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tGiven strings S1; S2, and P , the 
onstrained longest 
ommon sub-sequen
e problem for S1 and S2 with respe
t to P is to �nd a longest
ommon subsequen
e l
s of S1 and S2 su
h that P is a subsequen
e ofthis l
s. We present an algorithm whi
h improves the time 
omplexity ofthe problem from the previously known O(rn2m2) to O(rnm) where r; n,and m are the lengths of P; S1, and S2, respe
tively. As a generalizationof this, we extend the de�nition of the problem so that the l
s sought
ontains a subsequen
e whose edit distan
e from P is less than a givenparameter d. For the latter problem, we propose an algorithm whose time
omplexity is O(drnm).Keywords: Longest 
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e, 
onstrained subsequen
e, editdistan
e, dynami
 programming.1 Introdu
tionA subsequen
e of a string S is obtained by deleting zero or more symbols ofS. The longest 
ommon subsequen
e (l
s) problem for two strings is to �nda 
ommon subsequen
e in both strings having maximum possible length. The�Work done in part while on sabbati
al at Saban
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l
s problem has many appli
ations, and it has been studied extensively, see forexample [1, 4, 2, 3, 5, 7℄. The problem has a simple dynami
 programmingformulation. To 
ompute an l
s between two strings of lengths n, and m, weuse the edit graph. The edit graph is a dire
ted a
y
li
 graph having (n +1)(m+ 1) latti
e points (i; j) for 0 � i � n, and 0 � j � m as verti
es. Vertex(0; 0) appears at the top-left 
orner, and the vertex (n;m) is at the bottom-right 
orner of this re
tangular grid. To vertex (i; j) there are in
oming ar
sfrom its neighbors at (i � 1; j); (i; j � 1), and (i � 1; j � 1) whi
h represent,respe
tively, insert, delete, and either substitute or mat
h operations. The l
s
al
ulation 
ounts the number of mat
hes on the paths from vertex (0; 0) to(n;m), and the problem aims to maximize this number. The time 
omplexitylower bound for the problem is 
(n2) for n � m if the elementary operationsare \equal/unequal", and the alphabet size is unrestri
ted [1℄. If the alphabet is�xed the best known time 
omplexity is O(n2= logn) when n = m [5℄. A surveyof pra
ti
al l
s algorithms 
an be found in [2℄.Given strings S1; S2, and P , the 
onstrained longest 
ommon subsequen
eproblem [6℄ for S1 and S2 with respe
t to P is to �nd a longest 
ommon subse-quen
e l
s of S1 and S2 su
h that P is a subsequen
e of this l
s. For example,for S1 = bbaba, and S2 = abbaa, bbaa is an (unrestri
ted) l
s for S1 and S2,and aba is an l
s for S1 and S2 with respe
t to P = ab, as shown in Figure 1.
S 1 =  b  b  a  b  a S 1 =  b  b  a  b  a

S 2 =  a  b  b  a  a P =  a  b2 =  a  b  b  a  aSFigure 1: For S1 = bbaba, and S2 = abbaa, the length of an l
s is 4 (left).When 
onstrained to 
ontain P = ab as a subsequen
e, the length of an l
sdrops to 3 (right).The problem is motivated by pra
ti
al appli
ations: For example in the
omputation of the homology of two biologi
al sequen
es it is important to takeinto a

ount a 
ommon spe
i�
 or putative stru
ture [6℄.Let n;m; r denote the lengths of the strings S1; S2, and P , respe
tively.Tsai [6℄ gave a dynami
 programming formulation for the 
onstrained longest
ommon subsequen
e problem and a resulting algorithm whose time 
omplexityis O(rn2m2). In this paper we present a di�erent dynami
 programming for-mulation with whi
h we improve the time 
omplexity of the problem down toO(rnm). We a
hieve improved results by 
hanging the order of the dimensionsin the formulation. We also extend the de�nition of the problem so that thel
s sought is for
ed to 
ontain a subsequen
e whose edit distan
e from P is lessthan a given positive integer parameter d. For this latter problem we proposean algorithm whose time 
omplexity is O(drnm). Taking d = 1 spe
ializes tothe original 
onstrained l
s problem as this 
hoi
e of d for
es the subsequen
eto 
ontain P itself. We des
ribe these results in se
tion 2.2



2 AlgorithmsLet jS1j = n, jS2j = m with n � m, and jP j = r. Let S[i℄ denote the ith symbolof string S. Let S[i::j℄ = S[i℄S[i + 1℄ � � �S[j℄ be the substring of 
onse
utiveletters in S from position i to position j in
lusive for i � j, and the emptystring otherwise.Denote by Li;j;k the length of an l
s for S1[1::i℄ and S2[1::j℄ with respe
tto P [1::k℄. This simply means that the 
ommon subsequen
e is 
onstrained to
ontain P as a subsequen
e in turn. We 
al
ulate the values Li;j;k by a dynami
programming formulation. Then Ln;m;r is the length of an l
s of S1 and S2
ontaining P as a subsequen
e.Theorem 1 For all i; j; k, 1 � i � n, 1 � j � m, 0 � k � r, Li;j;k satis�esLi;j;k = maxfL0i;j;k; Li;j�1;k; Li�1;j;kg (1)where L0i;j;k = maxfL00i;j;k; L000i;j;kg (2)andL00i;j;k = ( 1 + Li�1;j�1;k�1 if (k = 1 or (k > 1 and Li�1;j�1;k�1 > 0))and S1[i℄ = S2[j℄ = P [k℄0 otherwiseL000i;j;k = n 1 + Li�1;j�1;k if (k = 0 or Li�1;j�1;k > 0) and S1[i℄ = S2[j℄0 otherwisewith boundary 
onditions Li;0;k = 0, L0;j;k = 0, for all i; j; k, 0 � i � n,0 � j � m, 0 � k � r.Proof We prove the 
orre
tness of our formulation by indu
tion on k for all i; j.We will 
onsider all possible ways of obtaining an l
s with respe
t to P [1::k℄at any node i; j. Essentially there are three 
ases to 
onsider:1. An l
s ending at the node (i; j � 1) is extended with the horizontal ar
((i; j � 1); (i; j)) ending at node (i; j),2. An l
s ending at (i�1; j) is extended with the verti
al ar
 ((i�1; j); (i; j))ending at node (i; j),3. An l
s ending at node (i � 1; j � 1) is extended with the diagonal ar
((i � 1; j � 1); (i; j)) ending at node (i; j). In this 
ase we distinguishbetween sub
ases depending on whether the diagonal ar
 is a mat
hingfor the given strings along with the pattern, or is a mat
hing for the givenstrings only at the 
urrent indi
es.3



The possible l
s extensions referred to in items 1 and 2 above are a

ountedfor by Li;j�1;k and Li�1;j;k respe
tively in the statement of the theorem. Thequantities L00i;j;k and L000i;j;k in the statement of the theorem keep tra
k of the twofurther possibilities des
ribed in item 3.In the base 
ase: when k = 0 (i.e. when P is the empty string) L00i;j;k isidenti
ally 0. Therefore L0i;j;k = L000i;j;k in (2). Sin
e k = 0, the 
onjun
tion inthe de�nition of L000i;j;k is always satis�ed. We see that putting Li;j = Li;j;0, (1)be
omes Li;j = maxfL0i;j ; Li;j�1; Li�1;jgwhere L0i;j = n 1 + Li�1;j�1 if S1[i℄ = S2[j℄0 otherwisewhi
h is the 
lassi
al dynami
 programming formulation for the ordinary l
sbetween S1 and S2 [7℄.Assume that for k � 1 (k � 1), Li;j;k�1 
omputed by (1) is the length of anl
s for S1[1::i℄ and S2[1::j℄ with respe
t to P [1::k � 1℄ for all i; j and 
onsiderthe 
al
ulation of Li;j;k when k > 1.We de�ne a path at node (i; j) as a simple path in the edit graph whi
hin
ludes at least one mat
hing ar
, starts at node (0; 0), and ends at node (i; j).A path with respe
t to P [1::k℄ in
ludes mat
hing diagonal ar
s ending at asequen
e of k � 1 distin
t nodes (a1; b1); (a2; b2); : : : ; (ak; bk) su
h that for all `,1 � ` � k, S1[a`℄ = S2[b`℄ = P [`℄. We de�ne #mat
h on a path as the numberof mat
hes between the symbols of S1, and S2, not ne
essarily involving symbolsin P . An l
s path with respe
t to P [1::k℄ ending at node (i; j) is a path withrespe
t to P [1::k℄ ending at node (i; j) with maximum #mat
h. Thus Li;j;kis #mat
h on an l
s path at node (i; j) with respe
t to P [1::k℄. Evidently#mat
h = #mat
h(i; j; k) is a fun
tion of the indi
es i; j; k. We will omit theseparameters when they are 
lear from the 
ontext.We 
an extend any l
s path with respe
t to P [1::k℄ ending at node (i; j� 1)with the horizontal ar
 ((i; j�1); (i; j)) to obtain a path with respe
t to P [1::k℄ending at node (i; j). Su
h an extension does not 
hange #mat
h on the path,and Li;j;k � Li;j�1;k.Similarly we 
an extend any l
s path with respe
t to P [1::k℄ ending at node(i� 1; j) with the verti
al ar
 ((i� 1; j); (i; j)) to obtain a path with respe
t toP [1::k℄ ending at node (i; j). This extension does not 
hange #mat
h on thepath either, and Li;j;k � Li�1;j;k. Therefore, Li;j;k � maxfLi;j�1;k; Li�1;j;kg.By using a mat
hing ar
 ((i � 1; j � 1); (i; j)), we 
an obtain paths withrespe
t to P [1::k℄ at node (i; j) by extending l
s paths with either respe
t toP [1::k � 1℄, or with respe
t to P [1::k℄ ending at node (i� 1; j � 1). These twopossibilities are a

ounted for by L00i;j;k and L000i;j;k in the dynami
 programmingformulation, respe
tively.First 
onsider l
s paths with respe
t to P [1::k�1℄ ending at node (i�1; j�1).We will show that L00i;j;k stores the maximum #mat
h on paths obtained at node(i; j) by extending these paths. 4



If S1[i℄ = S2[j℄ = P [k℄ then: If k = 1 then this is the �rst time the letterP [1℄ appears as a mat
hing ar
 on a path ending at node (i; j) sin
e we are
onsidering l
s paths with respe
t to P [1::k � 1℄ ending at node (i � 1; j � 1)and S1[i℄ = S2[j℄ = P [1℄. Therefore, the l
s length relative to P [1℄ at (i; j) isL00i;j;1 = 1 + Li�1;j�1;0, whi
h is one more than the length of an ordinary l
sbetween S1[1::i � 1℄ and S2[1::j � 1℄. If k > 1 and if there is an l
s path withrespe
t to P [1::k� 1℄ ending at node (i� 1; j� 1) (i.e. if Li�1;j�1;k�1 > 0) thenwe 
an extend this path with a new mat
h, and #mat
h in the resulting pathending at node (i; j) be
omes L00i;j;k = 1+ Li�1;j�1;k�1.Next we 
onsider l
s paths with respe
t to P [1::k℄ ending at node (i�1; j�1).We will show that L000i;j;k stores the maximum #mat
h on paths obtained at node(i; j) by extending these paths.If S1[i℄ = S2[j℄ then: Sin
e the k = 0 
ase is 
onsidered earlier in the base
ase of the indu
tion, we only 
onsider the 
ase when k > 1. If there is an l
spath with respe
t to P [1::k℄ ending at node (i� 1; j � 1) (i.e. if Li�1;j�1;k > 0)then we 
an extend this path by adding a new mat
h (whi
h does not involveP ), and #mat
h in the resulting path relative to P [1::k℄ ending at node (i; j)be
omes L000i;j;k = 1 + Li�1;j�1;k.After setting L0i;j;k = maxfL00i;j;k; L000i;j;kg, the quantity L0i;j;k is equal to themaximum #mat
h on paths with respe
t to P [1::k℄ ending at node (i; j) endingwith the ar
 ((i � 1; j � 1); (i; j)). If there is no su
h path then L0i;j;k = 0.Therefore Li;j;k � maxfL0i;j;k; Li;j�1;k ; Li�1;j;kg.From all possible l
s paths ending at neighboring nodes of (i; j) we 
an �ndtheir extensions ending at node (i; j), and we 
an obtain an l
s path ending atnode (i; j) with respe
t to P [1::k℄ for all k. We 
al
ulate, and store in Li;j;ksu
h l
s lengths. Now 
onsider the stru
ture of an l
s path with respe
t toP [1::k℄ ending at node (i; j). As typi
al in dynami
 programming formulations,we 
onsider the possible 
ases of the last ar
 on su
h a path to obtain Li;j;k �maxfL0i;j;k; Li;j�1;k; Li�1;j;kg whi
h proves the theorem. �Example: Figure 2 shows the 
ontents of the dynami
 programming tablesfor S1 = bbaba, and S2 = abbaa, and P = ab for k = 0; 1; 2. For k = 0, the
al
ulated values are simply the ordinary dynami
 programming l
s table forS1 and S2.All Li;j;k 
an be 
omputed in O(rnm) time, using O(rm) spa
e using theformulation in Theorem 1 by noting that we only need rows i� 1, and i duringthe 
al
ulations at row i. If a
tual l
s is desired then we 
an 
arry the l
s infor-mation for ea
h k along with the 
al
ulations. This requires O(rnm) spa
e. Bykeeping tra
k, on l
s for ea
h k, of only the mat
h points (i0; j0) of P [u℄ for allu, 1 � u � r, the spa
e 
omplexity 
an be redu
ed to O(r2m). In this 
ase, thel
s for k = r needs to be re
overed using ordinary l
s 
omputations to 
onne
t5



b b a b aa 0 0 1 1 1b 1 1 1 2 2b 1 2 2 2 2a 1 2 3 3 3a 1 2 3 3 4
b b a b aa 0 0 1 1 1b 0 0 1 2 2b 0 0 1 2 2a 0 0 3 3 3a 0 0 3 3 4

b b a b aa 0 0 0 0 0b 0 0 0 2 2b 0 0 0 2 2a 0 0 0 2 3a 0 0 0 2 3k = 0 k = 1 k = 2Figure 2: For S1 = abbaa; S2 = bbaba, and P = ab, the tables of values Li;j;k =the length of an l
s for S1[1::i℄ and S2[1::j℄ with respe
t to P [1::k℄.the 
onse
utive mat
h points.Remark: Spa
e 
omplexity 
an further be improved by applying a te
hniqueused in un
onstrained l
s 
omputation [3℄. We 
an 
ompute, instead of theentire l
s for ea
h k, middle vertex (n=2; j) (assume for simpli
ity that n iseven) at whi
h an l
s with respe
t to P [1::k℄ passes. This 
an be done in O(rm)spa
e, and we 
an 
ompute for all k the l
s length Ln=2;j;k from vertex (0; 0) tovertex (n=2; j), and l
s length from (n=2; j) to (n;m). The latter is done in thereverse edit graph by 
al
ulating l
s from (n;m) to (n=2; j), hen
e we denote itby Lreversen=2;j;l for 0 � ` � k. Then for every k,maxj;0�`�kLn=2;j;l + Lreversen=2;j;k�lis the l
s length for k, and it identi�es a middle vertex. After the middle vertex(n=2; j) on l
s for every k is found, the problem of �nding the l
s from (0; 0) to(n;m) 
an be solved in two parts: �nd the l
s from (0; 0) to (n=2; j), and �ndthe l
s from (n=2; j) to (n;m) for all k. These two subproblems 
an be solvedre
ursively by �nding the middle points. This way l
s 
an be obtained usingO(rm) spa
e. The time 
omplexity remains O(rnm) be
ause n is halved ea
htime, and the area (in terms of number of verti
es) 
overed in the edit graph isO(nm), and at ea
h vertex the total time spent is O(r).Next we propose a generalization of the 
onstrained longest 
ommon subse-quen
e problem. Given strings S1; S2, and P , and a positive integer d the editdistan
e 
onstrained longest 
ommon subsequen
e problem for S1 and S2 withrespe
t to string P , and distan
e d is to �nd a longest 
ommon subsequen
el
s of S1 and S2 su
h that this l
s has a subsequen
e whose edit distan
e fromP is smaller than d. Edit distan
e between two strings is the minimum num-ber of edit operations required to transform one string to the other. The editoperations are insert, delete, and substitute.Let Li;j;k;t be the length of an l
s for S1[1::i℄ and S2[1::j℄ su
h that the
ommon subsequen
e 
ontains a subsequen
e whose edit distan
e from P [1::k℄is exa
tly t. 6



Example: Suppose S1 = bbaba, S2 = abbaa and P = ab. We have 
al
ulatedbefore that the length of an l
s for S1 and S2 relative to P is 3. Thus L5;5;2;0 = 3.On the other hand the l
s bbaa of S1 and S2 
ontains the subsequen
e a, whi
his edit distan
e 1 away from P . Therefore L5;5;2;1 = 4.We 
al
ulate all Li;j;k;t by a dynami
 programming formulation. Optimalvalue of the edit distan
e 
onstrained l
s problem is max0�t<dLn;m;r;t.Theorem 2 For all i; j; k; t, 1 � i � n, 1 � j � m, 0 � k � r, 0 � t < d,Li;j;k;t satis�es Li;j;k;t = maxfL0i;j;k;t; Li;j�1;k;t; Li�1;j;k;tg (3)where L0i;j;k;t = maxfL00i;j;k;t; L000i;j;k;t; L0000i;j;k;tg (4)where L00i;j;k;t =8>>><>>>: 1 + Li�1;j�1;k�1;t if ((k = 1 and t = 0) or(k > 1 and Li�1;j�1;k�1;t > 0))and S1[i℄ = S2[j℄ = P [k℄0 otherwiseL000i;j;k;t = 8><>: 1 + Li�1;j�1;0;0 if (k = 0 and t = 1) and S1[i℄ = S2[j℄1 + Li�1;j�1;k;t else if (k = 0 or Li�1;j�1;k;t > 0)and S1[i℄ = S2[j℄0 otherwiseL0000i;j;k;t = maxfDi;j;k;t; Xi;j;k;t; Ii;j;k;tg (5)where Di;j;k;t = nLi;j;k�1;t�1 if t � 10 otherwiseXi;j;k;t = nLi;j;k�1;t�1 if t � 1 and S1[i℄ = S2[j℄0 otherwiseIi;j;k;t = nLi;j;k;t�1 if t � 1 and S1[i℄ = S2[j℄0 otherwisewith boundary 
onditions Li;0;k;0 = 0, L0;j;k;0 = 0, for all i; j; k, 0 � i � n,0 � j � m, 0 � k � r.Proof We 
laim that Li;j;k;t is the optimum length for any l
s for S1[1::i℄ andS2[1::j℄ su
h that the l
s 
ontains a subsequen
e whose edit distan
e is t fromP [1::k℄. We prove the 
orre
tness of our formulation by indu
tion on t for alli; j; k. 7



In the base 
ase: when t = 0 the formulation be
omes the same formula-tion as in Theorem 1, sin
e now the l
s is required to 
ontain P itself as asubsequen
e. Therefore, the 
orre
tness of this 
ase follows from Theorem 1.Assume that for t� 1 (t � 1), for all i; j; k, Li;j;k;t�1 is the optimum lengthfor any l
s for S1[1::i℄ and S2[1::j℄ su
h that the l
s 
ontains a subsequen
ewhose edit distan
e is t from P [1::k℄. Consider the 
al
ulation of Li;j;k;t for alli; j; k when t > 1.Our formulation uses the following observation: Let 
s be a subsequen
e ofan l
s of S1 and S2. The minimum edit distan
e between 
s and P 
an be
al
ulated using insert, delete, and substitute operations in P , and using nooperations in 
s. To see this 
onsider the edit operations between the symbolsin 
s, and in P . If an edit distan
e 
al
ulation deletes a symbol s in 
s, we 
aninstead insert the symbol s in P ; if a minimum edit distan
e 
al
ulation insertsa symbol s in 
s, we 
an instead delete the symbol s in P ; and if a minimum editdistan
e 
al
ulation substitutes a symbol s0 for s in 
s, we 
an instead substitutea symbol s for s0 in P to obtain the same edit distan
e.We de�ne an edit path at node (i; j) at distan
e t from P [1::k℄ as a sim-ple path from node (0; 0) to node (i; j), whi
h in
ludes a sequen
e of l � 1distin
t nodes (a1; b1); (a2; b2); � � � ; (al; bl) su
h that the edit distan
e betweenthe string S1[a1℄S2[a2℄ : : : S1[al℄ (= S2[b1℄S2[b2℄ : : : S2[bl℄), and P [1::k℄ is exa
tlyt. We de�ne #mat
h on a given edit path to node (i; j) as the number ofmat
hing diagonal ar
s on the path between the symbols in S1[1::i℄, and thesymbols in S2[1::j℄, not ne
essarily involving mat
hes in P . An optimal editpath at node (i; j) at distan
e t from P [1::k℄ is an edit path at node (i; j) atdistan
e t from P [1::k℄ with maximum #mat
h. Thus Li;j;k;t is #mat
h onan optimal edit path at node (i; j) at distan
e t from P [1::k℄. In this 
ase,#mat
h = #mat
h(i; j; k; t) is a fun
tion of the indi
es i; j; k; t, but we omitthese parameters when they are 
lear from the 
ontext.We 
an extend any optimal edit path at node (i; j � 1) at distan
e t fromP [1::k℄ with the horizontal ar
 ((i; j � 1); (i; j)) to obtain an edit path at node(i; j) at distan
e t from P [1::k℄. Su
h an extension does not 
hange #mat
h onthe resulting edit path, and Li;j;k;t � Li;j�1;k;t.Similarly we 
an extend any optimal edit path at node (i � 1; j) at dis-tan
e t from P [1::k℄ with the verti
al ar
 ((i � 1; j); (i; j)) to obtain an editpath at node (i; j) at distan
e t from P [1::k℄. This extension does not 
hange#mat
h on the resulting edit path, and Li;j;k;t � Li�1;j;k;t. Therefore, Li;j;k;t �maxfLi;j�1;k;t; Li�1;j;k;tg.By using a mat
hing ar
 ((i � 1; j � 1); (i; j)), we 
an obtain edit paths atnode (i; j) at distan
e t from P [1::k℄ by extending optimal edit paths at node(i� 1; j � 1) at distan
e t� 1, or t from P [1::k � 1℄, or P [1::k℄.First 
onsider optimal edit paths at node (i � 1; j � 1) at distan
e t fromP [1::k� 1℄. We will show that L00i;j;k;t stores the maximum #mat
h obtained atnode (i; j) by extending these edit paths.If S1[i℄ = S2[j℄ = P [k℄ then: We do not need to 
onsider the 
ase whenk = 1 and t = 0 sin
e t = 0 
ase is 
onsidered in the base 
ase of the indu
tion.8



If k > 1 and if there is an optimal edit path at node (i; j) at distan
e t fromP [1::k℄ (i.e. if Li�1;j�1;k�1;t > 0) then we 
an extend this edit path with a newmat
h, and #mat
h on the resulting edit path at node (i; j) at distan
e t fromP [1::k℄ be
omes L00i;j;k;t = 1 + Li�1;j�1;k�1;t.Next we 
onsider optimal edit paths at node (i� 1; j� 1) at distan
e t fromP [1::k℄. We will show that L000i;j;k;t stores the maximum #mat
h obtained atnode (i; j) by extending these edit paths.If S1[i℄ = S2[j℄ then: If k = 0 and t = 1 then: We 
an extend an l
s pathending at node (i� 1; j � 1) with respe
t to P [1::k℄ with a mat
h. In this 
ase,#mat
h in the resulting edit path is one more than Li�1;j�1;0;0. Therefore,L000i;j;0;1 = 1 + Li�1;j�1;0;0. Otherwise if k = 0 then we 
an extend an optimaledit path at node (i � 1; j � 1) at distan
e t from P [1::k℄ with a mat
h, and#mat
h on the resulting edit path is L000i;j;k;t = 1 + Li�1;j�1;k;t.Any edit path at node (i; j) at distan
e t�1 from P [1::k�1℄, or P [1::k℄ 
an bemodi�ed by applying an edit operation in P . We 
an modify an edit path at node(i; j) at distan
e t� 1 from P [1::k � 1℄ by deleting P [k℄. Then on the resultingedit path #mat
h remains the same, and the distan
e in
reases by 1. Therefore,we set Di;j;k;t = Li;j;k�1;t�1, and take it into a

ount in L0000i;j;k;t. We 
an modifyan edit path at node (i; j) at distan
e t � 1 from P [1::k � 1℄ by substitutingS1[i℄ = S2[j℄ for P [k℄. Then on the resulting edit path #mat
h remains thesame, and the distan
e in
reases by 1. Therefore, we set Xi;j;k;t = Li;j;k�1;t�1if S1[i℄ = S2[j℄, and take it into a

ount in L0000i;j;k;t. We 
an also modify anedit path at node (i; j) at distan
e t� 1 from P [1::k℄ by inserting S1[i℄ = S2[j℄in P after position k. Then on the resulting edit path #mat
h remains thesame, and the distan
e in
reases by 1. Therefore, we set Ii;j;k;t = Li;j;k;t�1 ifS1[i℄ = S2[j℄, and take it into a

ount in L0000i;j;k;t. Combining all these L0000i;j;k;t =maxfDi;j;k;t; Xi;j;k;t; Ii;j;k;tg.After setting L0i;j;k;t = maxfL00i;j;k;t; L000i;j;k;t; L0000i;j;k;tg, L0i;j;k;t stores themaximum #mat
h on edit paths at node (i; j) at distan
e t from P [1::k℄ whoselast ar
 is ((i� 1; j � 1); (i; j)). If there is no su
h edit path then L0i;j;k;t = 0.From all possible optimal edit paths at neighboring nodes of (i; j) we 
anobtain their extensions ending at node (i; j), and we 
an �nd an optimal editpath at node (i; j) at distan
e t from P [1::k℄ for all k; t. We 
al
ulate, andstore in Li;j;k;t maximum #mat
h in su
h optimal edit paths. Considering thepossible 
ases of the last ar
 on an optimal edit path at node (i; j) at distan
et from P [1::k℄ we also have Li;j;k;t � maxfL0i;j;k;t; Li;j�1;k;t; Li�1;j;k;tg. This
on
ludes the proof of the theorem. �All Ln;m;r;t for t = 0; 1; � � � ; d � 1 
an be 
omputed in O(drnm) time, andusing O(drm) spa
e using the formulation in Theorem 2 by noting that we onlyneed rows i�1, and i during the 
al
ulations at row i. If an a
tual optimal editpath is desired then we 
an 
arry the edit path information for every k and talong with the 
al
ulations. This requires O(drnm) spa
e sin
e edit paths 
anbe of length O(n).If we store mat
h points (where the symbols of S1, S2, and P mat
h) on9



these edit paths then we 
an redu
e the required spa
e to O(dr2m). In this
ase, the optimal edit path of the problem needs to be re
overed using ordinaryl
s 
omputations to 
onne
t the 
onse
utive mat
h points.Remark: Spa
e 
omplexity 
an further be improved by using the te
hniquewe used in our �rst algorithm. We 
an 
ompute, instead of the entire editpath for ea
h k, and t, a middle vertex (n=2; j) (assume for simpli
ity that n iseven) at whi
h an edit path at distan
e t from P [1::k℄ passes. This 
an be donein O(drm) spa
e, and we 
an 
ompute for all k, and t, #mat
h Ln=2;j;l;u onoptimal edit path from vertex (0; 0) to vertex (n=2; j), and #mat
h on optimaledit path from (n=2; j) to (n;m) where 0 � ` � k, and 0 � u � t. The latter,denoted by Lreversen=2;j;k�l;t�u, 
an be 
al
ulated in the reverse edit graph. Then forall k; t, maxj;0�`�k;0�u�tLn=2;j;l;u + Lreversen=2;j;k�l;t�uis the optimum #mat
h for k; t, and it identi�es a middle vertex. After themiddle vertex (n=2; j) on optimal edit path for every k; t is found, the problemof �nding an optimal edit path from (0; 0) to (n;m) 
an be solved in two parts:�nd an optimal edit path from (0; 0) to (n=2; j), and �nd and optimal edit pathfrom (n=2; j) to (n;m) for all k; t. These two subproblems 
an be solved re
ur-sively. As a results an optimal edit path 
an be obtained using O(drm) spa
e.The time 
omplexity remains O(rnm) be
ause n is halved ea
h time, and thearea (in terms of number of verti
es) 
overed in the edit graph is O(nm), andat ea
h vertex the total time spent is O(dr).3 Con
lusionWe have improved the time 
omplexity of the 
onstrained l
s problem fromO(rn2m2) to O(rnm) where n, and m are the lengths of the given strings, and ris the pattern length. This improvement is a
hieved by a dynami
 programmingformulation whi
h is di�erent from what was proposed in [6℄. In our formulation,the dimensions are ordered di�erently. We also extended the problem de�nitionto use edit distan
es, and presented an O(drnm) time algorithm for the resultingedit distan
e 
onstrained l
s problem.Referen
es[1℄ A.V. Aho, D.S. Hirs
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