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a b s t r a c t

We provide explicit formulas for the maximum number qk(n) of disjoint subgraphs
isomorphic to the k-dimensional hypercube in the n-dimensional Fibonacci cube Γn for
small k, and prove that the limit of the ratio of such cubes to the number of vertices in Γn is
1
2k

for arbitrary k. This settles a conjecture of Gravier, Mollard, Špacapan and Zemljič about
the limiting behavior of qk(n).
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1. Introduction

One of the basic models for interconnection networks is the hypercube graph Qn of dimension n. The vertices of Qn are
represented by binary strings of length n and two vertices are adjacent if and only if they differ in exactly one position. In this
model vertex set of the graph denotes the processors and edge set denotes the communication links between processors.

In [4] Fibonacci cubes Γn were introduced as a new model of computation for interconnection networks. There is
extensive literature on the properties and applications of the Fibonacci cubes. A survey of their usage in theoretical chemistry
and summary results on the structure of Fibonacci cubes, including representations, recursive construction, hamiltonicity,
the nature of the degree sequence and some enumeration results can be found in the survey [5]. Important properties
of Fibonacci cubes in network design are given in [4,2]. The characterization of maximal induced hypercubes in Γn was
presented in [8]. Many interesting results on the cube polynomial of Γn were proved in [6]. A refinement of the cube
polynomial of Γn in [6] is considered in [10]. In the latter combinatorial interpretation, an extra variable acts as the
enumerator of the hypercubes in Γn by their distance to the all 0 vertex. Recent papers on additional properties of Fibonacci
cubes that have appeared in the literature indicate the continuing interest in these graphs, see for example [1,7,9,11].

Let qk(n) denote themaximumnumber of disjoint subgraphs isomorphic to k-dimensional hypercubeQk inΓn. In a recent
study several recursive relations and a summation formula for qk(n) in terms of Fibonacci numbers were presented [3]. Let
|V (Γn)| denote the number of vertices of Γn. It was conjectured in [3, Question 3.2] that the limit of the ratio qk(n)

|V (Γn)|
as n

increases without bound exists and is equal to 1
2k
. In this paper we use the expression for qk(n) given in [3] in terms of

Fibonacci numbers and generating function techniques to derive explicit formulas for qk(n) for small k. Our computation
also gives the form of the qk(n) for general k, from which it follows that limn→∞

qk(n)
|V (Γn)|

=
1
2k

(Theorem 1).
This paper is organized as follows. In Section 2 we present some useful identities on generating functions of certain

subsequences of Fibonacci numbers. We derive our main result in Section 3.
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Fig. 1. Fibonacci graphs Γ0, Γ1, . . . , Γ5 .

2. Preliminaries

In this section we present some notations and preliminary results related to Fibonacci cubes and Fibonacci numbers.
An n-dimensional hypercube Qn is the simple graph with vertex set

V (Qn) = {b1b2 · · · bn | bi ∈ {0, 1}, 1 ≤ i ≤ n}

where the edges are between vertices differing in a single bit. An n-dimensional Fibonacci cube Γn is a subgraph of Qn
with vertex set V (Γn) corresponding to those in Qn without two consecutive 1s in their string representation. Therefore the
vertices of Γn have the property that bibi+1 = 0 for all i ∈ {1, 2, . . . , n− 1}. For convenience Γ0 is defined as the graph with
a single vertex and no edges.

V (Γn) is enumerated by Fibonacci number fn+2, where f0 = 0, f1 = 1 and fn = fn−1 + fn−2 for n ≥ 2. In Fig. 1 we present
the first six Fibonacci cubes with their vertices labeled with the corresponding binary strings in the hypercube graph.

Next we consider some special generating functions that we use in the proof of our main result.
If g(x) = a0 + a1x + a2x2 + · · · is the generating function of the sequence an, then

a0 + a3x3 + a6x6 + · · · =
1
3


g(x) + g(ωx) + g(ω2x)


where ω is a primitive cube root of unity. It follows that for the Fibonacci numbers we have

i≥0

f3ix3i =
1
3


x

1 − x − x2
+

ωx
1 − ωx − ω2x2

+
ω2x

1 − ω2x − ωx2


=

2x3

1 − 4x3 − x6
,

and therefore
i≥0

f3ixi =
2x

1 − 4x − x2
and


i≥0

f3i+3xi =
2

1 − 4x − x2
. (1)

Note that (1) is a consequence of the general result that the generating function of the every rth Fibonacci number for r > 0
is given by

i≥0

frixi =
frx

1 − Lrx − x2

where Lr is the rth Lucas number defined by L0 = 2, L1 = 1 and Lr = Lr−1 + Lr−2 for r > 1. However we do not need this
expansion in its full generality.
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By a similar manipulation using the cube roots of unity, we also obtain the following generating functions for
subsequences of the Fibonacci sequence:

i≥0

f3i+1xi =
1 − x

1 − 4x − x2
,


i≥0

f3i+2xi =
1 + x

1 − 4x − x2
. (2)

Also note that by Newton’s expansion we have


i≥0


i

k − 1


xi =

xk−1

(1 − x)k
. (3)

We will use the generating functions in (1)–(3) in the following section to prove our main results.

3. Main results

To show that limn→∞
qk(n)

|V (Γn)|
=

1
2k
, our starting point is the closed formula for qk(n) in terms of Fibonacci numbers given

in [3].

Proposition 1 ([3, Corollary 2.4]). For every n ≥ 0 and k ≥ 1

qk(n) =

⌊
n+k−2

3 ⌋
i=0


i

k − 1


fn+k−3i−1. (4)

The right hand side of (4) is the convolution of the sequence in (3) with a shifted Fibonacci sequence. Our aim is to find
an explicit formula for qk(n) using this expression. The main difficulty is the nature of the upper limit of the summation
in (4). For this purpose we will consider the cases n + k − 2 mod 3 separately in the following subsections. Assume that
n + k − 2 = 3m + j with j ∈ {0, 1, 2}. Then from (4) we need to find

sk(m) := qk(n) =

m
i=0


i

k − 1


f3(m−i)+j+1.

Note that for m ≤ k − 1 obviously we have sk(m) = 0. Furthermore, the generating function of the convolution sk(m) with
the shifted Fibonacci numbers depending the value of j is given by the product of the one of the generating functions in (1)
or (2) with the one in (3) as given below.


m≥0

sk(m)xm =



xk−1

(1 − x)k−1(1 − 4x − x2)
if n + k − 2 = 3m,

(1 + x)xk−1

(1 − x)k(1 − 4x − x2)
if n + k − 2 = 3m + 1,

2xk−1

(1 − x)k(1 − 4x − x2)
if n + k − 2 = 3m + 2.

(5)

Using (5) and taking also the value of kmod3 into account therewould actually be nine different cases to consider, though
they are all similar computations in nature. Combining the results obtained in each of these cases (see subsections below)
we obtain the following result. Also note that since |V (Γn)| = fn+2, for any fixed exponent c > 0, limn→∞

nc
|V (Γn)|

= 0.

Theorem 1. For every n ≥ 0 and k ≥ 1

qk(n) =
1
2k

fn+2 + p(n)

where p(n) is a polynomial with rational coefficients of degree at most k − 1. Consequently,

lim
n→∞

qk(n)
|V (Γn)|

=
1
2k

.
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Before presenting the details of the proof we provide the exact expressions for qk(n) for k = 1, 2, . . . , 5. The k = 1 case is
given in [3].

q1(n) =



1
2
fn+2 −

1
2

if n ≡ 0 mod 3,

1
2
fn+2 if n ≡ 1 mod 3,

1
2
fn+2 −

1
2

if n ≡ 2 mod 3.

For 1 < k ≤ 5 we obtain the following exact formulas for qk(n).

q2(n) =



1
4
fn+2 −

1
4

if n ≡ 0 mod 3,

1
4
fn+2 −

n
6

−
1
3

if n ≡ 1 mod 3,

1
4
fn+2 −

n
6

−
5
12

if n ≡ 2 mod 3,

q3(n) =



1
8
fn+2 −

1
8

−
1
12

n −
1
36

n2 if n ≡ 0 mod 3,

1
8
fn+2 −

1
9

−
1
9
n −

1
36

n2 if n ≡ 1 mod 3,

1
8
fn+2 −

5
24

−
1
12

n if n ≡ 2 mod 3,

q4(n) =



1
16

fn+2 −
1
16

−
1
72

n −
1
72

n2
−

1
324

n3 if n ≡ 0 mod 3,

1
16

fn+2 −
1
18

−
1
18

n −
1
72

n2 if n ≡ 1 mod 3,

1
16

fn+2 −
103
1296

−
5

216
n −

1
108

n2
−

1
324

n3 if n ≡ 2 mod 3,

q5(n) =



1
32

fn+2 −
1
32

−
1

144
n −

1
144

n2
−

1
648

n3 if n ≡ 0 mod 3,

1
32

fn+2 −
37
972

−
43

1944
n −

1
648

n2
−

1
1944

n3
−

1
3888

n4 if n ≡ 1 mod 3,

1
32

fn+2 −
389
7776

−
67

3888
n +

1
1296

n2
−

1
972

n3
−

1
3888

n4 if n ≡ 2 mod 3.

Remark 1. Even though the coefficients of the polynomials p(n) appear to be all negative, this is not always the case. The
polynomial in q5(n) for n ≡ 2 mod 3 contains a term with positive sign.

We begin the proof of Theorem 1 for the case n+k−2 ≡ 2 mod 3, which is illustrative of how the computation proceeds
in general.

3.1. Case n + k − 2 ≡ 2 mod 3

Let n + k − 2 = 3m + 2. From (5), we need to expand the right hand side of
m≥0

sk(m)xm =
2xk−1

(1 − x)k(1 − 4x − x2)
. (6)

This in turn depends on the value of k mod 3. First assume that k = 3t − 1 for some integer t > 1, that is, n + 2 =

3(m − t + 2) + 1. Then by using the equation on the left side of (2) we obtain
m≥t−2

fn+2xm = xt−2


m≥t−2

f3(m−t+2)+1xm−t+2
=

(1 − x)xt−2

1 − 4x − x2
. (7)

Now using the numerator of (7), the right hand side of (6) can be written as

2xk−1

(1 − x)k(1 − 4x − x2)
= (1 − x)xt−2


2x2t

(1 − x)k+1(1 − 4x − x2)


.
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Using partial fractions we can write,

2x2t

(1 − x)k+1(1 − 4x − x2)
=

Ax + B
1 − 4x − x2

+

k+1
i=1

Ci

(1 − x)i
. (8)

Now let z1 and z2 be the roots of 1−4x−x2 = 0. By equating the numerators in (8) and putting x = z1, x = z2 and k = 3t−1
we obtain the two equations

2z2t1 = (Az1 + B)(1 − z1)3t

2z2t2 = (Az2 + B)(1 − z2)3t .

This gives A = 0, B =
1

23t−1 =
1
2k
. The Ci’s in (8) are certain rational numbers. Consequently,


m≥0

sk(m)xm =
1
2k


(1 − x)xt−2

1 − 4x − x2


+ xt−2

k
i=0

Ci+1

(1 − x)i
.

Then by using (7) we get

qk(n) = sk(m) =
1
2k

fn+2 + p(n)

where p(n) is polynomial with rational coefficients of degree at most k − 1 which comes from the xt−2k
i=0

Ci+1
(1−x)i

part.

Example 1. We consider the k = 5 (t = 2) case in detail. We assume that n + k − 2 = n + 3 = 3m + 2. From (6) we have
m≥0

sk(m)xm =
2x4

(1 − x)5(1 − 4x − x2)

= (1 − x)


2x4

(1 − x)6(1 − 4x − x2)


.

By using partial fractions,

2x4

(1 − x)6(1 − 4x − x2)
=

Ax + B
1 − 4x − x2

+

6
i=1

Ci

(1 − x)i
.

Equating the numerators,

2x2 = (Ax + B)(1 − x)6 +


6

i=1

Ci(1 − x)6−i


(1 − 4x − x2).

Therefore,

A = 0, B =
1
32

,

and

C1 = 0, C2 =
1
32

, C3 =
3
16

, C4 = −1, C5 =
5
4
, C6 = −

1
2
.

Then we have
m≥0

sk(m)xm =
1
32


1 − x

1 − 4x − x2


+

6
i=1

Ci

(1 − x)i−1

and by using (7) we get

q5(n) = s5(m) =
1
32

fn+2 + p(n).

Using the identity 1
1−x =


m≥0 x

m and its derivatives we obtain the error term p(n) explicitly as

p(n) = −
389
7776

−
67

3888
n +

1
1296

n2
−

1
972

n3
−

1
3888

n4.
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Example 2. In this example, we consider the k = 2 (t = 1) case separately as we assumed t > 1 in the above calculations.
For this case we use partial fractions directly for (6) and find

m≥0

sk(m)xm =
2x

(1 − x)2(1 − 4x − x2)

=
3
8


2

1 − 4x − x2


+

1
8


2x

1 − 4x − x2


−

1
2


1

(1 − x)2


−

1
4


1

1 − x


which gives

sk(m) =
3
8
f3m+3 +

1
8
f3m −

1
2
(m + 1) −

1
4
.

Recalling that n = 3m + 2, we can write this expression in terms of n as

q2(n) =
3
8
fn+1 +

1
8
fn−2 −

n
6

−
5
12

,

which further simplifies to

q2(n) =
1
4
fn+2 −

n
6

−
5
12

.

Continuing with the proof, now we assume that k = 3t , giving n+ 2 = 3(m− t + 2). Using the equation on the left side
of (1) we obtain

m≥t−2

fn+2xm = xt−2


m≥t−2

f3(m−t+2)xm−t+2
=

2xt−1

1 − 4x − x2
. (9)

Using similar calculations as above we get
m≥0

sk(m)xm =
1
2k


2xt−1

1 − 4x − x2


+ 2xt−1

k
i=1

Ci

(1 − x)i
.

Therefore by using (9) we have

qk(n) = sk(m) =
1
2k

fn+2 + p(n)

as before. Here p(n) is polynomial with rational coefficients of degree at most k−1 which comes from the 2xt−1k
i=1

Ci
(1−x)i

part.
Similarly, for the last subcase with k = 3t − 2 we obtain

m≥t−2

fn+2xm =
(1 + x)xt−2

1 − 4x − x2

and 
m≥0

sk(m)xm =
1
2k


(1 + x)xt−2

1 − 4x − x2


+ (1 + x)xt−2

k
i=1

Ci

(1 − x)i
+ Ck+1xt−2,

which again gives

qk(n) = sk(m) =
1
2k

fn+2 + p(n)

where p(n) is polynomial with rational coefficients of degree at most k − 1.

3.2. Case n + k − 2 ≡ 1 mod 3 and Case n + k − 2 ≡ 0 mod 3

We omit the calculations in these cases, but only indicate what is involved. First assume that n + k − 2 = 3m + 1. By
using (5) and an argument similar to the previous case with the subcases k = 3t, k = 3t + 1 and k = 3t + 2 separately we
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need to evaluate the following:


m≥0

sk(m)xm =
(1 + x)xk−1

(1 − x)k(1 − 4x − x2)
=



1
2k


(1 + x)xt−1

1 − 4x − x2


+ (1 + x)xt−1

k
i=1

Ci

(1 − x)i
if k = 3t,

1
2k


2xt−1

1 − 4x − x2


+ 2xt−1

k
i=1

Ci

(1 − x)i
if k = 3t − 1,

1
2k


(1 − x)xt−2

1 − 4x − x2


+ xt−1

k−1
i=0

Ci

(1 − x)i
if k = 3t − 2.

Similarly if n + k − 2 = 3m then we need to expand the following:
m≥0

sk(m)xm =
xk−1

(1 − x)k−1(1 − 4x − x2)

=



1
2k


(1 − x)xt−1

1 − 4x − x2


+ xt−1

k−1
i=0

Ci

(1 − x)i
if k = 3t,

1
2k


(1 + x)xt−1

1 − 4x − x2


+ (1 + x)xt−1

k−1
i=1

Ci

(1 − x)i
+ Ckxt−1 if k = 3t − 1,

1
2k


2xt−1

1 − 4x − x2


+ 2xt−1

k−1
i=1

Ci

(1 − x)i
if k = 3t − 2.

In all of the above six cases the idea is similar to the one in the previous section and using the appropriate formulas from
either (1) or (2) for


m≥t−2 fn+2xm we obtain

qk(n) = sk(m) =
1
2k

fn+2 + p(n)

where p(n) is polynomial with rational coefficients of degree at most k − 1.
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