
An Improved Upper Bound on the Size ofPlanar Convex-Hulls?Abdullah N. Arslan and �Omer E�geio�gluDepartment of Computer SieneUniversity of California, Santa BarbaraCA 93106, USAfarslan,omerg�s.usb.eduAbstrat. Let C be the onvex-hull of a set of points S with integraloordinates in the plane. It is well{known that jCj � D2=3 for some on-stant  where D is the diameter of S: i.e. the maximum distane betweenany pair of points in S. It has been shown that  = 7:559:: for an arbitraryS, and  = 3:496:: in the speial ase when S is a ball entered at theorigin in the plane. In this paper we show that  = 12= 3p 4�2 = 3:524::is suÆient for an arbitrary set of lattie points S of diameter D in theplane, and jCj � 12 3p2=(9�2) D2=3 = 3:388::D2=3 is ahieved asymp-totially. Our proof is based on the onstrution of a speial set in �rstquadrant, and the analysis of the result involves the alulation of theaverage order of ertain number-theoretial funtions assoiated with theEuler totient funtion �(n).1 IntrodutionA lattie point is a point with integral oordinates. Given a set S of lattie pointsin the plane, let C be the onvex-hull of S, and denote the number of extremepoints in C by jCj. The behavior of jCj as a funtion of parameters assoiatedwith S has been studied in various ontexts in omputational geometry, omputergraphis [10, 6, 9℄, and integer programming [1, 3, 5℄.Andrews' general theorem [1℄ on onvex bodies in d-dimensional spae impliesthat in the plane jCj is bounded byjCj � D2=3 (1)for some onstant , where D is the diameter of S: i.e. the maximum distanebetween any two points in S. Another proof of this bound for the plane wasgiven by Katz and Volper [9℄. The onstant  has also been studied. Balog andB�ar�any [2℄ showed that when S is the ball of radius r = D=2 entered at theorigin, i.e. S = rB2, then0:207::D2=3 � jCj � 3:496::D2=3:? Supported in part by NSF Grant No. CCR{9821038, and a UCSB-COR faultyresearh grant.



Therefore one an take  = 3:496:: in the speial ase when S is a ball of diameterD. A d-dimensional analysis for the ball appears in [4℄. Har-Peled [7℄ showedthat the value  = 6 3p2 = 7:559:: is suÆient for the bound (1) in the plane forarbitrary S.In this paper we investigate further the nature of the onstant  in (1) andshow that  = 12= 3p 4�2 = 3:524::suÆes for an arbitrary S of diameter D in the plane. Our proof is based on theonstrution of a speial set in �rst quadrant of the plane whih satis�es ertainonstraints. The onstrution involves seleting a set of frations in a partiularorder as slopes of the line segments of the onvex-hull. Based on the propertiesof the average order of ertain number-theoretial funtions assoiated with theEuler totient funtion �(n), we derive an upper bound on the size of the setonstruted. This leads to an improved value for . We also show that using theonstrution idea of the proof, we an always reate a onvex-hull C with a givendiameter D suh thatjCj � 12 3p2=(9�2) D2=3 = 3:388::D2=3 (2)is ahieved asymptotially.The organization of this paper is as follows. Setion 2 gives the number-theoretial bakground we require, and inludes the proof of the main theorem,whih we then use in Setion 3 for proving our result on the improved value of .In Setion 4, we onstrut large onvex-hulls with a given diameter proving (2).2 Number-theoretial de�nitions and resultsWe use the lassial book by Hardy and Wright [8℄ as our main referene for thede�nitions and basi results used in this setion. We denote by (r; s) the greatestommon divisor of r and s.� The Euler totient funtion �(n) ([8℄, p. 52) is de�ned as follows:1. �(1) = 12. for n > 1, �(n) is the number of positive integers less than n and rela-tively prime to n.� The M�obius funtion �(n) ([8℄, p. 234) is de�ned by1. �(1) = 1,2. �(n) = 0 if n has a square fator,3. �(p1p2 � � � pk) = (�1)k if all the primes p1; p2; : : : ; pk are di�erent.� The Riemann zeta funtion �(s) ([8℄, p. 245) is de�ned for s > 1 by�(s) = 1Xn=1 1ns :We use the following well-known results:



Lemma 1. �(n) =Xdjn nd�(d); (3)�(2)�1 = 1Xd=1 �(d)d2 = 6�2 : (4)Proof. The proof of (3) is in ([8℄, p. 235). The proof of (4) an be found in ([8℄,Thm. 287, p. 250; Thm. 293, p. 251).Let �0(n) = �(1) + �(2) + � � �+ �(n). It is known in relation to Farey frations([8℄, Thm. 330, p. 268) that�0(n) = 3n2�2 +O(n logn); (5)so that the average order (([8℄, p. 263) of the funtion �(n) is given by (5).Theorem 1 below gives an expression for the average order of the funtion nr�(n)for r � 0, generalizing (5).Theorem 1. For any integer r � 0�r(n) = 1r ��(1)+2r ��(2)+� � �+nr ��(n) = 6(r + 2)�2 nr+2+O(nr+1 logn) : (6)Proof. By (3) of lemma 1 we have�r(n) = nXm=1mr�(m) = nXm=1mrXdjm md �(d) = nXm=1 Xdd0=mmrd0�(d)= nXm=1 Xdd0=m dr(d0)r+1�(d) = Xdd0�n dr(d0)r+1�(d) = nXd=1 dr�(d) bn=dXd0=1 (d0)r+1Using the fat that nXk=1 kr+1 = nr+2r + 2 +O(nr+1);we get bn=dXd0=1 (d0)r+1 = 1r + 2 �nd�r+2 +O�nr+1dr+1� :Therefore�r(n) = nr+2r + 2 nXd=1 �(d)d2 +O nr+1 nXd=1 1d!= nr+2r + 2 1Xd=1 �(d)d2 +O nr+2 1Xd=n+1 1d2!+O �nr+1 logn�= nr+2r + 2�(2)�1 +O(nr+1) +O(nr+1 logn) ;



and the theorem follows from the last equality and (4) of lemma 1.We need the following result relating �0(n) and �1(n) as a step in our studyof jCj .Theorem 2. Let �0(n) = �(1) + �(2) + � � �+ �(n);�1(n) = 1 � �(1) + 2 � �(2) + � � �+ n � �(n):Then �0(n) � 33p 4�2 �1(n)2=3 = 0:8810516::�1(n)2=3: (7)Proof. The theorem follows by ombining the expressions for �0(n) and �1(n)obtained as the ases r = 0, and r = 1 of theorem 1.We note that also the magnitude of the error term in (7) an be alulatedby using the full expressions for �0(n) and �1(n) obtained. This gives�0(n) = 33p 4�2 �1(n)2=3 +O ��1(n)1=3 log�1(n)� :We omit the details of this alulation.3 An improved upper boundWe �rst establish an upper bound on the size of the onvex-hull of lattie pointsin �rst quadrant of the plane in the following lemma.Lemma 2. Let Sa;b be a set of lattie points in �rst quadrant of the xy-planeenlosed by y = a and x = b. For the onvex-hull Ca;b of Sa;b, there holdsjCa;bj � 33p 4�2 (a+ b)2=3 +O �(a+ b)1=3 log (a+ b)�Proof. Without loss of generality, Sa;b inludes the points (0; a) and (b; 0) andboth a and b are positive integers (Figure 1). Instead of the point-set Ca;b we on-sider the orresponding set of slopes Ra;b of the line segments (edges) onnetingthe onseutive extreme points of the onvex-hull. Clearly, jCa;bj = jRa;bj+1, sowe an alternately study the properties of the set Ra;b. By onvexity, the slopesof the edges of the onvex-hull are all di�erent. Furthermore Sa;b is a set oflattie points, and therefore the slopes of the non-vertial edges are all rationalnumbers.Let R�a+b be an optimal set for the following problem: maximize jRj subjetto Xyx2R y + Xyx2Rx = Xyx2R y + x � a+ b (8)Clearly, for any a and b, jRa;bj � jR�a+bj. We will �nd a bound for jR�a+bj .Let Qi for i � 0 be the set of slopes de�ned as follows:
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xFig. 1. A set of lattie points Sa;b in �rst quadrant.1. Q0 = ;,2. Q1 = � 01 ; 10	. We assume that the fration 10 is de�ned as a slope and itrepresents the vertial edge whose length is one unit.3. For i > 1, Qi = � yx j y + x = i and (y; x) = 1	.Table 1 illustrates the �rst few valuesQi, �(i), �0(i), and �1(i). The followingproperties an easily be seen for i > 1:jQij = �(i) (9)Xyx2Qi y + x = i jQij (10)Let n + 1 be the smallest number suh that Pn+1i=1 ijQij > a + b, and Q0n+1 bean arbitrary subset of Qn+1 suh thatjQ0n+1j = � (a+ b)�Pni=1 ijQijn+ 1 �Then onsider the following setRa+b =  n[i=1Qi! [ Q0n+1: (11)We laim that Ra+b is a maximal set whih satis�es the onstraint (8). Theexpression (11) desribes a greedy onstrution : To inlude in set Ra+b, seleta fration whose numerator-denominator sum is the smallest. Continue inlud-ing frations until the sum of all the numerators and the denominators of thefrations urrently in the set exeeds a + b . Sine Ra+b is a set, no frationan be inluded in the set more than one, and sine the slopes are all di�erent,among the equivalent frations, the irreduible one has the smallest numerator-denominator sum. This explains why only the relatively prime numbers are tobe onsidered in the onstrution.



i Qi �(i) �0(i) �1(i)1 f 01 ; 10g 1 1 12 f 11g 1 2 33 f 12 ; 21g 2 4 94 f 13 ; 31g 2 6 175 f 14 ; 23 ; 32 ; 41g 4 10 376 f 15 ; 51g 2 12 497 f 16 ; 25 ; 34 ; 43 ; 52 ; 61g 6 18 91Table 1. Table of Qi, �(i), �0(i), and �1(i) for i = 1; 2; : : : ; 7.>From (11) we have n[i=1Qi � Ra+b � n+1[i=1 Qi (12)Using (12) and (9) we �nd thatnXi=1 �(i) + 1 � jRa+bj � n+1Xi=1 �(i) + 1 (13)Again using (12) and (9) together with the expression (10), and using the fatthat by onstrution n+ 1 is the smallest number suh that Pn+1i=1 ijQij > a+ bwe get nXi=1 i�(i) + 1 � a+ b � n+1Xi=1 i�(i) + 1 (14)We note that �(n + 1) = O(�1(n)1=3) using the expression �1(n) obtainedfrom (6) with r = 1. Therefore we an write the following upper bound for jRa+bjusing (13):jRa+bj = nXi=1 �(i) + O ��1(n)1=3� = �0(n) +O ��1(n)1=3�Furthermore from Theorem 2jRa+bj = 33p 4�2 �1(n)2=3 +O ��1(n)1=3 log�1(n)�+O ��1(n)1=3� ; (15)and from (14) we obtain that �1(n) � a+ b. ThereforejRa+bj = 33p 4�2 (a+ b)2=3 +O �(a+ b)1=3 log (a+ b)�whih proves the bound for jCa;bj of the lemma.



Theorem 3. For the onvex-hull C of a set S of lattie points of diameter D inthe plane, there holdsjCj � 123p 4�2 D2=3 +O �D1=3 logD�Proof. S an be enlosed by an axis-parallel retangle whose sides are at mostD in length. Using this retangle, we an partition S into four parts suh thateah part is on�ned to a single quadrant as shown in Figure 2. For the size ofC we have jCj � jCa1;b1 j+ jCa2;b2 j+ jCa3;b3 j+ jCa4;b4 jBy Lemma 2 we an rewrite the inequality asjCj � 33p 4�2 ((a1+b1)2=3+(a2+b2)2=3+(a3+b3)2=3+(a4+b4)2=3)+O �D1=3 logD�(16)
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Fig. 2. Partitions of S in quadrants.The funtion f(x) = x2=3 is onave on [0;1). In partiular for nonnegativex1 and x2, x12=3 + x22=3 � 2�x1 + x22 �2=3 :Therefore, the equality in (16) beomesjCj � 33p 4�2 4�a1 + b1 + a2 + b2 + a3 + b3 + a4 + b44 �2=3 + O �D1=3 logD�Sine a1 + b2, a3 + b4, a2 + b3, and a4 + b1 are all smaller than or equal to D,the inequality for jCj of the theorem holds.
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Fig. 3. n = 7, a = b = 46 = 12�1(7) + 12 . The dotted line is used for the onvex-hull ofthe set of lattie points in the ball of radius 46 in �rst quadrant. The solid lines showthe onstruted hull C(7).4 Construting a large onvex-hull with a given diameterTo investigate how tight the new value of  in the upper bound for jCj is, werevisit the proof of Lemma 2. We �rst desribe how we an atually onstrut aonvex-hull Ca+b from the set of slopes Ra+b reated in the proof for partiulara and b. More preisely, for every n, we onstrut a onvex-hull C(n) in �rstquadrant with a = b = 12�1(n) + 12 , symmetri about the line y = x. As its setof slopes, we take R(n) = n[i=1Qi:C(n) onnets the point (0; 12�1(n) + 12 ) on the y-axis to ( 12�1(n) + 12 ; 0) onthe x-axis and onsists of �0(n) edges. We start with the point (0; 12�1(n) + 12 )as the �rst vertex, and if the i-th smallest fration in R(n) is yi=xi, then weplae the next vertex on the hull xi units to the right and yi units down fromthe urrent vertex. See Figure 4 for the n = 5 ase.Now onsider the C(n) onstruted as we desribed. If it inludes a vertexwhose distane from the origin is larger than 12�1(n) + 12 , then the diameter ofthe set onstruted by taking four opies of C(n) around the origin will havediameter larger than D. That this is indeed the ase an be seen from Figure3, where the point farthest from the origin in our onstrution is not inside theball with radius 46. Thus the onstant  = 12= 3p 4�2 = 3:352:: in the upperbound is not tight.We next investigate how lose we an ome to this value. It follows by sym-metry and onvexity that the farthest vertex from the origin on C(n) onstrutedis one of the endpoints of the edge with slope 1 on the hull as shown in Figure4. Denote by h(n) the x-oordinate of this point, and by r(n) its distane from



the origin. By onstrutionh(n) = Xi+j�n j�[(i; j) = 1℄�[i � j℄ = nXj=1 j jXi=1 �[(i; j) = 1℄�[i+ j � n℄ (17)where � is the indiator funtion of its argument, i.e., it is 1 if its argumentevaluates to true, and 0 otherwise.
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Fig. 4. n = 5, a(n) = b(n) = 12�1(5) + 12 = 19.We next show that h(n) � 38�1(n): Sine interepts of the hull are a(n) =b(n) = 12�1(n) + 12 this implies h(n) � 34a(n); and we an alulate r(n) by thePythagorean formula as r(n) � 3p24 a(n): (18)Theorem 4. Suppose h(n) is as de�ned in (17), and �1(n) as de�ned in The-orem 2. Then h(n) = 38�1(n) +O(n2 logn).Proof. We will indiate the derivation of the asymptoti part and ignore thealulation of the error terms. First we write h(n) = h1(n) + h2(n) where inh1(n), the index j runs from 1 to n=2, and in h2, j runs from n=2+1 to n. Thenh1(n) = n2Xj=1 j jXi=1 �[(i; j) = 1℄;sine for the indies in question i � j and we automatially have i + j � n.Therefore h1(n) = �1(n2 ). On the other hand, if j � n=2, then n� j � j andh2(n) = nXj=n2 j jXi=1 �[(i; j) = 1℄�[i � n� j℄



� nXj=n2 j � n� jj �(j) � n��0(n)� �0(n2 )�� ��1(n)� �1(n2 )� :Using the expressions �0(n) � 3n2=�2, and �1(n) � 2n3=�2 from Theorem 2,and adding the terms for h1(n) and h2(n), we obtainh(n) � �14 + 3� 34 � 2 + 14� n3�2 = 3n34�2 � 38�1(n)as laimed.Theorem 5. For D large, there exists a set of lattie points in the plane withdiameter D and onvex-hull C suh thatjCj � 12 3r 29�2 D2=3 = 3:388::D2=3:Proof. If we set a = b = 23p2 D where D is of the form �1(n), and use theonstrution for C(n), then r � D=2 by (18). By Lemma 2jC(n)j � 33p 4�2 � 43p2�2=3D2=3 = 3 3r 29�2D2=3: (19)Sine idential onvex-hulls are onstruted in all four quadrants to obtain Cfrom C(n), the diameter of C is D and jCj � 4jC(n)j. This proves the laim ofthe theorem when ombined with (19).Referenes1. George E. Andrews. An asymptoti expression for the number of solutions of ageneral lass of diophantine equations. Transations of the AMS 99:272{277, May1961.2. B. Balog and I. B�ar�any. On the onvex hull of integer points in a dis. DIMACSSeries, Disrete and Computational Geometry, 6:39{44, 1991.3. I. B�ar�any, R. Howe, and L. Lovasz. On integer points in polyhedra: a lower bound.Combinatoria, 12:135{142, 1992.4. I. B�ar�any and David G. Larman. The onvex hull of integer points in a large ball.Math. Ann., 312:167{181, 1998.5. W. Cook, M. Hartman, R. Kannan, and C. MDiarmid. On integer points inpolyhedra. Combinatoria, 12:27{37, 1992.6. A. Efrat and C. Gotsman. Subpixel image registration using irular �duials.Internat. J. Comput. Geom. Appl., 4(4):403{422, 1994.7. S. Har-Peled. An output sensitive algorithm for disrete onvex hulls. Computa-tional Geometry, 10:125{138, 1998.8. G. H. Hardy and E. M. Wright. An introdution to the theory of numbers. OxfordUniversity Press, April 1980.9. M. D. Katz and D. J. Volper. Data strutures for retrieval on square grids. SIAMJ. Comput., 15(4):919{931, November 1986.10. A. M. Vershik. On the number of onvex lattie polytopes. Geometry and Fun-tional Analysis, 2:381{393, 1992.


