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Given a set P with n points in R li, its diameter d, is the maximum of the Euclidean distances between its points. We 

describe an algorithm that in m < n iterations obtains r, < rs < . . < r,,, < d,, < min( fir,, d-r,,, ). For k fixed, the 

cost of each iteration is O(n). In particular, the first approximation r, is within fi of dp, independent of the dimension k. 
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1. Introduction 

Given a set P with n points in Rk, its diameter 
d, is the maximum of the Euclidean distances 
between its points. For k = 2, the diameter can be 
calculated in O(n log n) time. For the algorithm, 
as well as other interesting properties of this prob- 
lem see [3]. For general k > 2, the best known 
algorithm has complexity 

Ob ‘-“‘k’(log n)‘-@)), 

where a(k) = 2- (kc1), due to Yao [4]. A fast 
randomized algorithm for finding diameters in R3 
appears in [2]. It may be of interest to find fast 
approximations to the diameter of P in arbitrary 
dimension. The notion of approximation in com- 
putational geometry is not new, e.g., see [l] for 
approximation of the convex hull of points. 

If R is the tightest rectangle with respect to the 
coordinate axes that contains P and I its largest 
side, then it is easy to show that Ii d, Q &I. For 
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k fixed, I may be obtained in O(n) time. How- 
ever, this upper bound is not satisfactory, since it 
depends on the dimension k. 

2. 

P 

Approximation of the diameter 

For a given p E Iw k, let F( p, P) be a point in 
that is farthest from p. Let d denote the 

Euclidean distance function. Starting with an arbi- 
trary point p E P consider the following simple 
algorithm for the approximation of d,. 

Algorithm A 
Step 1: Let q = F( p, P) and fP = d(p, q). 

Step 2: Let q’= F(q, P) and r,=d(q, q’). 

2.1. Theorem. rq d d, < fir,. 

Proof. We only need to show that d, G fir,. For 
agiven y~tR~ and ra0, let S(y. r)={x~R~: 
d(x, y) G r }. Note that we immediately have d, 

d 2fq. To prove the tighter bound, we estimate 
the diameter of S( p, Q,) n S(q, rq), that is, 
max(d(x, u): x, y E S( P, rp) n S(q, r,)}. Let p’ 
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Fig. 1. 

=q+(r,/r,)(p-q). Note that rqa.rp. If -YE Let g(xi) = min{l - (xi + 4)‘. 1 - (xi - $)l}. 

S( p, rp), then Then the previous problem is equivalent to 

d(x, p’)<d(x, p)+d(p. p’)<r,+(r,-r/J. 

Thus. x E S( p’, r4) (see Fig. 1). 
We show that the diameter of S( p’, r4) n 

~(q, rq) equals fir,. Without loss of generality, 
we may assume r4=1, p’=(- i,...,O>, and q= 
(i..... 0). The calculation of the diameter of 
S( p’, 1) n S(q, 1) may be cast as the following 
nonlinear optimization problem: 

(PI): max d(x, y) s.t. 

(x*+f)2+Xf+ *** +x; < 1, 

(x1 - i)’ + x; + . . * +x,z Q 1, 

( y, + $)’ +_$ + * *. +y;:k2 1, 

(y, - $)’ +y; + * * * +yk’ < 1, 

where x = (x,, x2,. . . , xk) and y = (_Y,, y2, 
. . . . y ). Note that if x is feasible, so is -x. By _ /& 

the triangle inequality, it suffices to consider the 
following equivalent problem: 

max 2d(x, JJ) s.t. 

(x,++)2+x:+ *** +x,z < 1, 

(xI-j)2+x:+ ll*+x,z<l. 

max 2/x: + g( x,) s.t. 

-:<x*<+. 

The optimal value of the above is attained at 0 
andisfi. q 

The bound of Theorem 2.1 is also tight for each 
k 2 2, as may be seen from Fig. 2. The figure also 
implies that no improvement is possible if one 
repeats Algorithm A, starting with q. This remains 
true even if one repeats the algorithm with a point 
different than both p and q, e.g., consider the 
case where many copies of p and q exist. 

In what follows we describe Algorithm B, which 
either improves the lower bound or guarantees a 
tighter upper bound to d,. Initially, the algorithm 
applies Algorithm A. starting with an arbitrary 
point p E P, obtaining the estimate r4. It then 
removes p and q from P and applies Algorithm 
A with the center of the line segment joining q 
and p’ as the new starting point. Algorithm B 
terminates if the new estimate does not improve or 
if at most one point remains. Otherwise, the pro- 
cess is repeated. More formally the algorithm is as 
follows. 
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Algorithm B 

Step 0: Let P, = P. Select p, E P. Let q, = 

F(p,. PI), q,‘= F(q,, PI). pl = d(p17 ql)* and rl 
= d(q,, 4;). Set j = 1. 

Stepl: Let p/+, = p, - ( P/Y 4,). If I p,+, I =G L 

stop. Otherwise, let 

and ~,+~=i(~;+q,). Let q,+l=fl~,+l. P,,,). 
(l,‘+, = Qqjcl. P,+,h P,+~ = ~CP,+~, q,+,) and 
r,+, = m,+,+ 4;cl). 

Step 2: If q+, G 5, stop. Otherwise, j =j + 1, 
go to Step 1. 

Assume that the above algorithm terminates for 
j = m. Clearly, m G n. Also note that if 1 P,,,+, 1 < 
1, we have computed r,,, = dp in O(n) iterations. 
Since each iteration requires O(n) steps, in this 
case Algorithm B computes the actual diameter in 
O(n’) time, which is no worse than the time 
complexity of the pedestrian algorithm of com- 
puting the distance between every pair of points in 
P. 

2.2. Lemma. r,,, G d,. 

Proof. We need to show that for j = 2,. . . , m, 
p, E H(P). where H(P) is the convex hull of P. 
This, together with the fact that P and H(P) have 
the same diameter, implies the result. By induc- 
tion, we only need to prove this for j = 2. Note 
that pz = alp1 + a2ql, where (Y, = fr,/p, and (Ye 

= 1 -a,. Since r, d 2p,, it follows that pz is a 
convex combination of p, and q,. 0 

Next we obtain an upper bound to d,. Since 
r m+l d r,,,, we may conclude that 

PCS(Pil? ~m)~~(an* ml) 

~~(qm.1. rtn) fl St Pm+*- Pm+,>- (1) 

We may assume r,,, = 1, p;, = (- i,. . . .O) and q, 
= ct,..., 0). The diameter of the intersection of 
these four hyperspheres is bounded above by the 
optimal value of the following optimization prob- 
lem: 

(P2): max d(x. y) s.t. 

(Xl + $ + Xf + . . . +xf < 1. 

(“l-~)2+.r;+ .** +x,‘g1. 

t Y,+$+&+ -*- +L’&1. 

(J+)l+$+ -*- +&l. 

(2, + #+ 2; + * * * +z; < 1. 

(- I)?+;;+ ... ++1. ‘1 - T 

x,z+x;+ **. +x; 

-2 
d-1 _ +zs+ . . . +:,2, 

1’;+_v12+ ... +y; 

-2 
G-1 +z;+ .* 

(x1-& *a* 

. +:,?, 

+(x,-z$<l, 

(y1-ZJ2+ .a* +(,Vk-ZJ<l. 

P 

Fig. 2. 
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The point -_ in the above problem corresponds to 
q,,,_,. Let S(k) be the optimal value of (P2). We 

first obtain a lower bound to S(k). and then using 
it we prove that the actual value coincides with 
this lower bound. 

2.3. Lemma. 6(k) a 15 - 26 for all k a 2. 

Proof. For a given 2 = (z,, -_:.. . ., zk), let z’ = 

(-2,. z1 . . . . . rk) and T’=(z,, -2: ,..., -I~). We 
have d(:‘. 2’ ) = 2d(r. 0). Let us consider the re- 
stricted problem where .Y = z’, and y = 2’. This 
problem reduces to 

max 2d( :, 0) s.t. 

(21 +$+_-;+ ... +-_; Q 1, 

(q-$+z;+ ... +,_;<1. 

4:; < 1, 

4(:i_+:;+ .** +:,2)<1. 

The third equation is redundant and. without loss 

of generality. we may assume z, =0 for i = 
3. 4.. . , II. Thus, the above problem has the same 
optimal value as the following: 

It is not difficult to show that at an optimal 
solution of this new problem, the last equation 

and either the first or the second equations are 

tight. It follows that (I:, 2;) = (- $ + ifi, :) is 

an optimal solution. 0 

2.4. Theorem. 6(2) = \ 5 - 26 . 

Proof. From Lemma 2.3 and Theorem 2.1, we 
only need to consider the case where 

&5-2Js <p=vzI’+z; &fT. 

O- Observe that we may assume z,, z2 > 0. Let z - 

_ 0 . z$) be a fixed point with ::, 2: 2 0 and 
jyb)‘; (=g)‘= p’ with 

Let .S(z”) be the intersection of the four circles in 
(1) with k = 2, and let x, y, z. and w be the 
feasible intersection points. More specifically. 

S(z”) is the intersection of the circle of radius p 
centered at the origin and the circles of radius 1 

centered at the points (- $, 0), (+, 0), and z0 (see 
Fig. 3). 

Let d(u, U) be the diameter of S(z’) and put 
A=(x, y, 2, w}. Note that the coordinates of x 
and t depend only on p but those of y and w will 
depend on p as well as the coordinates of z”. We 
claim that U, u E A. To prove this claim we first 

observe that since the maximum of a convex func- 
tion over a convex set is attained at a boundary 
point, u and u lie on El(s( z’)), the boundary of 

S(z’). Secondly. it suffices to show that one of the 
two points 11, L’ must be in A because of the 

following simple property of a circle C: Suppose p 
is a point interior to C. If 4 is a boundary point of 
C where the tangent line at 4 is not orthogonal to 
the line segment connecting p and q. then q is not 
the farthest boundary point of C from p. 

Suppose u is in A and u in a(.S( z’)) - A. Then 
we apply the above property by letting the circle 
on which c lies play the role of C and u play the 
role of p. Thus d( U, u) cannot be the diameter. 

Now, suppose neither u nor L’ is in A. Let 
C(U) and C(v) denote the circles on which u and 
LJ lie respectively. Again, from the above argu- 
ment, it follows that the line segment connecting u 

and u is orthogonal to the tangent line of C(U) at 
u. Similarly, this line segment must be orthogonal 
to the tangent line of C(u) at c. But this can 
happen only when u=(-4.0) and u=(i,O). 
But in this case we would replace u by either x or 
w, thus reducing it to the case where one of the 
points is in A. This proves the claim. 

Thus for each fixed p and z” we need to 
consider six pairwise distances between points of 
A. First we consider the maximization of d(x, y) 
as a function of p and the location of zO. From 
the equations (z, + 4)’ + z: = 1 and zf + ’ iI=p ‘. 
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Fig. 3. 

Fig. 4. 

we obtain 

z=(z,, z2)=(f-p*,1/11-(p*-:)*). 

Note that x=(-z,, z2). Let Z= (z,, -z2). We 

have 

d( z, z) = 2/l - ( P2 - :)’ 

z 2/l - (:(5 - 26) - Z)’ 

= 1. (2) 

Thus it follows that the point y that depends on 
to will lie on the arc of the circle S(( - f, 0), 1) 
from I to z. Now consider two points y’ = (yi, y:) 
and y*= (yf, yj?) on this arc with y: -z yf as in 
Fig. 4. Note that the angle xy’? is obtuse since x 
and I are diametrically opposite. Therefore the 

angle xy’y’ is obtuse and it follows that d(x, y’) 
< d(x, y*). This implies that for fixed p, d(x, y) 
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increases as z0 moves clockwise. Thus d(x, J) is 
maximized when z” = Z. Taking Z” = :. from the 

equation (z, -J,)’ + (-_: -y2)’ = 1 we obtain 

f(p)=d(x. I’)‘= 1 +4:,.v,. To compute Y, we 
need to solve the equations ( V, + :)‘+ji = 1, 
(-_, - y,)’ + ( z2 -yz)’ = 1. and jf + 2: = p’. With 
elementary but tedious calculations it can be 
shown that 

)‘, = ;{-(p’- 4) + \ii(pZ- i)(T -3p’) >. 

Now making the transformation p’ - $ = t, ;,yi 

turns into a product of two nonnegative decreas- 
ing functions of t on the interval [l - i&, i]. 

Thus f achieves its maximum for p = fk5 - 20 . 
If Z; = - i + ifi and :T = i, an optimal solu- 
tion is given by x* = (-;;“, 2:). y* = (zy, -2;) 
and :* = (z;“, 2;). 

Note that it is easy to see geometrically that, 

for each p and fixed 2’. the diameter of A is 
d(x, J). This fact can be verified analytically as 
follows. We need to show that the other five 
distances as functions of p and :’ are bounded 
above by d(x, y). Consider the triangle XZJ. The 
angle sz,: is obtuse since x and 2 are diametrically 

opposite. Thus d(x, z) < d(x, V) and d(i, _JJ) Q 
d(x. J’). Let W be the reflection of w about the 
vertical axis. Considering the triangle xzE we may 

write d(x, w) = d( I, W) < d(x, E) = d(z, w). 

Recalling the argument on d(x, v’) and d(x, v2) 
(see Fig. 4) we conclude that d(z, w) G d(x, _Y). 
Since d(x, y) 2 1, it suffices to prove that 

d( u’, .r) G 1. To prove this claim, we first observe 
that for every p. d(( - f, 0), z) = 1. This implies 

that. for all z” in the first quadrant, the point w is 
below the x-axis. Similarly, the point y is always 
below the x-axis. Now d(lv, v) is bounded above 

by the diameter of the region defined by the 
intersection of the two spheres S(( - i, 0), 1). 
S((i, 0), 1). and the lower half-plane. This diame- 
ter is easily seen to be 1. 0 

Finally. we show that the general case can be 
reduced to the analysis of S(2). 

2.5. Theorem. S(k) = a(2) for all k > 2. 

Proof. From Theorem 2.4. we observe that, for 
k = 2, the constraint (x, - _-,)’ + . . . +(.r, - zA )’ 
< 1 is redundant in (P2). i.e.. if this constraint is 
removed, the resulting optimization problem has 
the same optimal value. Let (P3) denote this opti- 
mization problem that results once the above con- 
straint is removed from (PZ). We prove that (P3) 
has the same optimal value for all X- > 2. 

Let the triplet (x. y, Z) with x = (x,. x2.. _. . 
XL), y = (y,. L‘? __..... yx), -_ =(-_,. zz ,..., zk) be 
an optimal solution of (P3). Let -7 =(x1. c. 
0 . . . ..O). J=(.r,..&.O ,..., 0) and Z=(Z,. z. 
0 , . . . ,O). where 

.Y,=ix;+ . . . +_y;, -- .)z - - \Jif . . . +_v; 

and 

- ‘_- 22 = - \/_z ‘+ . . . +_$ 

We show that (X, .V, E) is feasible with respect to 
(P3), and that d(F, J) >, d(x, y). The point 
(X, j, 5) is trivially feasible with respect to all but 
the last constraint of (P3). By the Cauchy-Schwarz 
inequality, (-6 - <)? G (Jo - z?)’ + . . . +( 1k - 
zk)‘. Since (y, - z,)2 + . . . +( yx -z,)’ < 1. it 
follows that (X, _V. !) satisfies the last constraint 
as well. Applying the Cauchy-Schwarz inequality 
once more. we get (E -jY)l 2 (x2 - v,)’ + 

. * * f(x, -_vJ, implying that d(if, j)->, d(s. 

v). 0 

The main result of this paper may now be 
summarized as follows. 

2.6. Theorem. r, < rz < . -. < r,,, Q d, < 

min{or,, ;5-2&r,,,}, wherem<n. 

The worst-case bound of the algorithm is 
achievable by considering the five points (- :. 0). 
(i,O), (z;. z?). (-z;, =T). (2;. -z;), where 
**=--;+i 3, ‘1 \r :, * = :. If the first point is 

selected as p,, then the second point is q1 and 
p2 = (0, 0). If q2 is the third point. the algorithm 
terminates with r, = rz = 1. while the actual diam- 

eter is ~5 - 26 . While the worst-case bound is 
achievable. we have not been able to determine 
the worst-case time complexity of Algorithm B. 
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However, based on empirical evidence described 
below, we are led to conjecture that for uniformly 
distributed points in W k for fixed k, the worst-case 
time complexity of Algorithm B is O(n). 

Remarks. A computer implementation of Algo- 
rithm B was carried out and in what follows we 
present some of the results. 

We considered sets of points of sizes n = 
50, 100,150, 200, 250 in each of the dimensions 
k = 2, 3, 4, 5, 6. For each possible pair of values 
of n and k, 100 sample sets P were generated by 
uniform distribution in the unit hypercube. For 
each test problem, Algorithm B was run and at the 
same time the actual diameter was computed by 
brute force. The average percentage error is pro- 
duced in Table 1. For example, for n = 150 and 
k = 4. the mean error of the approximate diame- 
ters computed for 100 sample sets by Algorithm B 
was only 1.72%. Incidentally, during the runs, the 
maximum error reached was about 24%, showing 
that the theoretical error bound was attained 

(/5 - 26 - 1.24). The maximum number of iter- 
ations m required by Algorithm B for the 100 

Table 1 

Average percentage error of Algorithm B 

n 

50 

100 

150 

200 

250 

k 

2 

0.30 

0.42 

0.68 

0.21 

0.48 

3 4 5 6 

0.94 1.82 2.12 2.50 
1.34 2.06 2.63 3.99 
1.67 1.72 2.94 4.49 
1.32 1.53 3.48 4.36 
1.44 1.72 4.32 4.63 

Table 2 

Maximum number of iterations required by Algorithm B 

n k 

2 3 4 5 6 

50 4 5 5 4 4 
100 3 3 4 5 4 
150 3 4 5 4 5 
200 3 4 6 4 4 
250 3 5 5 5 5 

sample sets considered for each pair n and k are 
given in Table 2. It appears difficult to justify the 
surprisingly small magnitude of these numbers. 
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