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ien
eUniversity of California, Santa BarbaraCA 93106, USAfarslan,omerg�
s.u
sb.eduAbstra
t. Let C be the 
onvex-hull of a set of points S with integral
oordinates in the plane. It is well{known that jCj � 
D2=3 for some 
on-stant 
 where D is the diameter of S: i.e. the maximum distan
e betweenany pair of points in S. It has been shown that 
 = 7:559:: for an arbitraryS, and 
 = 3:496:: in the spe
ial 
ase when S is a ball 
entered at theorigin in the plane. In this paper we show that 
 = 12= 3p 4�2 = 3:524::is suÆ
ient for an arbitrary set of latti
e points S of diameter D in theplane, and jCj � 12 3p2=(9�2) D2=3 = 3:388::D2=3 is a
hieved asymp-toti
ally. Our proof is based on the 
onstru
tion of a spe
ial set in �rstquadrant, and the analysis of the result involves the 
al
ulation of theaverage order of 
ertain number-theoreti
al fun
tions asso
iated with theEuler totient fun
tion �(n).1 Introdu
tionA latti
e point is a point with integral 
oordinates. Given a set S of latti
e pointsin the plane, let C be the 
onvex-hull of S, and denote the number of extremepoints in C by jCj. The behavior of jCj as a fun
tion of parameters asso
iatedwith S has been studied in various 
ontexts in 
omputational geometry, 
omputergraphi
s [10, 6, 9℄, and integer programming [1, 3, 5℄.Andrews' general theorem [1℄ on 
onvex bodies in d-dimensional spa
e impliesthat in the plane jCj is bounded byjCj � 
D2=3 (1)for some 
onstant 
, where D is the diameter of S: i.e. the maximum distan
ebetween any two points in S. Another proof of this bound for the plane wasgiven by Katz and Volper [9℄. The 
onstant 
 has also been studied. Balog andB�ar�any [2℄ showed that when S is the ball of radius r = D=2 
entered at theorigin, i.e. S = rB2, then0:207::D2=3 � jCj � 3:496::D2=3:? Supported in part by NSF Grant No. CCR{9821038, and a UCSB-COR fa
ultyresear
h grant.



Therefore one 
an take 
 = 3:496:: in the spe
ial 
ase when S is a ball of diameterD. A d-dimensional analysis for the ball appears in [4℄. Har-Peled [7℄ showedthat the value 
 = 6 3p2 = 7:559:: is suÆ
ient for the bound (1) in the plane forarbitrary S.In this paper we investigate further the nature of the 
onstant 
 in (1) andshow that 
 = 12= 3p 4�2 = 3:524::suÆ
es for an arbitrary S of diameter D in the plane. Our proof is based on the
onstru
tion of a spe
ial set in �rst quadrant of the plane whi
h satis�es 
ertain
onstraints. The 
onstru
tion involves sele
ting a set of fra
tions in a parti
ularorder as slopes of the line segments of the 
onvex-hull. Based on the propertiesof the average order of 
ertain number-theoreti
al fun
tions asso
iated with theEuler totient fun
tion �(n), we derive an upper bound on the size of the set
onstru
ted. This leads to an improved value for 
. We also show that using the
onstru
tion idea of the proof, we 
an always 
reate a 
onvex-hull C with a givendiameter D su
h thatjCj � 12 3p2=(9�2) D2=3 = 3:388::D2=3 (2)is a
hieved asymptoti
ally.The organization of this paper is as follows. Se
tion 2 gives the number-theoreti
al ba
kground we require, and in
ludes the proof of the main theorem,whi
h we then use in Se
tion 3 for proving our result on the improved value of 
.In Se
tion 4, we 
onstru
t large 
onvex-hulls with a given diameter proving (2).2 Number-theoreti
al de�nitions and resultsWe use the 
lassi
al book by Hardy and Wright [8℄ as our main referen
e for thede�nitions and basi
 results used in this se
tion. We denote by (r; s) the greatest
ommon divisor of r and s.� The Euler totient fun
tion �(n) ([8℄, p. 52) is de�ned as follows:1. �(1) = 12. for n > 1, �(n) is the number of positive integers less than n and rela-tively prime to n.� The M�obius fun
tion �(n) ([8℄, p. 234) is de�ned by1. �(1) = 1,2. �(n) = 0 if n has a square fa
tor,3. �(p1p2 � � � pk) = (�1)k if all the primes p1; p2; : : : ; pk are di�erent.� The Riemann zeta fun
tion �(s) ([8℄, p. 245) is de�ned for s > 1 by�(s) = 1Xn=1 1ns :We use the following well-known results:



Lemma 1. �(n) =Xdjn nd�(d); (3)�(2)�1 = 1Xd=1 �(d)d2 = 6�2 : (4)Proof. The proof of (3) is in ([8℄, p. 235). The proof of (4) 
an be found in ([8℄,Thm. 287, p. 250; Thm. 293, p. 251).Let �0(n) = �(1) + �(2) + � � �+ �(n). It is known in relation to Farey fra
tions([8℄, Thm. 330, p. 268) that�0(n) = 3n2�2 +O(n logn); (5)so that the average order (([8℄, p. 263) of the fun
tion �(n) is given by (5).Theorem 1 below gives an expression for the average order of the fun
tion nr�(n)for r � 0, generalizing (5).Theorem 1. For any integer r � 0�r(n) = 1r ��(1)+2r ��(2)+� � �+nr ��(n) = 6(r + 2)�2 nr+2+O(nr+1 logn) : (6)Proof. By (3) of lemma 1 we have�r(n) = nXm=1mr�(m) = nXm=1mrXdjm md �(d) = nXm=1 Xdd0=mmrd0�(d)= nXm=1 Xdd0=m dr(d0)r+1�(d) = Xdd0�n dr(d0)r+1�(d) = nXd=1 dr�(d) bn=d
Xd0=1 (d0)r+1Using the fa
t that nXk=1 kr+1 = nr+2r + 2 +O(nr+1);we get bn=d
Xd0=1 (d0)r+1 = 1r + 2 �nd�r+2 +O�nr+1dr+1� :Therefore�r(n) = nr+2r + 2 nXd=1 �(d)d2 +O nr+1 nXd=1 1d!= nr+2r + 2 1Xd=1 �(d)d2 +O nr+2 1Xd=n+1 1d2!+O �nr+1 logn�= nr+2r + 2�(2)�1 +O(nr+1) +O(nr+1 logn) ;



and the theorem follows from the last equality and (4) of lemma 1.We need the following result relating �0(n) and �1(n) as a step in our studyof jCj .Theorem 2. Let �0(n) = �(1) + �(2) + � � �+ �(n);�1(n) = 1 � �(1) + 2 � �(2) + � � �+ n � �(n):Then �0(n) � 33p 4�2 �1(n)2=3 = 0:8810516::�1(n)2=3: (7)Proof. The theorem follows by 
ombining the expressions for �0(n) and �1(n)obtained as the 
ases r = 0, and r = 1 of theorem 1.We note that also the magnitude of the error term in (7) 
an be 
al
ulatedby using the full expressions for �0(n) and �1(n) obtained. This gives�0(n) = 33p 4�2 �1(n)2=3 +O ��1(n)1=3 log�1(n)� :We omit the details of this 
al
ulation.3 An improved upper boundWe �rst establish an upper bound on the size of the 
onvex-hull of latti
e pointsin �rst quadrant of the plane in the following lemma.Lemma 2. Let Sa;b be a set of latti
e points in �rst quadrant of the xy-planeen
losed by y = a and x = b. For the 
onvex-hull Ca;b of Sa;b, there holdsjCa;bj � 33p 4�2 (a+ b)2=3 +O �(a+ b)1=3 log (a+ b)�Proof. Without loss of generality, Sa;b in
ludes the points (0; a) and (b; 0) andboth a and b are positive integers (Figure 1). Instead of the point-set Ca;b we 
on-sider the 
orresponding set of slopes Ra;b of the line segments (edges) 
onne
tingthe 
onse
utive extreme points of the 
onvex-hull. Clearly, jCa;bj = jRa;bj+1, sowe 
an alternately study the properties of the set Ra;b. By 
onvexity, the slopesof the edges of the 
onvex-hull are all di�erent. Furthermore Sa;b is a set oflatti
e points, and therefore the slopes of the non-verti
al edges are all rationalnumbers.Let R�a+b be an optimal set for the following problem: maximize jRj subje
tto Xyx2R y + Xyx2Rx = Xyx2R y + x � a+ b (8)Clearly, for any a and b, jRa;bj � jR�a+bj. We will �nd a bound for jR�a+bj .Let Qi for i � 0 be the set of slopes de�ned as follows:
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xFig. 1. A set of latti
e points Sa;b in �rst quadrant.1. Q0 = ;,2. Q1 = � 01 ; 10	. We assume that the fra
tion 10 is de�ned as a slope and itrepresents the verti
al edge whose length is one unit.3. For i > 1, Qi = � yx j y + x = i and (y; x) = 1	.Table 1 illustrates the �rst few valuesQi, �(i), �0(i), and �1(i). The followingproperties 
an easily be seen for i > 1:jQij = �(i) (9)Xyx2Qi y + x = i jQij (10)Let n + 1 be the smallest number su
h that Pn+1i=1 ijQij > a + b, and Q0n+1 bean arbitrary subset of Qn+1 su
h thatjQ0n+1j = � (a+ b)�Pni=1 ijQijn+ 1 �Then 
onsider the following setRa+b =  n[i=1Qi! [ Q0n+1: (11)We 
laim that Ra+b is a maximal set whi
h satis�es the 
onstraint (8). Theexpression (11) des
ribes a greedy 
onstru
tion : To in
lude in set Ra+b, sele
ta fra
tion whose numerator-denominator sum is the smallest. Continue in
lud-ing fra
tions until the sum of all the numerators and the denominators of thefra
tions 
urrently in the set ex
eeds a + b . Sin
e Ra+b is a set, no fra
tion
an be in
luded in the set more than on
e, and sin
e the slopes are all di�erent,among the equivalent fra
tions, the irredu
ible one has the smallest numerator-denominator sum. This explains why only the relatively prime numbers are tobe 
onsidered in the 
onstru
tion.



i Qi �(i) �0(i) �1(i)1 f 01 ; 10g 1 1 12 f 11g 1 2 33 f 12 ; 21g 2 4 94 f 13 ; 31g 2 6 175 f 14 ; 23 ; 32 ; 41g 4 10 376 f 15 ; 51g 2 12 497 f 16 ; 25 ; 34 ; 43 ; 52 ; 61g 6 18 91Table 1. Table of Qi, �(i), �0(i), and �1(i) for i = 1; 2; : : : ; 7.>From (11) we have n[i=1Qi � Ra+b � n+1[i=1 Qi (12)Using (12) and (9) we �nd thatnXi=1 �(i) + 1 � jRa+bj � n+1Xi=1 �(i) + 1 (13)Again using (12) and (9) together with the expression (10), and using the fa
tthat by 
onstru
tion n+ 1 is the smallest number su
h that Pn+1i=1 ijQij > a+ bwe get nXi=1 i�(i) + 1 � a+ b � n+1Xi=1 i�(i) + 1 (14)We note that �(n + 1) = O(�1(n)1=3) using the expression �1(n) obtainedfrom (6) with r = 1. Therefore we 
an write the following upper bound for jRa+bjusing (13):jRa+bj = nXi=1 �(i) + O ��1(n)1=3� = �0(n) +O ��1(n)1=3�Furthermore from Theorem 2jRa+bj = 33p 4�2 �1(n)2=3 +O ��1(n)1=3 log�1(n)�+O ��1(n)1=3� ; (15)and from (14) we obtain that �1(n) � a+ b. ThereforejRa+bj = 33p 4�2 (a+ b)2=3 +O �(a+ b)1=3 log (a+ b)�whi
h proves the bound for jCa;bj of the lemma.



Theorem 3. For the 
onvex-hull C of a set S of latti
e points of diameter D inthe plane, there holdsjCj � 123p 4�2 D2=3 +O �D1=3 logD�Proof. S 
an be en
losed by an axis-parallel re
tangle whose sides are at mostD in length. Using this re
tangle, we 
an partition S into four parts su
h thatea
h part is 
on�ned to a single quadrant as shown in Figure 2. For the size ofC we have jCj � jCa1;b1 j+ jCa2;b2 j+ jCa3;b3 j+ jCa4;b4 jBy Lemma 2 we 
an rewrite the inequality asjCj � 33p 4�2 ((a1+b1)2=3+(a2+b2)2=3+(a3+b3)2=3+(a4+b4)2=3)+O �D1=3 logD�(16)
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Fig. 2. Partitions of S in quadrants.The fun
tion f(x) = x2=3 is 
on
ave on [0;1). In parti
ular for nonnegativex1 and x2, x12=3 + x22=3 � 2�x1 + x22 �2=3 :Therefore, the equality in (16) be
omesjCj � 33p 4�2 4�a1 + b1 + a2 + b2 + a3 + b3 + a4 + b44 �2=3 + O �D1=3 logD�Sin
e a1 + b2, a3 + b4, a2 + b3, and a4 + b1 are all smaller than or equal to D,the inequality for jCj of the theorem holds.
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Fig. 3. n = 7, a = b = 46 = 12�1(7) + 12 . The dotted line is used for the 
onvex-hull ofthe set of latti
e points in the ball of radius 46 in �rst quadrant. The solid lines showthe 
onstru
ted hull C(7).4 Constru
ting a large 
onvex-hull with a given diameterTo investigate how tight the new value of 
 in the upper bound for jCj is, werevisit the proof of Lemma 2. We �rst des
ribe how we 
an a
tually 
onstru
t a
onvex-hull Ca+b from the set of slopes Ra+b 
reated in the proof for parti
ulara and b. More pre
isely, for every n, we 
onstru
t a 
onvex-hull C(n) in �rstquadrant with a = b = 12�1(n) + 12 , symmetri
 about the line y = x. As its setof slopes, we take R(n) = n[i=1Qi:C(n) 
onne
ts the point (0; 12�1(n) + 12 ) on the y-axis to ( 12�1(n) + 12 ; 0) onthe x-axis and 
onsists of �0(n) edges. We start with the point (0; 12�1(n) + 12 )as the �rst vertex, and if the i-th smallest fra
tion in R(n) is yi=xi, then wepla
e the next vertex on the hull xi units to the right and yi units down fromthe 
urrent vertex. See Figure 4 for the n = 5 
ase.Now 
onsider the C(n) 
onstru
ted as we des
ribed. If it in
ludes a vertexwhose distan
e from the origin is larger than 12�1(n) + 12 , then the diameter ofthe set 
onstru
ted by taking four 
opies of C(n) around the origin will havediameter larger than D. That this is indeed the 
ase 
an be seen from Figure3, where the point farthest from the origin in our 
onstru
tion is not inside theball with radius 46. Thus the 
onstant 
 = 12= 3p 4�2 = 3:352:: in the upperbound is not tight.We next investigate how 
lose we 
an 
ome to this value. It follows by sym-metry and 
onvexity that the farthest vertex from the origin on C(n) 
onstru
tedis one of the endpoints of the edge with slope 1 on the hull as shown in Figure4. Denote by h(n) the x-
oordinate of this point, and by r(n) its distan
e from



the origin. By 
onstru
tionh(n) = Xi+j�n j�[(i; j) = 1℄�[i � j℄ = nXj=1 j jXi=1 �[(i; j) = 1℄�[i+ j � n℄ (17)where � is the indi
ator fun
tion of its argument, i.e., it is 1 if its argumentevaluates to true, and 0 otherwise.
+Φ1 (n)1

2
1
2

+Φ1 (n)1
2

1
2

5

5 15

15

10

10

h

r

x
y

i
i

Fig. 4. n = 5, a(n) = b(n) = 12�1(5) + 12 = 19.We next show that h(n) � 38�1(n): Sin
e inter
epts of the hull are a(n) =b(n) = 12�1(n) + 12 this implies h(n) � 34a(n); and we 
an 
al
ulate r(n) by thePythagorean formula as r(n) � 3p24 a(n): (18)Theorem 4. Suppose h(n) is as de�ned in (17), and �1(n) as de�ned in The-orem 2. Then h(n) = 38�1(n) +O(n2 logn).Proof. We will indi
ate the derivation of the asymptoti
 part and ignore the
al
ulation of the error terms. First we write h(n) = h1(n) + h2(n) where inh1(n), the index j runs from 1 to n=2, and in h2, j runs from n=2+1 to n. Thenh1(n) = n2Xj=1 j jXi=1 �[(i; j) = 1℄;sin
e for the indi
es in question i � j and we automati
ally have i + j � n.Therefore h1(n) = �1(n2 ). On the other hand, if j � n=2, then n� j � j andh2(n) = nXj=n2 j jXi=1 �[(i; j) = 1℄�[i � n� j℄



� nXj=n2 j � n� jj �(j) � n��0(n)� �0(n2 )�� ��1(n)� �1(n2 )� :Using the expressions �0(n) � 3n2=�2, and �1(n) � 2n3=�2 from Theorem 2,and adding the terms for h1(n) and h2(n), we obtainh(n) � �14 + 3� 34 � 2 + 14� n3�2 = 3n34�2 � 38�1(n)as 
laimed.Theorem 5. For D large, there exists a set of latti
e points in the plane withdiameter D and 
onvex-hull C su
h thatjCj � 12 3r 29�2 D2=3 = 3:388::D2=3:Proof. If we set a = b = 23p2 D where D is of the form �1(n), and use the
onstru
tion for C(n), then r � D=2 by (18). By Lemma 2jC(n)j � 33p 4�2 � 43p2�2=3D2=3 = 3 3r 29�2D2=3: (19)Sin
e identi
al 
onvex-hulls are 
onstru
ted in all four quadrants to obtain Cfrom C(n), the diameter of C is D and jCj � 4jC(n)j. This proves the 
laim ofthe theorem when 
ombined with (19).Referen
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