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Abstract. Let C be the convex-hull of a set of points S with integral
coordinates in the plane. It is well known that |C| < ¢D** for some con-
stant ¢ where D is the diameter of S: i.e. the maximum distance between
any pair of points in S. It has been shown that ¢ = 7.559.. for an arbitrary
S, and ¢ = 3.496.. in the special case when S is a ball centered at the
origin in the plane. In this paper we show that ¢ = 12/V/ 4n? = 3.524..
is sufficient for an arbitrary set of lattice points S of diameter D in the
plane, and |C| ~ 12§/2/(972?) D*/* = 3.388..D*? is achieved asymp-
totically. Our proof is based on the construction of a special set in first
quadrant, and the analysis of the result involves the calculation of the
average order of certain number-theoretical functions associated with the
Euler totient function ¢(n).

1 Introduction

A lattice point is a point with integral coordinates. Given a set S of lattice points
in the plane, let C be the convex-hull of S, and denote the number of extreme
points in C by |C|. The behavior of |C| as a function of parameters associated
with S has been studied in various contexts in computational geometry, computer
graphics [10,6, 9], and integer programming [1, 3, 5].

Andrews’ general theorem [1] on convex bodies in d-dimensional space implies
that in the plane |C]| is bounded by

€l < eD*? (1)

for some constant ¢, where D is the diameter of S: i.e. the maximum distance
between any two points in S. Another proof of this bound for the plane was
given by Katz and Volper [9]. The constant ¢ has also been studied. Balog and
Barany [2] showed that when S is the ball of radius r = D/2 centered at the
origin, i.e. S = rB?, then

0.207..D*/3 < |C| < 3.496..D*/3.
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Therefore one can take ¢ = 3.496.. in the special case when S is a ball of diameter
D. A d-dimensional analysis for the ball appears in [4]. Har-Peled [7] showed
that the value ¢ = 64/2 = 7.559.. is sufficient for the bound (1) in the plane for
arbitrary S.

In this paper we investigate further the nature of the constant ¢ in (1) and

show that
c=12/V 4n2 =3.524..

suffices for an arbitrary S of diameter D in the plane. OQur proof is based on the
construction of a special set in first quadrant of the plane which satisfies certain
constraints. The construction involves selecting a set of fractions in a particular
order as slopes of the line segments of the convex-hull. Based on the properties
of the average order of certain number-theoretical functions associated with the
Euler totient function ¢(n), we derive an upper bound on the size of the set
constructed. This leads to an improved value for ¢. We also show that using the
construction idea of the proof, we can always create a convex-hull C with a given
diameter D such that

IC| ~123/2/(972) D?*/? = 3.388..D*/3 (2)

is achieved asymptotically.

The organization of this paper is as follows. Section 2 gives the number-
theoretical background we require, and includes the proof of the main theorem,
which we then use in Section 3 for proving our result on the improved value of c.
In Section 4, we construct large convex-hulls with a given diameter proving (2).

2 Number-theoretical definitions and results

We use the classical book by Hardy and Wright [8] as our main reference for the
definitions and basic results used in this section. We denote by (r, s) the greatest
common divisor of r and s.

e The Euler totient function ¢(n) ([8], p. 52) is defined as follows:
1 ¢(1) =1
2. for n > 1, ¢(n) is the number of positive integers less than n and rela-

tively prime to n.
e The Mébius function u(n) ([8], p- 234) is defined by

Lop(l) =1,
2. p(n) =0 if n has a square factor,

We use the following well-known results:



Lemma 1.

o(n) =" =n(d), (3)
d|n

o=y MO (1
d=1

Proof. The proof of (3) is in ([8], p. 235). The proof of (4) can be found in ([8],
Thm. 287, p. 250; Thm. 293, p. 251).

Let &g(n) = ¢(1) + ¢(2) + - - - + ¢(n). It is known in relation to Farey fractions
([8], Thm. 330, p. 268) that

#o(n) = 22 + O(nlogn), (5)

so that the average order (([8], p. 263) of the function ¢(n) is given by (5).
Theorem 1 below gives an expression for the average order of the function n"¢(n)
for r > 0, generalizing (5).

Theorem 1. For any integer r > 0

6

r+2 r+1
i n" ™ +0(n""" logn) . (6)

Bo(n) = 17 0(1)+279(2)+ -+ +n"4(n) =

Proof. By (3) of lemma 1 we have

()= mom) = Y m" Y Zud) = Y Y m'dpu(d)

dlm m=1dd'=m
n n [n/d]
= > @) ud = Y dnd) () = Y S du(d) Y (@)
m=1dd' =m dd'<n d=1 d'=1
Using the fact that
n nrt2
Z Bl — _2 + O(nr+1)7
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we get
[n/d] ‘
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> (d) _r+2(d) +O<dr+1>'
d'=1
Therefore
n’r‘+2 - N(d) r+1 S 1
Qr(n):T+22—2+O n ZE
d=1 d=1
n 2 & u(d) 2 = 1 i
:r—l—QZ 7 +0(n Z Fil +O(n logn)
d=1 d=n+1
nr+2

=—— (2 "+ 0@ +0(mn" " logn)



and the theorem follows from the last equality and (4) of lemma 1.

We need the following result relating $o(n) and &, (n) as a step in our study
of IC| .

Theorem 2. Let $g(n) = ¢(1) + ¢(2) + - - + ¢(n),

Fr(n)=1-¢(1)+2-¢2)+ - +n-o(n).
Then 5
By(n) ~ - = @, (n)?? = 0.8810516..8, (n)>/?. (7)
m

Proof. The theorem follows by combining the expressions for &¢(n) and &;(n)
obtained as the cases r = 0, and r = 1 of theorem 1.

We note that also the magnitude of the error term in (7) can be calculated
by using the full expressions for &y(n) and &, (n) obtained. This gives

3
v/ 42

We omit the details of this calculation.

Bo(n) = &y (n)2* + 0 (451(71,)1/3 log 451(71,)) :

3 An improved upper bound

We first establish an upper bound on the size of the convex-hull of lattice points
in first quadrant of the plane in the following lemma.

Lemma 2. Let S, be a set of lattice points in first quadrant of the zy-plane
enclosed by y = a and x = b. For the convex-hull Co of Sq b, there holds

|Ca7b| S 3

@+ +0 ((a +5) 3 log (a + b))

Proof. Without loss of generality, S, 5 includes the points (0,a) and (b,0) and
both a and b are positive integers (Figure 1). Instead of the point-set C, » we con-
sider the corresponding set of slopes R, p of the line segments (edges) connecting
the consecutive extreme points of the convex-hull. Clearly, |Cq 5| = |Rap| + 1, 50
we can alternately study the properties of the set R, ;. By convexity, the slopes
of the edges of the convex-hull are all different. Furthermore S, is a set of
lattice points, and therefore the slopes of the non-vertical edges are all rational
numbers.

Let R}, be an optimal set for the following problem: maximize |R| subject

to
Zy+ Zmz Zy+m§a+b (8)
LeR LeRrR LeRrR

Clearly, for any a and b, |Rq| < |R} ;|- We will find a bound for [R} | .
Let Q; for ¢ > 0 be the set of slopes defined as follows:
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Fig. 1. A set of lattice points S, in first quadrant.

L. Qo =10,

2. Q = %, %} We assume that the fraction % is defined as a slope and it

represents the vertical edge whose length is one unit.
3.Fori>1,Q;={%|y+z=iand (y,z) =1}.

Table 1 illustrates the first few values Q;, ¢(i), Po(i), and &4 (7). The following
properties can easily be seen for i > 1:

Qil = (i) (9)
S ytr=ilol (10)

Le;

n+1
i=1

Let n + 1 be the smallest number such that )
an arbitrary subset of Q, 41 such that

(a+b) -3, iIQiIJ

n+1

i|Qi| > a+b, and Q) be

|Q;m+1:{

Then consider the following set

Ravs = (U Qi) UQ,i- (11)
i=1

We claim that R,4p is a maximal set which satisfies the constraint (8). The
expression (11) describes a greedy construction : To include in set R4y, select
a fraction whose numerator-denominator sum is the smallest. Continue includ-
ing fractions until the sum of all the numerators and the denominators of the
fractions currently in the set exceeds a + b . Since R,4p is a set, no fraction
can be included in the set more than once, and since the slopes are all different,
among the equivalent fractions, the irreducible one has the smallest numerator-
denominator sum. This explains why only the relatively prime numbers are to
be considered in the construction.



i o Je]e]e)]
1 {2,3} 1|1 1
2 {3} 1] 2 3
3 {3.%} 2 14| 9
4 {32} 2| 6 | 17
5| (1.3.5%) [4 )07
6 {13} 2 | 12 | 49
T 28858 6| 18 | o

Table 1. Table of Q;, ¢(i), Po(i), and &,(i) for i = 1,2,...,7.

(From (11) we have

n n+1
Uo € Ruw ¢ J (12)
i=1 i=1
Using (12) and (9) we find that
n n+1
Do) + 1 < [Rags| < D 0i) + 1 (13)
i=1 i=1

Again using (12) and (9) together with the expression (10), and using the fact

that by construction n + 1 is the smallest number such that ijll i|Qi| >a+b
we get
n n+1
dig(i) + 1 < at+b < > i) + 1 (14)
i=1 i=1

We note that ¢(n + 1) = O(®;(n)'/?) using the expression &;(n) obtained
from (6) with 7 = 1. Therefore we can write the following upper bound for |R 44|
using (13):

Rass| = iw) + 0 (@1(n)'/?) = @o(n) + O (21(n)' )

Furthermore from Theorem 2

\3/%451 (n)*3 +0 (45] (n)'/? log @, (n)) 0 (451 (n)]/3) . (15)

and from (14) we obtain that &;(n) ~ a + b. Therefore

|Ra+b‘ =

Rass] = (a+8)/? +0 ((a+b)1og(a+1))

3

which proves the bound for |C, 4| of the lemma.



Theorem 3. For the convez-hull C of a set S of lattice points of diameter D in
the plane, there holds
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Proof. S can be enclosed by an axis-parallel rectangle whose sides are at most
D in length. Using this rectangle, we can partition S into four parts such that

each part is confined to a single quadrant as shown in Figure 2. For the size of
C we have

c| < D*3 40 (01/3 1ogD)

‘C‘ < |Ca17b1 ‘ + ‘Cﬂ2,b2| + |Ca3,b3‘ + |Ca47b4|

By Lemma 2 we can rewrite the inequality as

Cl< == ((a1+b1)*+(az+b2)* 2 +(az+b3) > +(as+b4)*/?)+0 (D]/310gD)
m
(16)
3 b
b, 8
<D
& b
b S V
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, <D e

Fig. 2. Partitions of S in quadrants.

The function f(z) = 2%/3 is concave on [0, oc). In particular for nonnegative
r1 and o,

2/3
w3m+$;m§2<£g;2> ,

Therefore, the equality in (16) becomes

‘ ‘ 2/3
|C|S 3;’)2 4<a1+b1+a2+b21-a3+b3+a4+b4> —|—O(D]/310gD)
V ™

Since a1 + by, az+ by, as + bz, and a4 + by are all smaller than or equal to D,
the inequality for |C| of the theorem holds.
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Fig.3.n=7,a=b=46 = 1®,(7) + 5. The dotted line is used for the convex-hull of
the set of lattice points in the ball of radius 46 in first quadrant. The solid lines show
the constructed hull C(7).

4 Constructing a large convex-hull with a given diameter

To investigate how tight the new value of ¢ in the upper bound for |C| is, we
revisit the proof of Lemma 2. We first describe how we can actually construct a
convex-hull C,y; from the set of slopes R,4p created in the proof for particular
a and b. More precisely, for every n, we construct a convex-hull C(n) in first
quadrant with a = b = %@ (n) + %, symmetric about the line y = z. As its set
of slopes, we take

C(n) connects the point (0,1®;(n) + 1) on the y-axis to (3&;(n) + 1,0) on

the z-axis and consists of @o(n) edges. We start with the point (0, $®;(n) + %)
as the first vertex, and if the i-th smallest fraction in R(n) is y;/z;, then we
place the next vertex on the hull z; units to the right and y; units down from
the current vertex. See Figure 4 for the n = 5 case.

Now consider the C(n) constructed as we described. If it includes a vertex
whose distance from the origin is larger than 3@ (n) + 3, then the diameter of
the set constructed by taking four copies of C(n) around the origin will have
diameter larger than D. That this is indeed the case can be seen from Figure
3, where the point farthest from the origin in our construction is not inside the
ball with radius 46. Thus the constant ¢ = 12/v/ 472 = 3.352.. in the upper
bound is not tight.

We next investigate how close we can come to this value. It follows by sym-
metry and convexity that the farthest vertex from the origin on C(n) constructed
is one of the endpoints of the edge with slope 1 on the hull as shown in Figure
4. Denote by h(n) the z-coordinate of this point, and by r(n) its distance from



the origin. By construction

n

h(n) = Y jxl(i,5) = 1x[i < j] JZX [(6,4) = 1]x[i +j < n] (17)

i+j<n =1 =l

where x is the indicator function of its argument, i.e., it is 1 if its argument
evaluates to true, and 0 otherwise.

10 -

5 10 15 %¢1(n)+%
Fig.4.n =5, a(n) =b(n) = +&:(5) + £ = 19.

We next show that h(n) ~ 2&;(n). Since intercepts of the hull are a(n) =
b(n) = 2&;(n) + % this implies h( ) ~ 2a(n), and we can calculate 7(n) by the
Pythagorean formula as

V2

r(n) ~

a(n). (18)

Theorem 4. Suppose h(n) is as defined in (17), and $1(n) as defined in The-
orem 2. Then h(n) = 2&1(n) + O(n?logn).

Proof. We will indicate the derivation of the asymptotic part and ignore the
calculation of the error terms. First we write h(n) = hi(n) + hao(n) where in
hi(n), the index j runs from 1 to n/2, and in hs, j runs from n/2+1 to n. Then

j
Z [(i,7) =1],

since for the indices in question ¢ < j and we automatically have i + j < n.
Therefore hy(n) = ®1(%). On the other hand, if j > n/2, then n — j < j and

_ Z jzx[(i,j) = 1)xli <n - )

i M“"



~ ]i J- ";Hb(]) ~n (450(71,) - @0(2)) _ (451(77/) - 5p1(g)) '

Using the expressions @ (n) ~ 3n?/n%, and & (n) ~ 2n?/x? from Theorem 2,
and adding the terms for hq(n) and ha(n), we obtain
1 3 1\ n® 3n® 3
W)~ (432 o4 )22 2
(n) (4 tomg Tt 4) ol S
as claimed.

Theorem 5. For D large, there exists a set of lattice points in the plane with
diameter D and convex-hull C such that

[2 .
C|~12 ¢ 5 D?/? = 3.388..D%/3.
71'

Proof. If we set a = b = % D where D is of the form & (n), and use the
construction for C(n), then r ~ D/2 by (18). By Lemma 2

3 4\ 2/3 sl 2 o3

Since identical convex-hulls are constructed in all four quadrants to obtain C

from C(n), the diameter of C is D and |C| ~ 4|C(n)|. This proves the claim of
the theorem when combined with (19).
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