary 3.8. Let S be a CSSP. Suppose we allow one (and only one) noncatalyst,
say a, to be negative. This means that a con;guration with a positive occurrence
(multiplicity) of a can lead to a con;guration with no occurrence of a. Suppose that
every computation path of S is positive, except for a. Then Rh(S) and R(S) are
semilinear.

Proof. The proof is similar to the previous corollary, except that now, we associate one
counter to the negative catalyst a, and this counter can make an unbounded number of
reversals. The result then follows from the fact that a multicounter machine with one
unrestricted counter and several reversal-bounded counters still only de6nes a semilinear
set.

4. Characterizations in terms of vector addition systems

An n-dimensional vector addition system (VAS) is a pair G= 〈x;W 〉, where x∈Nn

is called the start point (or start vector) and W is a 6nite set of vectors in Zn, where
Z is the set of all integers (positive, negative, zero). The reachability set of the VAS
〈x;W 〉 is the set R(G)= {z| for some j, z= x+v1+· · ·+vj; where, for all 16i6j, each
vi ∈W and x+v1+ · · ·+vi¿0}. The halting reachability set Rh(G)= {z|z ∈R(G); z+
v�0 for every v in W}.
An n-dimensional vector addition system with states (VASS) is a VAS 〈x;W 〉

together with a 6nite set T of transitions of the form p→ (q; v), where q and p
are states and v is in W . The meaning is that such a transition can be applied at point
y in state p and yields the point y+ v in state q, provided that y+ v¿0. The VASS
is speci6ed by G= 〈x; T; p0〉, where p0 is the starting state.
The reachability problem for a VASS (respectively, VAS) G is to determine, given

a vector y, whether y is in R(G). The equivalence problem is to determine given two
VASS (respectively, VAS) G and G′, whether R(G)=R(G′). Similarly, one can de6ne
the reachability problem and equivalence problem for halting con6gurations.
We summarize the following known results concerning VAS and VASS

[24,10,1,11,16].

O.H. Ibarra et al. / Theoretical Computer Science 312 (2004) 379–399 389

Theorem 4.1. (1) Let G be an n-dimensional VASS. We can e6ectively construct an
(n+ 3)-dimensional VAS G′ that simulates G.

(2) If G is a two-dimensional VASS G, then R(G) is an e6ectively computable
semilinear set.
(3) There is a three-dimensional VASS G such that R(G) is not semilinear.
(4) If G is a ;ve-dimensional VAS G, then R(G) is an e6ectively computable

semilinear set.
(5) There is a six-dimensional VAS G such that R(G) is not semilinear.
(6) The reachability problem for VASS (and hence also for VAS) is decidable.
(7) The equivalence problem for VAS (and hence also for VASS) is undecidable.

Clearly, it follows from part 6 of the theorem above that the halting reachability
problem for VASS (respectively, VAS) is decidable.

4.1. The initial con;guration has only one catalyst

We 6rst consider CSS (i.e., CS with states) whose initial con6guration has only one
catalyst.
We will need an example in [11] showing that there is a three-dimensional VASS G

such that R(G) is not semilinear: G= 〈x; T; p〉, where x=(0; 0; 1), and the transitions
in T are

p → (p; (0; 1;−1));

p → (q; (0; 0; 0));

q → (q; (0;−1; 2));

q → (p; (1; 0; 0)):

Thus, there are only two states p and q. The following was shown in [11]:
(1) (x1; x2; x3) is reachable in state p if and only if 0¡x2 + x362x1 ;
(2) (x1; x2; x3) is reachable in state q if and only if 0¡2x2 + x362x1+1.
Hence R(G) is not semilinear. We use the above example to show that there is a CSS
S such that R(S) is not semilinear. Let D be the catalyst, a; b; c the noncatalysts, and
p; q the states. The initial con6guration of S is (p;Dbcc). The rules are

p : (p;Dc → Db);

q : (q; Db → Dcc);

p : (q; Dc → Dc);

q : (p;Db → Dab):

Clearly, the reachable con6gurations of S at state p precisely satisfy 0¡x2+x362x1+2,
and the reachable con6gurations of S at state q precisely satisfy 0¡x2 + x362x1+1 +3,
where, in a con6guration, x1; x2; x3 are the multiplicities of noncatalysts a, b, c,

390 O.H. Ibarra et al. / Theoretical Computer Science 312 (2004) 379–399

respectively. Thus, the set of all reachable con6gurations is not semilinear; hence we
have:

Corollary 4.2. There is CSS S with one catalyst, three noncatalysts, and two states
such that R(S) is not semilinear.

In fact, as shown in the following two lemmas, each CSS corresponds to a VASS
and vice versa.

Lemma 4.3. Let S be a CSS. We can e6ectively construct a VASS G such that
R(G)=R(S).

Proof. We construct a VASS G as follows:
(1) Let C be the catalyst of S and a1; : : : ; ak be the noncatalysts. Number the rules

of S by 1; 2; : : : : Let q1; : : : ; qn be the states of S, with q1 the initial state. The
states of G will consist of q1; : : : ; qn, and (qi; r) for every 16i6n and every rule
number r.

(2) If (q1; Cw) is the initial con6guration of S, let q1 be the starting state of G and
(s1; : : : ; sk)= Parikh map of w (w.r.t symbols a1; : : : ; ak) be the start vector of G.

(3) The generating vectors of G are de6ned as follows:
Suppose q : (p;Cam →Caj1

1 aj2
2 : : : a jk

k) is rule number r in S. Then G will have
the following rules depending on the case:
(a) Case 1: If jm =0 (i.e., am does not appear on the RHS of the rule), then

q→ (p; (j1; j2; : : : ; j(m−1);−1; j(m+1); : : : ; jk)) is a transition in G.
(b) Case 2: If jm = t¿0 (i.e., am appears on the RHS of the rule), then the

following transitions are in G:

q → ((q; r); (0; 0; : : : ; 0;−1; 0; : : : ; 0))

and

(q; r) → (p; (j1; j2; : : : ; j(m−1); t; j(m+1); : : : ; jk)):

Clearly, the reachability set R(G) of G equals R(S).

Conversely, we have:

Lemma 4.4. Every VASS can be simulated by a CSS.

Proof. Suppose G is a VASS. The construction of the CSS S is essentially the “re-
verse” of the construction in the above proof. Number the transitions of G by 1; 2; : : : :
For every state q of G and transition r of G, let q; (q; r; 1); (q; r; 2); : : : be states in S.
Thus, S will have multiple (but 6nite) copies of (q; r). For convenience, we also take
q to be the same as (q; r; 0).

O.H. Ibarra et al. / Theoretical Computer Science 312 (2004) 379–399 391

Suppose q→ (p; (j1; : : : ; jk)) is transition number r in G. We consider two cases:
Case 1: Some ji’s are negative. We illustrate, by an example, how the corresponding

rules in S are de6ned. Suppose that jm and jn are negative and the rest of the ji’s are
nonnegative. Then the following rules are in S:

q : ((q; r; 1); Cam → C);

(q; r; 1) : ((q; r; 2); Cam → C);
...

(q; r; jm − 1) : ((q; r; jm); Can → C);

(q; r; jm) : ((q; r; jm + 1); Can → C);
...

(q; r; jm + jn − 1) : (p;Can → Caj1
1 : : : ajm−1

m−1a
jm+1
m+1 : : : a

jn−1
n−1a

jn+1
n+1 : : : a

jk
k):

Case 2: All the ji’s are nonnegative. Then the following rule is in S:

q : (p;C# → C#aj1
1 : : : ajk

k):

Clearly, G reaches a vector in state q if and only if S reaches the same vector in
state q.

From Theorem 4.1 part 6, we have:

Corollary 4.5. The reachability problem for CSS is decidable.

Clearly, a reachable con6guration is halting if no rule is applicable on the con6g-
uration. It follows from the above result that the halting reachability problem (i.e.,
determining if a con6guration is in Rh(S)) is also decidable.
A VASS is communication-free if for each transition q→ (p; (j1; : : : ; jk)) in the

VASS, at most one ji is negative, and if negative its value is −1. From Lemmas 4.3
and 4.4 and the observation that the VASS constructed in the proof of Lemma 4.3 is
communication-free, we have:

Theorem 4.6. The following systems are equivalent in the sense that each system can
simulate the others: CSS, VASS, communication-free VASS.

Now consider a communication-free VASS without states, i.e., a VAS where in ev-
ery transition, at most one component is negative, and if negative, its value is −1.
Call this a communication-free VAS. Communication-free VASs are equivalent to
communication-free Petri nets, which are also equivalent to commutative context-free
grammars [5,13]. It is known that they have eQectively computable semilinear reacha-
bility sets [5]. It turns out that communication-free VASs characterize CSs.

392 O.H. Ibarra et al. / Theoretical Computer Science 312 (2004) 379–399

Theorem 4.7. Every communication-free VAS G can be simulated by a CS, and vice
versa.

Proof. Let G be a communication-free VAS. We construct a CS S which has one cat-
alyst C, noncatalysts #; a1; : : : ; ak , and starting con6guration C#w, where w corresponds
to the starting vector of G.
Suppose (j1; : : : ; jm−1; jm; jm+1; : : : ; jk) is a transition in G.
Case 1: jm = − 1 and all other ji’s are nonnegative. Then the following is in S:

Cam → Caj1
1 : : : ajm−1

m−1a
jm+1
m+1 : : : a

jk
k :

Case 2: All the ji’s are nonnegative. Then the following rule is in S:

C# → C#aj1
1 : : : ajk

k :

Clearly, S simulates G. In fact, R(G)=R(S)× {1}.
Conversely, suppose S is a CS. First assume that each rule in S has the form

Ca→Cv, where a is not contained in v. If Cam →Cai1
1 : : : a jm−1

m−1a
jm+1
m+1 : : : a

jk
k is a rule in

S, then the following transition is in G: (j1; : : : ; jm−1;−1; jm+1; : : : ; jk). It is easy to see
that G simulates S.
Now we show how to convert a CS S to another system S ′ which satis6es the

property above. The system S ′ has many catalysts and simulates S. Let C be the
catalyst of S and a1; : : : ; ak be its noncatalysts and Cw its initial con6guration. Number
the rules of S by 1; : : : ; s.
CS S ′ will have catalysts C;Q1; : : : ; Qs and noncatalysts a1; : : : ; ak ; d1; : : : ; ds. Its initial

con6guration is Cwz, where z=Q1 : : : Qsd1 : : : ds. (Note that Qi and di are associated
with rule number i of S.) The rules of S ′ are de6ned as follows:
Case 1: Suppose Cai →Cv is a rule in S, and v does not contain ai. Then this rule

is in S ′.
Case 2: Suppose Cai →Caj

i v is rule number r in S, where j¿1 and v does not
contain ai. Then we have the following rules in S ′:

Cai → Cdj
rv

and

Qrdr → Qrai:

We say that dr is ai-related since it is associated with a rule with ai on the left-hand
side (LHS). It is easily veri6ed that any reachable con6guration in S ′ with the property
that for each i, the number of occurrences of ai + the number of occurrences of ai-
related dr’s (over all instruction number r)—call the sum m—uniquely corresponds to
a reachable con6guration in S where the number of occurrences of ai is equal to m.
(Note that reachable con6gurations in S are over a1; : : : ; ak .) Thus, S ′ simulates S.
Since in S ′ every rule Xb→Xv (where X is a catalyst, b is a noncatalyst, and v a

string of noncatalysts) has the property that v does not contain b, S ′ can be converted
to a communication-free VAS G.

O.H. Ibarra et al. / Theoretical Computer Science 312 (2004) 379–399 393

Corollary 4.8. If S is a CS, then R(S) and Rh(S) are e6ectively computable semilinear
sets.

Proof. Let G be the communication-free VAS in the proof above. Then R(G)⊆Nk+s

is semilinear (since a communication-free VAS has a semilinear reachability set).
Now the 6rst k components of each vector in R(G) correspond to a1; : : : ; ak , and
the remaining s components correspond to d1; : : : ; ds. Clearly, from the proof above,
R(S)=projk(R(G)∩ (Nk × {0}s)), where projk is the projection of the tuples on the
6rst k coordinates. Since Nk × {0}s is semilinear and semilinear sets are closed under
intersection and projection, it follows that R(S) is semilinear.
For Rh(S), without loss of generality (by simple relabeling), assume that at ; : : : ; ak

(t¿1) be all the noncatalysts for which there is some rule with ai on the LHS, t6i6k.
Clearly, a reachable con6guration in R(S) is halting if coordinates t; : : : ; k are zero.
Hence Rh(S)=R(S)∩ (Nt−1 × {0}k−t+1), which is semilinear.

The following is obvious, as we can easily construct a VAS from the speci6cation
of the linear set.

Corollary 4.9. If Q is a linear set, then we can e6ectively construct a communication-
free VAS G such that R(G)=Q. Hence, every semilinear set is a union of the reach-
ability sets of communication-free VASs.

From the NP-completeness of the reachability problem for communication-free Petri
nets (which are equivalent to commutative context-free grammars) [13,5], we have:

Corollary 4.10. The reachability problem for CS is NP-complete.

We have already seen that a CSS S with prioritized rules (CSSP) with two noncat-
alysts can simulate a TM (Theorem 3.2); hence, R(S) need not be semilinear. Inter-
estingly, if we drop the requirement that the rules are prioritized, such a system has a
semilinear reachable set.

Corollary 4.11. Let S be a CSS with two noncatalysts. Then R(S) and Rh(S) are
e6ectively computable semilinear sets.

Proof. As in Lemma 4.3, given a CSS S, we can construct a VASS G such that
R(S)=R(G). But since S has two noncatalysts the VASS G will be over N2 (i.e.,
dimension 2). By Theorem 4.1, parts 1 and 4, R(G)=R(S) is semilinear. By the same
construction as in Corollary 4.8, Rh(S) can be constructed from R(S), which preserves
semilinearity.

Open Problem. Suppose S has only rules of the form Ca→Cv whose initial con6gu-
ration has exactly one catalyst. Suppose the rules are prioritized. How is R(S) related
to VASS?

394 O.H. Ibarra et al. / Theoretical Computer Science 312 (2004) 379–399

4.2. The initial con;guration has multiple catalysts

We have seen that a CS with multiple catalysts can simulate a TM. Consider the
following restricted version: Instead of “maximal parallelism” in the application of the
rules at each step of the computation, we only allow “limited parallelism” by organizing
the rules to apply in one step to be in the following form (called a matrix rule):

(D1b1 → D1v1; : : : ; Dsbs → Dsvs);

where the Di’s are catalysts (need not be distinct), the bi’s are noncatalysts (need not
be distinct), the vi’s are strings of noncatalysts (need not be distinct), and s is the
degree of the matrix. The matrix rules in a given system may have diQerent degrees.
The meaning of a matrix rule is that it is applicable if and only if each component
of the matrix is applicable. The system halts if no matrix rule is applicable. Call this
system a matrix CS, or MCS for short. We shall also consider MCS with states (called
MCSS), where now the matrix rules have states and are of the form

p : (q; (D1b1 → D1v1; : : : ; Dsbs → Dsvs)):

Now the matrix is applicable if the system is in state p and all the matrix components
are applicable. After the application of the matrix, the system enters state q.

Lemma 4.12. Given a VAS (VASS) G, we can e6ectively construct an MCS (MCSS)
S such that R(S)=R(G)× {1}.

Proof. Suppose that G is a VAS over Nn with start vector (t1; : : : ; tn). We de6ne an
MCS with catalysts C; C1; : : : ; Cn, and noncatalysts a1; : : : ; an; #. Let di be the largest
integer such that −di is the ith component of some matrix rule. (Note that this means
that if the ith component in all matrix rules is nonnegative, di =0.) The initial con-
6guration of S is CCd1

1 : : : Cdn
n #at1

1 : : : atn
n . (If di =0, Ci does not appear in the initial

con6guration.) The matrix rules are de6ned as follows.
If (i1; : : : ; in) is a transition in G, then the corresponding matrix rule in S has the

following components:
(1) if at least one of the ij’s is positive, then C#→C#v is in the matrix, where v

contains aij
j if ij¿0, 16j6n;

(2) if ij = − k, then Cjaj →Cj appears k times in the matrix.
For example, if n=5 and (0;−2; 7;−1; 2) is a transition, the corresponding matrix rule
is

(C# → C#a73a
2
5; C2a2 → C2; C2a2 → C2; C4a4 → C4):

For transition (0;−2; 0;−1;−2), the corresponding matrix rule is

(C2a2 → C2; C2a2 → C2; C4a4 → C4; C5a5 → C5; C5a5 → C5):

Now R(S) is (n+ 1)-dimensional, where the 6rst n coordinates correspond to noncat-
alysts a1; : : : ; an, and the (n + 1)th coordinate corresponds to the noncatalyst # which
occurs exactly once in any reachable con6guration. Clearly, R(S)=R(G)× {1}.

O.H. Ibarra et al. / Theoretical Computer Science 312 (2004) 379–399 395

It is obvious that if G is a VASS (i.e., a VAS with states), then a similar construction
would yield an MCSS (i.e., an MCS with states) S.

Lemma 4.13. Given an MCSS S over n noncatalysts, we can e6ectively construct an
(n+ 1)-dimensional VASS G such that R(S)=projn(R(G)∩ (Nn × {1})).

Proof. Suppose that S is an MCSS with noncatalysts a1; : : : ; an, catalysts C1; C2; : : :,
initial con6guration w consisting of catalysts and noncatalyst, and states q1; q2; : : : with
q1 the start state. Number the matrix rules 1; 2; : : : :
We construct an (n + 1)-dimensional VASS G to simulate S. G will have states

p0; q1; q2; : : : and states of the form (qi; r) for every instruction number r. The start
state is p0, and the start vector is (t1; : : : ; tn; 1), where tj is the number of occurrences
of aj in w. The purpose of the (n+1)th coordinate will become clear later. G has the
following transition rules:

p0 → (q1; (t1; : : : ; tn; 1)):

Suppose q : (q′; D1b1 →D1v1; : : : ; Dsbs →Dsvs) is rule number r in S. Let ij = the
number of occurrences of aj in v1; : : : ; vs. Then the following rules are in G:

q → ((q′; r); (i′1; : : : ; i
′
n;−1))

and

(q′; r) → (q′; (i1; : : : ; in; 1));

where i′j is obtained as follows.
Case 1: None of b1; : : : ; bs is aj. Then i′j =0.
Case 2: There are m¿1 of b1; : : : ; bs that are aj. Then i′j = − m.

Clearly, the con6gurations reachable in S are exactly the con6gurations reachable in
G when the n+1st component of the con6guration is 1. Hence R(S)=projn(R(G)∩
(Nn × {1})).

The VASS in Lemma 4.13 can be converted to a VAS. It was shown in [11] that if
G is an n-dimensional VASS with states q1; : : : ; qk , then we can construct an (n+ 3)-
dimensional VAS G′ with the following property: If the VASS G is at (i1; : : : ; in) in
state qj, then the VAS G′ will be at (i1; : : : ; in; aj; bj; 0), where aj = j for j=1 to k,
bk = k+1 and bj = bj+1+k+1 for j=1 to k−1. The last three coordinates keep track
of the state changes, and G′ has additional transitions for updating these coordinates.
However, these additional transitions only modify the last three coordinates. De6ne the
6nite set of tuples Fk = {(j; (k − j+1)(k+1)) | j=1; : : : ; k} (note that k is the number
of states of G). Then we have:

Corollary 4.14. Given an MCSS S over n noncatalysts, we can e6ectively construct
an (n + 4)-dimensional VAS G′ such that R(S)=projn(R(G′)∩ (Nn × {1} ×Fk

× {0})), for some e6ectively computable k (which depends only on the number of
states and number of rules in G).

396 O.H. Ibarra et al. / Theoretical Computer Science 312 (2004) 379–399

From Theorem 4.6, Lemmas 4.12 and 4.13, and the above corollary, we have:

Theorem 4.15. The following systems are equivalent in the sense that each system can
simulate the others: CSS, MCS, MCSS, VAS, VASS, communication-free VASS.

Corollary 4.16. It is decidable to determine, given an MCSS S and a con;guration
., whether . is a reachable con;guration (halting or not).

Proof. Given an MCSS S, construct the VASS G as described in the proof of
Lemma 4.13. Then check if (.; 1) is reachable in G. The result follows since the
reachability problem for VASS is decidable.

Corollary 4.17. It is decidable to determine, given an MCSS S and a con;guration
., whether . is a halting reachable con;guration.

Proof. If there is some matrix rule in S that is applicable to ., then . is not a halting
reachable con6guration; otherwise, construct the VASS G of Lemma 4.13 and check
if (.; 1) is reachable in G.

From Lemma 4.12 and Theorem 4.1, part 7, we have:

Corollary 4.18. The equivalence and containment problems for MCSS are undecid-
able.

5. Closure properties

In this section, we brieBy look at some closure properties of CSs.
Let S be a CS of any type introduced in the previous sections. For the purposes

of investigating closure properties, we will say that S de;nes a set Q ⊆Nk (or Q is
de;nable by S) if Rh(S)=Q × {0}r for some given r. Thus, the last r coordinates of
the (k + r)-tuples in Rh(S) are zero, and the 6rst k-components are exactly the tuples
in Q.
Fixed the noncatalysts to be a1; a2; a3; : : : : Thus, any system S has noncatalysts

a1; : : : ; at for some t. We say that a class of CSs of a given type is closed under:
(1) Intersection: If given two systems S1 and S2, which de6ne sets Q1 ⊆Nk and

Q2 ⊆Nk , respectively, there exists a system S which de6nes Q=Q1 ∩Q2.
(2) Union: If given two systems S1 and S2, which de6ne sets Q1 ⊆Nk and Q2 ⊆Nk ,

respectively, there exists a system S which de6nes Q = Q1 ∪Q2.
(3) Complementation: If given a system S which de6nes a set Q ⊆Nk , there exists a

system S ′ which de6nes Q′ =Nk − Q.
(4) Concatenation: If given two systems S1 and S2, which de6ne sets Q1 ⊆Nk and

Q2 ⊆Nk , respectively, there exists a system S which de6nes Q=Q1Q2, where
Q1Q2 = {(i1 + j1; : : : ; ik + jk) | (i1; : : : ; ik)∈Q1; (j1; : : : ; jk)∈Q2}.

O.H. Ibarra et al. / Theoretical Computer Science 312 (2004) 379–399 397

(5) Kleene+: If given a system S which de6nes a set Q ⊆Nk , there exists a system
S ′ which de6nes Q′ =

⋃
n¿1 Qn.

(6) Kleene∗: If given a system S which de6nes a set Q ⊆Nk , there exists a system
S ′ which de6nes Q′ =

⋃
n¿0 Qn.

Other unary and binary operations can be de6ned similarly.

Theorem 5.1. The class CS with only one catalyst in the initial con;guration is closed
under intersection, union, complementation, concatenation, and Kleene+ (or Kleene∗).

Proof. For intersection, let S1 and S2 be CS de6ning sets Q1 ⊆Nk and Q2 ⊆Nk , re-
spectively. From Corollary 4.8, Rh(S1)=Q1 × {0}r1 and Rh(S2)=Q2 × {0}r2 (for some
r1 and r2) are semilinear sets. Since semilinear sets are closed under projection,
Q1 and Q2 are semilinear. From Theorem 3.1, part 2, we can construct multicounter
machines M1 and M2 generating Q1 and Q2, respectively. Note that each of M1 and
M2 has k 0-reversal counters. We construct a reversal-bounded multicounter machine
M which simulates M1 using one set of k counters. When M1 accepts and halts, M
then simulates M2 using another set of k counters. When M2 halts and accepts, M ver-
i6es that the k counters of M1 have the same values as the corresponding k counters
of M2 (by decrementing the counters simultaneously and checking that corresponding
counters reach zero at the same time), while making copies of their values onto a third
set of k counters. Clearly, the third set of counters correspond to Q=Q1 ∩Q2, which
is semilinear by Theorem 2.1. Then from Theorem 3.1, we can construct a CS S that
de6nes Q. The proof for closure under union is similar.
For complementation, let S be a CS de6ning a set Q ⊆Nk . Then Rh(S)=Q × {0}r is

semilinear. From the fact that semilinear sets are closed under projection and
Theorem 2.3, Q can be accepted by a deterministic reversal-bounded multicounter
machine. It follows that Nk − Q is semilinear and, hence, de6nable by a CS.
For concatenation, let S1 and S2 de6ne sets Q1 ⊆Nk and Q2 ⊆Nk , respectively.

Then Q1 and Q2 are semilinear, and we can construct multicounter machines M1 and
M2 generating Q1 and Q2, respectively. Each machine has k 0-reversal counters. We
construct a 0-reversal multicounter machine M with k counters which operates as
follows: (1) M simulates M1 (note that the counters are nondecreasing); (2) when M1

accepts and halts, M simulates M2 (on the same counters); (3) when M2 accepts and
halts, M accepts and halts. Clearly, M generates Q1Q2.
Closure under Kleene+ (or Kleene∗) follows from the construction for concatenation,

since M2 =M1. The simulating machine M iterates step (1) above a nondeterministi-
cally chosen number of times (including zero time for the case of Kleene∗) before
accepting and halting.

6. Conclusion

A large number of papers has been written in the area of membrane computing.
For the most part, the results reported are universality results, i.e., various membrane
systems have been shown to have the computational power of TMs. Not much work has

398 O.H. Ibarra et al. / Theoretical Computer Science 312 (2004) 379–399

been reported on sub-Turing models of membrane systems. In this paper, we studied
various classes of CSs that are not universal and showed that they can be characterized
in terms of semilinear sets, reversal-bounded multicounter machines, and vector addition
systems. We hope to study other restricted (nonuniversal) models of membrane systems
in the future.

Acknowledgements

We would like to thank Dung Huynh and Hsu-Chun Yen for their comments and
for pointing out some of the references concerning vector addition systems. We also
appreciate the comments and encouragement of Gheorghe Paun and Petr Sosik on this
work. Additionally, we thank Gaurav Saxena for reading an earlier version of this
paper.

References

[1] H.G. Baker, Rabin’s proof of the undecidability of the reachability set inclusion problem for vector
addition systems, in: C.S.C. Memo 79, Project MAC, MIT Press, Cambridge, MA, 1973.

[2] G. Berry, G. Boudol, The chemical abstract machine, in: POPL’90, ACM Press, New York, 1990
(pp. 81–94).

[3] P. Bottoni, C. Martin-Vide, Gh. Paun, G. Rozenberg, Membrane systems with promoters/inhibitors, Acta
Inform. 38 (10) (2002) 695–720.

[4] J. Dassow, Gh. Paun, On the power of membrane computing, J. Universal Comput. Sci. 5 (2) (1999)
33–49.

[5] J. Esparza, Petri nets, commutative context-free grammars, and basic parallel processes, in: Proc.
Fundamentals of Computer Theory, Lecture Notes in Computer Science, Vol. 965, Springer, Berlin,
1995, pp. 221–232.

[6] R. Freund, L. Kari, M. Oswald, P. Sosik, Computationally universal P systems without priorities: two
catalysts are su?cient, available at http://psystems.disco.unimib.it, 2003.

[7] R. Freund, M. Oswald, P Systems with activated/prohibited membrane channels, in: WMC-CdeA’02,
Lecture Notes in Computer Science, Vol. 2597, Springer, Berlin, 2003, pp. 261–269.

[8] R. Freund, M. Oswald, P. Sosik, Reducing the number of catalysts needed in computationally universal
P systems without priorities, in: Fifth Descriptional Complexity of Formal Systems Workshop (DFCS),
Budapest, Hungary, 2003.

[9] P. Frisco, H. Jan Hoogeboom, Simulating counter automata by P Systems with symport/antiport, in:
WMC-CdeA’02, Lecture Notes in Computer Science, Vol. 2597, Springer, Berlin, 2003, pp. 288–301.

[10] M.H. Hack, The equality problem for vector addition systems is undecidable, in: C.S.C. Memo 121,
Project MAC, MIT Press, Cambridge, MA, 1975.

[11] J. Hopcroft, J.-J. Pansiot, On the reachability problem for 5-dimensional vector addition systems,
Theoret. Comput. Sci. 8 (2) (1979) 135–159.

[12] J. Hopcroft, J. Ullman, Introduction to Automata theory, Languages, and Computation, Addison-Wesley
Publishing Company, Reading, MA, 1979.

[13] D.T. Huynh, Commutative grammars: the complexity of uniform word problems, Inform. Control 57
(1983) 21–39.

[14] O.H. Ibarra, Reversal-bounded multicounter machines and their decision problems, J. ACM 25 (1)
(1978) 116–133.

[15] C. Martin-Vide, Gh. Paun, Computing with membranes (P Systems): universality results, in: MCU,
Lecture Notes in Computer Science, Vol. 2055, Springer, Berlin, 2001, pp. 82–101.

[16] E. Mayr, Persistence of vector replacement systems is decidable, Acta Inform. 15 (1981) 309–318.

http://psystems.disco.unimib.it

O.H. Ibarra et al. / Theoretical Computer Science 312 (2004) 379–399 399

[17] M. Minsky, Recursive unsolvability of Post’s problem of Tag and other topics in the theory of Turing
machines, Ann. of Math. 74 (1961) 437–455.

[18] R. Parikh, On context-free languages, J. ACM 13 (1966) 570–581.
[19] Gh. Paun, Computing with membranes, J. Comput. System Sci. 61 (1) (2000) 108–143.
[20] Gh. Paun, Computing with membranes (P Systems): a variant, Internat. J. Foundations Comput. Sci.

11 (1) (2000) 167–181.
[21] Gh. Paun, Membrane Computing: an Introduction, Springer, Berlin, 2002.
[22] Gh. Paun, G. Rozenberg, A guide to membrane computing, Theoret. Comput. Sci. 287 (1) (2002)

73–100.
[23] P. Sosik, R. Freund, P Systems without priorities are computationally universal, in: WMC-CdeA’02,

Lecture Notes in Computer Science, Vol. 2597, Springer, Berlin, 2003, pp. 400–409.
[24] J. van Leeuwen, A partial solution to the reachability problem for vector addition systems, in: Proc. of

STOC’74, Seattle, Washington, 1974, pp. 303–309.

	Catalytic P systems, semilinear sets, and vector addition systems
	Introduction
	Semilinear sets and reversal-bounded multicounter machines
	1-Region CSs
	The initial configuration has only one catalyst
	The initial configuration has multiple catalysts

	Characterizations in terms of vector addition systems
	The initial configuration has only one catalyst
	The initial configuration has multiple catalysts

	Closure properties
	Conclusion
	Acknowledgements
	References

