
JOURNAL OF COMPLEXITY 5, 417-437 (1989)

Fast Computation of Divided Differences and Parallel
Hermite Interpolation

Department of Computer Science, University of California,
Santa Barbara, California 93106

E. GALLOPOULOS?

Center for Supercomputing Research and Development and Department of Computer
Science, University of Illinois, Urbana-Champaign, Illinois 61801

AND

CETIN K. KOC

Department of Electrical Engineering, University of Houston, Houston, Texas 77204

Received January 16, 1989

We present parallel algorithms for fast polynomial interpolation. These algo-
rithms can be used for constructing and evaluating polynomials interpolating the
function values and its derivatives of arbitrary order (Hermite interpolation). For
interpolation, the parallel arithmetic complexity is 0(log2 M + log N) for large M
and N, where M - 1 is the order of the highest derivative information and N is the
number of distinct points used. Unlike alternate approaches which use the La-
grange representation, the algorithms described in this paper are based on the fast
parallel evaluation of a closed formula for the generalized divided differences.
Applications to the solution of dual Vandermonde and confluent Vandermonde
systems are described. This work extends previous results in polynomial interpo-
lation and improves the parallel time complexity of existing algorithms. B 1989

Academic Press, Inc.

* Supported in part by the National Science Foundation under Grant NSF DCR-8603722.
t Supported by the National Science Foundation under Grants US NSF MIP-8410110, US

NSF DCR8509970, and US NSF CCR-8717942, and by AT&T under Grant AT&T
AFFL67Sameh. Author to whom any correspondence for this article should be addressed.

417
0885-064X/89 $3.00

Copyright 0 1989 by Academic Press, Inc.
All rights of reproduction in any form reserved.

418 E6ECIOC;LU,GALLOPOULOS,AND KOC

1. INTRODUCTION

Fast algorithms (serial complexity less than O(N2) and parallel com-
plexity less then O(N) for N input pairs) and asymptotic bounds for
polynomial interpolation using as information the value of a function at N
distinct points (called simply interpolation from here onward) have been
presented by many researchers in the literature (Aho er al., 1974; Chin,
1976; Horowitz, 1972; Kung, 1973; Reif, 1986). In Egecioglu et al. (1987a)
the authors presented a new algorithm for the fast calculation of the
divided difference coefficients of the Newton representation for the inter-
polating polynomial. The method has parallel complexity’ 2llog Nl + 2
and is based on the parallel prefix algorithm2 (Ladner and Fischer, 1980;
and the Appendix).

In this paper we investigate the more general problem of Hermite inter-
polation, where the input is a set of distinct points and corresponding to
each point, prescribed values for a function f and all its derivatives up to
some arbitrary order. We show that for large M and N, the computation of
the corresponding interpolating polynomial has parallel complexity @log2
M + log N), where M - 1 is the order of the highest derivative informa-
tion and N is the number of distinct points used in the interpolation. Our
construction is based on a fast algorithm for the evaluation of all the
required polynomial coefficients, the generalized divided differences.

The resulting upper bound extends and improves previous work for
polynomial interpolation. Table I compares the current computational
complexity results for polynomial interpolation. When N = M the inter-
polation can be done in @log2 N) parallel steps, whereas when M = 1
(i.e., no derivatives are involved) the complexity is O(log N). We show
that the algorithm for the latter case of M = 1 is identical with the one
presented by the authors in Egecioglu et al. (1987a). Recently, the authors
presented another parallel algorithm for Hermite interpolation based on
algebraic arguments (Egecioglu et al., 1987b), which has parallel com-
plexity @log N) for M fixed. Nevertheless, as mentioned in that paper, in
this case the order of complexity depends exponentially on M, if M is
allowed to vary. Consequently, what we present here is a substantial
improvement over the latter paper in terms of theoretical parallel time
complexity.

It could be argued that an actual implementation of the proposed algo-
rithm is impractical, since, as is well known, by the time the size of the
problem becomes large enough to justify the use of parallelism, polyno-
mial interpolation may break down. We note however that as is men-

I The complexity counts give the number of parallel (elementary) arithmetic operations,
which we take to be over the real field for consistency.

2 All logarithms are base 2.

Re
pr

es
en

tat
ion

TA
BL

E
1

C
O

M
PL

EX
IT

Y ES
TI

M
AT

ES

FO
R

PO
LY

N
O

M
IA

L IN
TE

R
PO

LA
TI

O
N

"

No
no

sc
ula

ior
y

Se
qu

en
tia

l
Re

f.
Pa

ra
lle

l
Re

f.

La
gr

an
ge

O(

N
log

2
Nj

Ne

wt
on

OW

)
Ku

ng
,

19
73

Kr

og
h,

19

70

Of
log

N)

Re

if,

19
86

; A
tw

oo
d,

19

88

2
2

log
 N

 +
 2

Eg

ec
iog

lu
ef

 a
l.,

19
87

a,

Co
r.

4.
2

3

Os
cu

lat
ory

2

La
gr

an
ge

-H
em

&e

U(
n

log
 n

(lo
g

N
+

1))

Ch
in

,
19

76

Ne
wt

on

OW
)

Ts
ao

 a
nd

 P
rio

r,
19

78

a s
(M

)
is

ex
po

ne
nt

ial

fu
nc

tio
n

of
 M

an

d
n

is
de

fin
ed

in

Eq
.

(1
).

ON
W

og

N)

O(
log

N

+
log

2
M

)
Eg

ec
iog

lu
et

 a
l.,

19
87

b
Th

m
.

4.
1

5 2

420 EC;ECIOC;LU,GALLOPOULOS, AND KOC

tioned in Section 7, certain point arrangements will delay this breakdown.
Results of Egecioglu et al. (1987a) indicate that at least Newton nonoscu-
latory interpolation based on the proposed algorithm for these special
points could be of some practical value.

We also remark that the parallel arithmetic complexity of @log* A4 +
log N) operations achieved by our algorithm may require a large (but
polynomial in the input size) number of processors. Thus its sequential
implementation will be less efficient than standard serial algorithms for
interpolation. The issues of exact processor count and processor-time
trade-offs for our algorithm are left for future discussion and not ad-
dressed here.

Section 2 introduces notation and describes the problem. In Section 3
(Lemma 3.1) the appropriate representation of the GDD (from the point of
view of the interpolation algorithm) is introduced. The material in Section
4 culminates in Theorem 4.1, proving the main result. Section 5 contains a
brief discussion on polynomial evaluation. Finally, Sections 6 and 7 re-
spectively contain applications and conclusions.

2. NOTATION AND DESCRIPTION OF THE PROBLEM

We are given as input a set of distinct points {z,; q = 0, . . . , N - I}
and for each of these points a set of valuesfr’ with k = 0, 1, . . . , py - 1
for pq E Z+, where Z+ denotes the set of positive integers. We define the
multiplicity vector p of the input as

p = (PO, . . . 3 PN-I).

Based on this information, we are required to construct a polynomial P of
degree II - 1, where

N-l

n=Cp,
y=o

(1)

such that

f!) = P(Q); k=O,. . . ,pq-1; q=O,. . . ,N-1. (2)

Here P(“(z,) denotes the derivative of order k of the polynomial P evalu-
ated at the point z,.

The existence and uniqueness of such a polynomial is well known
(Davis, 1975). For the construction and representation of P two distinct
approaches may be followed: the Lagrange-Hermite (Traub, 1964) ap-

PARALLEL HERMITE INTERPOLATION 421

preach and the (generalized) divided difference approach. Here we follow
the latter. In the simple case of ps = 1 for all q and n = N, the polynomial
is written in its Newton form

n-1 q-1

P(s) = C f;zo....,~,l ,IJ 6 - zj)T
q=o

(3)

where the coefficients of the monomial products are the divided differ-
ences that are usually constructed recursively by means of tables. These
constructions however are sequential in nature and require O(n) parallel
arithmetic operations. An alternative method is to use a closed linear
formula for each of the divided differences and evaluate them all in paral-
lel by utilizing the properties of the parallel prefix algorithm. With a slight
change of wording, a main result of Egecioglu et al. (1987a) is the follow-
ing theorem.

THEOREM 2.1. The divided difference coefjcients of the Newton inter-
polatingpolynomialfor Npoints can be computed in at most 2llog Nl + 2
parallel arithmetic steps.

In the general case treated in this paper, there may be more than one
datum of information per point zi. Hence the definition of the divided
differences must be extended to cover this case. This is done by taking the
limit of the ratios defining the divided differences for equal arguments. In
particular, considering now points x0 5 * * * 5 x, (not necessarily distinct
and coincident in groups with individual z,s), define

&,,...,x,+al = 5 (4)

when xq = Xq+k, and

Jtr,....,x,+d =
~xqtl.....Xy+kl - f+J,+r-d

Xqik - xq
(5)

otherwise. These are the generalized divided differences (GDD) whose
fast evaluation we seek. As with the simpler case of Newton interpola-
tion, the maximum speedup is limited when these definitions are applied
directly for the construction of the GDD.

Define a sequence of n f 1 index-of-multiplicity vectors ti y each of
dimension N as follows: For 0 5 i 5 po,

ti = (i, 0, . . . , 0).

422 ECiECIOCiLU, GALLOPOULOS, AND KOC

Otherwise if

po < i = po + . . . + f3-1 + p 5 po + . . . + PN-, = 12

for 1 : j3 spl and p E z+, then

Denote the Ith component of ti by tile For each i, let Q(i) denote the
smallest index such that ta = 0 for I 2 Q(i). Also put z = (ZO, . . . , ZN-I)
and define

which we will also write as

Z*ti = (ZO(tiO), . * . 9 ZN-l(ti,N-11).

Clearly the vector sequence ti is nondecreasing in its components and
(componentwise)

ti 5 t, = (PO7 * . * 3 PN-1)

= P.

The vectors ti provide in increasing order the power index of the factors
(S - ZJ) in the Newton representation of P. Define

N-l

w(“)(S) = JII, (s - Z/P,

and

w (‘J(s)
wtj%) = (s _ zq)l”

(6)

N-l

= E (s - ZIP.

I+%

PARALLELHERMITE INTERPOLATION 423

The Hermite interpolating polynomial can then be written in the form

P(s) = 2 fiz.ri].W(“-w* (7)

The coefficients~z,,,l in Eq. (7) are the GDD and we seek their fast evalua-
tion for 1 5 i 25 n.

For example, suppose the interpolation information consists of three
distinct points {ZO, zr, z2} and functional and derivative information corre-
sponding to the multiplicity vector p = (2, 1, 3), Then n = 6 and

w(‘o)(s) = 1

W(“)(S) = (s - zo)

w(‘2)(s) = (s - z(-J2

w(“)(S) = (s - zoj2(s - z,)

w(‘“(s) = (s - zoJ2(s - z,)(s - z2)

w(‘5)(s) = (s - zo)Z(s - ZI)(S - z2)2

wqs) = (s - zcJ2(s - Zl)(S - z2j3 2

P(s) = frzo] + fr&& - zo) + &o,7&z,](s - zoJ2 + &m,z,,& - zo)2(s - Zl)
+ &,Z0,Z,,Z2,Z*](S - zo12(s - -as - a)

+ ~~o.zo.z,,z*,z*.zzl(s - zoj2(s - Zl)(S - d2*

3. REPRESENTATION OFTHEGENERALIZEDDIVIDEDDIFFERENCES

The elementary definition of the (generalized) divided differences is
that they are the coefficients of the Newton representation of the interpo-
lating polynomial. Since a different wording of the objective of polyno-

424 EC;ECIOCiLU,GALLOPOULOS, AND KOC

mial interpolation is to construct a polynomial P which interpolates some
functionffor which we have functional and derivative information avail-
able, we identify the given datumft) with (dk/dzk)f(zq). We denote by D’
the differentiation operator applied r times with respect to the underlying
variable,

LEMMA 3.1. Let f be analytic in a simply connected region R and let C
be a rectijiable Jordan curve lying in a. Suppose the points z, for q =
0 3. * *, N - 1 lie in the interior of C. Then the GDDs off are given by

fori= 1,. . . ,n.

(8)

Proof. It can be shown (Gel’fond, 1971; Elsner and Met-z, 1975) that

where C is a closed contour enclosing all points zi (Davis, 1975; Elsner
and Merz, 1975; Gel’fond, 1971). From
1974)

the Residue Theorem (Henrici,

(s - ZqMS)
I&) (s - Z,)“’ 1 s=‘?

with zeros being contributed to the sum whenever t;, = 0. From Leibnitz’
rule for the derivatives of a product

which is the result as seen in Eq. (8). H

To remain consistent with the previous discussions and complexity
counts we consider real zis. It is however trivial to adapt the discussion
for the complex field. In fact, all our results are equally valid for complex
interpolation if we change the elementary operation unit to be defined
over the complex field.

From Eq. (8) it also follows that the GDD can be viewed as a linear
transformation on !IP,

6 = G4, (9)

PARALLEL HERMITE INTERPOLATION 425

where

6 = (.&.t,l, * * * 7 AZ.f,l)T>

c#l = (fo, . . . ,p-'), fi, . . .) fn-I, . . . , f'R-"i'-")T.

Here G is the lower block triangular matrix J&l 0 0
Lo Lll 0 . . . 0

1: I’. *- :
L*.

&v-Lo G-I,, * * : LN-2.N-I LN-;.N-, I7

in which L, E %PJfi and the Lii are lower triangular. In particular Loo is the
diagonal matrix

--(” ‘“I j. l,(p;A l)).
For example, when pi = 1 for all i (the nonconfluent case) each Lij is

reduced to a scalar and G is of order N. When N = 1, then G reduces to
bo-

It is central to this paper that the construction of the divided differences
is reducible to the fast computation of Eq. (9). We distinguish two steps:

1. The computation of all elements of G (assembly phase).
2. The matrix-vector multiplication in Eq. (9).

We can already see that the time for step 2 is at most O(log n), or in terms
of M and N, O(log N + log M). In the subsequent sections we shall see
how to obtain a fast algorithm for assembly step 1 and its combination
with step 2.

4. RESULTS AND ALGORITHM DESCRIPTION

The arguments in this section lead to a constructive proof of the main
complexity result presented in Theorem 4.1.

For the moment let

(10)

426 EC;ECIOC;LU, GALLOPOULOS, AND KOC

for any x, with

1 &)((). X) = - 4 ’ w @J(x) * 4

To motivate our discussion we examine in some detail the example
started in Section 2. From Lemma 3.1 it follows that

.&l = f(zo)

f(zo) 1 JTzo) 1
&21 = m D i +

--
. . O!l! 1

. . .

Using Q as in Eq. (IO) above, the matrix G in this case is

1 0

I
0

i!

. 0 a”“(I 20) cP(O; zo) 0
l!O! O!l!

0 @)(I; zo) P(O~ 0 *O z 1
l!O! O!I !

cub’qo; zo) ab’)‘(1; LO)

l!O! O!l!

0 a’@(1. zo) ce(O~ 0 90 z)
l!O! O!l!

0

a:I”(o; 2,)

qto; ZJ

cypto; 2,)

cp(0; z,)

0

a:'qo; z2) 0

&'(l z2) 2 aqo; zz) 2
l!O! O!l!

0

a”6’(2. zz) ce(l. z) dd(O. z) 2’ 292zy2
2!0! l!l! 0!2!

The evaluation of G is centered around the evaluation of each of the
blocks L,,. Lemmas 4.1 and 4.2 demonstrate that for given q and i (i.e., in
a given row of block Lqr), the terms alf”(r; z,) satisfy a linear recurrence in
r. To solve each of these recurrences, their coefficients and initial values
must first be evaluated (Lemma 3.1 and Corollary 4.1). The recurrences
are then solved as described in Lemma 4.3. Finally, all of these steps are
put together in the description of the algorithm in the proof of Theorem
4.1.

The proof of the following lemma follows trivially after application of
the rules of differentiation.

PARALLEL HERMITE INTERPOLATION 427

LEMMA~.~. Fori=l,. . .,nandq=O,. . .,N-1,define

N-l

(11)

where the sum is empty (and equal to 0) when N = 1. Then for j 2 1

&#J.(s) = (-jp). (s)
9,J 9,J+I *

From this lemma it immediately follows that

DqfJs) = (- l)“v!cr:‘:$+,(S).

LEMMA 4.2. When r 2 I

[D&-J=;, = 2 (’ ; l)w+li!uY::+l(z,) [~~-l-+J=;,. (12) 9 9
Proof. Differentiating

D (3 = - & d%s) w:“‘(S) 9

with CT defined as in Lemma 4.1, we see that the lemma is valid for r = 1.
What we have here is an expression for the derivative as a product of two
known functions. When Leibnitz’ theorem for the higher derivatives of a
product of functions is applied, it follows that for r 2 1

D’ (A) = -IF’ (gy)
9 9’

=-py) , ob~‘,(s)D~-l-j (---&),
9

and using Lemma 4.1

=tgJ1) > (-*)j+‘j!ub’i’j+,(s)D’-l-j (p&j,.
9

Evaluating at z, gives the result. n

428 EC;ECIOC;LU, GALLOPOULOS, AND KOC

From Lemma 3.1, we seek an algorithm for the fast evaluation of Eq.
(8) as i varies from 1 to n. By substituting the expression derived in
Lemma 4.2 for the derivatives in Eq. (8), it seems that for the computation
of each one of the GDD, a triple summation is required. However, we
next show that a combination of fast algorithms can be used to achieve a
much more rapid evaluation.

From Lemma 4.2, for r I 1

r-l

ab’i’(r; z,> = c h(j, q, r, tj, z,)a~(r - 1 - j; z,),
j=O

where

I
W, 4, r, ti, ZJ = (-IV+’ tr’L; “iI! u $fj+ 1 (Zq>

(13)

(14)

are the interaction coefficients.

LEMMA 4.3. Consider the array

(11) 01) (11)
Ug,J(ZO) ul,j(zl) u2,J(z2) * U$!l,j(ZN-I)

u('z)~zo) @!(z,) afy(z3 * (T~!,,J(ZWl)
o,J .J

(13

u(‘“)(zo) u(‘“!(z,) c#(z2) * a$(,$, J(ZN-l) 0.j I>J

Each array element cr$;$z,) as defined in Eq. (11) represents the jinite
sequence

In particular the sequence is empty if tiq I 1. Let M be the maximum of
{PO, - . . , PN-I}. Then all sequences defined as in Eq. (16) for each array
element of Eq. (15) can be evaluated in O(log M + log N) parallel opera-
tions .

Proof. First observe that across the array in Eq. (15) each of the tj,‘s
takes all integer values from 0 to t,/ C= pl I M. Similarly j assumes values
from 1 to tiq - 1. From Eq. (11) the elements in Eq. (16) for every array
entry are based upon linear combinations of terms

(z, - Z[)‘, . . . , (z, - z1P-‘* (17)

PARALLEL HERMITE INTERPOLATION 429

The evaluation of all such terms can be achieved in O(log fnq) steps by
means of the parallel prefix algorithm (Theorem A. 1). By applying N(N -
1) concurrent instances of the same algorithm (for each q and each I) and
noting that c,, = pq the evaluation of all the terms in Eq. (17) can be done
in less than flog Ml parallel steps. The required divisions for Eq. (11) can
be achieved in a single parallel step. Finally the additions require at most
O[log N) steps. Hence the result follows. n

The first step in the evaluation of the GDDs from Eq. (8) consists of the
calculation of all interaction coefficients h(j, q, r, t;, 2,).

COROLLARY 4.1. With M as dejned above, the calculation of all

forr= 1,. . . , ti, - 1 can be carried out in O(log N + log M) parallel
steps.

Proof. At first all of the differences

a - z, forOslfq<N-1

are evaluated in a single parallel subtraction step (not contributing to the
order of magnitude counts for the complexity of the algorithm). From
Lemma 4.3 the calculation of all the P terms in Eq. (14) above can be
performed in O(log N + log M) parallel steps. All the factorial coefficients
can also be calculated in parallel in at most O(log M) steps by applying
parallel prefix (Corollary A.l). Thus the result follows. n

We now proceed to the second major step of the algorithm.

LEMMA 4.4. Assuming all interaction terms A are available, for each
value of q and i, all of

c$‘(r; z,); r=O,. . . yti,

can be calculated in O(log2 tiq + log N) parallel steps.

Proof. First we note that if N = 1, then G reduces to Lao, which is a
diagonal matrix consisting of terms l/k! for k = 0, . . . , M - 1. From
Corollary A. 1 the evaluation can be completed in time O(log M). The key
to the proof when N > 1 is the observation that Eq. (13) for each of the
needed terms c$‘(r; z,) is a linear recurrence of order fiq. Hence at first all
initial values

1
ab”)(o; z,) = -

wb’i’tzq)

430 ECiECIOC;LU,GALLOPOULOS, AND KOC

for 1 zs i 5 n and 0 s q 5 N - 1 must be computed. The most complicated
term here corresponds to i = n with

).$J = (Zl - &)PO . . . (z, - z,-*)P~-~(z, - zq+#q+ . . . (zq - ZN-dPN-

= (z, - zo)p~-‘(zl - zo) . . . (z, - zq-1p-‘(zq - zq-1) .

(zq - zq+,p+qzq - z,+J . . . (z, - ZN-,P+-‘(Zq - m-1).

From Eq. (17) we have already available most partial products of the
right-hand side since pi - 1 = I,,~ - 1. In a single parallel step the partial
products are completed by multiplying each (z, - z$‘-i with (z, - zk).
This is done for all instances of q and ti. The final products are then
calculated in O(log N) steps by means of parallel prefix. After a parallel
division step, all initial values (Y~)(O; z,) are available. Finally, the order ti,
linear recurrences of Eq. (13) are solved for each of

cd’J(r* z) 4 7 q for r = 1, . . . , liq

and each fixed value of q and i. From Theorem A.2 this can be done in
parallel time O(log* fiq), and the result follows. n

We have the Lemma 4.4 that all the recurrences, resulting as i and q
take their possible values, can be solved concurrently in time at most
O(log* M). The last two steps of the algorithm are described in the proof
of the main theorem, Theorem 4.1.

THEOREM 4.1. All of the n generalized divided difference coefjcients
for the Hermite interpolating polynomial can be evaluated in O(log N +
log* M) steps when M, N > 1.

Proof. Using Lemma 3.1 we express each of the GDD as in Eq. (8).
From Corollary 4.1 the coefficients of all recurrences in Eq. (13) can be
evaluated in time O(log M + log N). Next the initial values for each of the
recurrences are calculated in O(log N) steps as in Lemma 4.4. With this
information, the recurrences may be solved in time O(log* M). The next
step evaluates the cF:i’ summation of Eq. (8) since by now all the individ-
ual terms in the sum have been found. For fixed i and q this corresponds
to a summation of tiq terms, which can be done in at most [log tiq] parallel
steps. Hence all sums can be evaluated concurrently in time at most O(log
M). Finally, all these independently calculated terms are added together
using an additional O(log N) parallel steps. This procedure is applied for
all n instances of the index i and all the GDD are obtained in this manner.
Adding the times obtained above gives result. n

The next corollary shows that the algorithm applied to the special cases
of it4 = 1 (nonosculatory interpolation) or N = 1 is equivalent to comput-

PARALLEL HERMITE INTERPOLATION 431

ing the divided differences for the Newton form by means of the method
of Egecioglu et al. (1987a), or computing the coefficients of the truncated
Taylor expansion around zo, respectively.

COROLLARY 4.2. 1. When M = 1 the divided differences can be com-
puted in 2llog Nl + 2 parallel operations.

2. When N = 1 the divided differences can be computed on O(log M)
parallel operations.

Proof. First let M = 1. In this case pq = 1 for all q, n = N and

ti = (1, . . . 9 1; 0, * * * 7 0).

First, all of the z4 -zrforO5q#15N- 1 are calculated in a single
parallel subtraction. Since all pi’s are equal to 1, the step described in
Corollary 4.1 is empty. From Eq. (8), the formula for the divided differ-
ences becomes

where

i-l

wF'(z,) = w (z, - Z/l.

1%

The step described in Lemma 4.4 is reduced to the calculation of the
initial values

(p((). z) 1 = - 4 7 4 wk”‘(ZJ *

As in the lemma this is done as follows: parallel prefix is used for each q to
calculate the products

(z, - zo)
(z, - zok, - Zl)

. . .

(z, - zo)(zq - Zl) . . . (z, - zq-l)(Z, - Zq+l) * * * (z, - a-1)

432 ECiECIOCiLU,GALLOPOULOS, AND KOC

in Ilog(N - I)1 steps. After a parallel division step all of the

are obtained. Finally, as described in Theorem 4.1 all the divided differ-
ences are computed by summing in parallel in at most Hog Nl steps. The
total time for the algorithm is thus found to be exactly Tlog(N - 1)l + flog
IV1 + 2, which is at most 211og Nl + 2, agreeing with the time given in
Theorem 2.1. This proves the first part of the lemma. When N = 1 and M
is arbitrary, Eq. (8) reduces to

f F’)
&,I = ci _ I)! .

Moreover G becomes the diagonal matrix 1500. Now all the required terms
can be calculated in flog Ml + 1 parallel steps using Corollary A. 1.
Clearly, this is equivalent to taking the first M terms of the Taylor expan-
sion forf(z) around ZO. n

We remark that Egecioglu ef al. (1987a) show that the algorithm pre-
sented for M = 1 is practical, in the sense that its numerical stability
properties are similar to those of the serial algorithms.

5. POLYNOMIAL EVALUATION

As mentioned by Egecioglu et al. (1987a), a fast algorithm for the inter-
polation would not be very useful unless an algorithm of comparable
speed could be designed for the evaluation.

THEOREM 5.1. Given suficiently many processors, a polynomial of
degree n - 1 written in its Newton representation can be evaluated in
2rlog nl + 2 parallel arithmetic steps at points {sl, . . . , sk}.

Proof. Since we are not concerned with the exact number of proces-
sors, there can be arbitrarily many points of evaluation. The proof holds
irrespective of whether some xi’s are equal or not, and hence is a direct
carry-over from Egecioglu et al. (1987a). First, all of the values

Sl - Xj; I= 1,. . . ,k; j=O,. . . ,n-I

PARALLELHERMITEINTERPOLATION 433

are evaluated in one parallel step. Using parallel prefix and an extra
multiplication the evaluation of

[,ifJ(iS[-Xj)}; i= 1,. . * ,Iz- 1

for-l= 1,. . . , k can be achieved in Ilog(n - 1)l + 1 steps. A parallel
summation algorithm for each 1 (e.g., parallel prefix or binary tree) for the
partial results completes the algorithm in an additional flog nl steps. n

6. APPLICATIONS TO VANDERMONDE SYSTEMS

Using the combinatorial symbol

(iv), = N(N - 1) * * * (N - r + l),

the confluent Vandermonde matrix corresponding to the distinct points
{z,>, 4 = 0, * . * , IV - 1 and the multiplicity vector p defined in Section 2
is of the form

where each of the blocks U, E ‘31Nxpq and

i

1 0 0 * 0

"z': 2:
0 . 0

u, = 3 z9
;

2 . 0
% 62, *

z/-l (N - i)Iz;-2 (iv - ;)2z;-3 : (iv - l);,Z;-Pq-I

To solve the dual system

UTa = b (19)

a parallel solver could be applied directly. However, as it happens with
systems having a special structure (e.g. Toeplitz), lower-complexity algo-
rithms can be obtained. The connection with interpolation becomes clear
after we observe that the solution a of Eq. (19) is the vector of coefficients
of the unique polynomial p(z) such that p”“(Xi) = pi, where pi is the ith
element of b. As before, the points Xi come from the unrolling of the
sequence z, to include the repetitions. The use of divided differences is

434 ECiECIOC;LU,GALLOPOULOS,AND KOC

frequently recommended (Bjorck and Pereyra, 1971; Galimberti and
Pereyra, 1971; Tang and Golub, 1981). The algorithm, whose sequential
complexity is O(n2), proceeds in two distinct steps.

1. Compute the divided difference vector c = [yo, . . . , yn-,IT
corresponding to the interpolation information pairs {xi, pi}, i = 0, . . . ,
n - 1.

2. Transform the Newton form polynomial x:Id yi n;ZA (X - Xj) into
power form 2::; aiXi. The uniqueness of polynomial interpolation implies
a = [aI& . . .) a,-,lT.

LEMMA 6.1. Given the pairs {n, xi}, i = 0, . . . , n - 1, for the
Newton polynomial representation

n-l i-l

Pn-l(X) = 2 Yi fl (X - Xj>,
i=o j=O

(20)

the coefficients {ai}, i = 0, . . . , n - 1, of the power form representation

n-l
P,-,(X) = C (YiXi

i=o
(21)

can be computed in O(log n) parallel steps.

Proof. (see also Koc, 1988). For i = 0, . . . , n - 1, the power form
for the product I$,: (x - xj) can be computed in parallel time O(log i) from
Theorem A.3. One parallel step for the multiplication with the yi and an
O(log i) parallel addition to group the coefficients corresponding to xi
returns the results in time O(log n). w

When p = (1, . . . , I), the matrix U in Eq. (18) becomes

11 ..I
zo 2; za . zp’

u = z1 z: z:

iL I
* zr-’ ,

22 . * . zf-’ . . . a-1 zk-* ZL-, . ZKII

Gohberg et al. (1987) describes a parallel algorithm of time complexity
O(N) for this case. Using the nonconfluent (44 = 1) version of the algo-
rithm described in this paper (see also Egecioglu et al., 1987a) steps (1)
and (2) can be completed in O(log N) parallel time. We summarize the
discussion in the following lemma.

PARALLEL HERMITE INTERPOLATION 435

LEMMA 6.2. The dual Vandermonde system in Eq. (19) can be solved
using O(log* M + log N) parallel operations.

7. CONCLUSIONS

We have described algorithms for parallel interpolation, evaluation and
some applications. This generalizes the work of Chin (1976), Egecioglu et
al. (1987a), and Reif (1986). The algorithms can be extended to handle the
more general problem of Hermite-Birkhoff interpolation (Elsner and
Merz, 1975; Sharma, 1972), whenever well-poised.

It could be argued that an actual implementation may be impractical
since by the time the problem becomes large enough to justify the use of
parallelism, polynomial interpolation could break down due to ill-condi-
tioning. Certain point distributions however will delay this breakdown.
The improvement in Lagrange interpolation when Chebyshev rather than
equidistant points are used is well known. Computing a good set of points
is a challenging problem (Gautschi, 1975; Kilgore, 1978) and we point to
recent work by Reichel(l988) and Tal-Ezer (1988) for Newton interpola-
tion. We also point to work by Higham (1985), where an error analysis is
performed of the divided difference-based Vandermonde solver of Bjorck
and Pereyra and its success is explained.

The algorithms presented here make heavy use of the parallel prefix
algorithm, as well as of fast parallel algorithms, for the solution of linear
recurrences and polynomial multiplication. Even though the required
number of processors is polynomial in the input size, the issue of exact
processor count is left for future discussion. We only mention that if one
is interested in the processor-time trade-offs, there are many possibilities
even in the simplest case of M = 1. This is mainly due to the variety of
strategies one can follow for parallel prefix.

APPENDIX

We review some known concepts and results which are used in the
paper.

Let * be an associative binary operation on a set T. The prefix computa-
tion problem is defined as follows: Given elements yl, . . . , yn E T,
compute all n initial products (prefixes) yi * y2 * * * * * yi for i = 1, . . . ,
n. Parallel algorithms for this computation are called parallel prefix algo-
rithms. The following result is well known and essential for the discussion
(Kruskal et al. 1985; Ladner and Fischer 1980).

436 ECiECIO6LU,GALLOPOULOS,AND KOC

THEOREM A.1 The n input parallel prefix computation can be per-
formed in Hog nl parallel time.

The next corollary follows trivially from Theorem A. 1,

COROLLARY A. 1 Given a positive integer n, all factorial terms

I!, 2!, 3!, . . . , n!

can be computed in Hog nl parallel time.

The next results concern the parallel solution of lower triangular sys-
tems, or equivalently of linear recurrences (Sameh and Brent, 1977) and
fast polynomial multiplication (Reif, 1986).

THEOREM A.2 The triangular system of equations Lx = f, where L is a
lower triangular matrix of order n, can be solved in f log2 n + 4 log n + 3
parallel steps.

THEOREM A.3. The coefjcients of the power form representation of
the product of m polynomials with real coefficients of degree n - 1 each,
can be computed in O(log mn) parallel steps.

Proof From Reif (1986, Theorem 2.3). n

REFERENCES

AHO, A., HOPCROFT, J. E., AND ULLMAN, J. D. (1974), “The Design and Analysis of
Computer Algorithms,” Addison-Wesley, Reading, MA.

ATWOOD, G. H. (1988), Parallel Lagrangian interpolation, in “Proceedings, 1988 Interna-
tional Conference on Parallel Processing” (D. H. Bailey, Ed.), pp. 120-123.

BJ~RCK, A., AND PEREYRA, V. (1971) Solution of Vandermonde systems of equations,
Math. Comp., 893-903.

CHIN, F. Y. (1976), A generalized asymptotic upper bound on fast polynomial evaluation,
SIAM J. Comput. 5, 682-690.

DAVIS, P. J. (1975), “Interpolation and Approximation,” Dover, New York.
EGECIOGLU, O., GALLOPOULOS, E., AND KOC, C. (1987a), “Fast and Practical Parallel

Polynomial Interpolation,” Tech. Rep. 646, Center for Supercomputing Research and
Development, University of Illinois at Urbana-Champaign, January.

EC;ECIOCLU, O., GALLOPOULOS, E., AND Koc, C. (1987b), “Parallel Hermite Interpolation:
An Algebraic Approach,” Tech. Rep. 671, Center for Supercomputing Research and
Development, University of Illinois, Urbana-Champaign, July (Computing., in press).

ELSNER, J., AND MERZ, G. (1975), Linear Punktfunktionale und Hermite-Birkhoff-Interpo-
lation, Beitr. Numer. Math. 4, 69-82.

GALIMBERTI, G., AND PEREYRA, V. (1971), Solving confluent Vandennonde systems of
Hermite type, Numer. Math. 18, 44-60.

GAUTSCHI, W. (1975), Optimally conditioned Vandermonde matrices. Numer. Math. 24,
1-12.

PARALLEL HERMITE INTERPOLATION 437

GEL’FOND, A. 0. (1971), “Calculus of Finite Differences,” Hindustan Pub., New Delhi,
India.

GOHBERG, I., KAILATH, T., KOLTRACHT, I., AND LANCASTER, P. (1987), Linear complexity
parallel algorithms for linear systems of equations with recursive structure, Linear
Algebra Appl. t38/89 (April), 271-315.

HENRICI, P. (1974), “Applied and Computational Complex Analysis,” Vol. 1, Wiley, New
York.

HIGHAM, N. J. (1985), “Error Analysis of the Bjorck-Pereyra Algorithms for Solving Van-
dermonde Systems” Tech. Rep. Numer. Anal. 108, Department of Mathematics, Uni-
versity of Manchester, December.

HOROWITZ, E. (1972), A fast method for interpolation using preconditioning, IFIP Left.,
157-163.

KILGORE, T. A. (1978) A characterization of the Lagrange interpolating projection with
minimal Chebyshev norm, J. Approx. Theory 24, 273-288.

Koc, C. (1988), “Parallel Algorithms for Interpolation and Approximation,” Ph.D. thesis,
Department of Electrical and Computer Engineering, University of California, Santa
Barbara, June.

KROGH, F. (1970), Efficient algorithms for polynomial interpolation and divided differences,
Math. Comp. 24 (January), 185-190.

KRUSKAL, C. P., RUDOLPH, L., AND SNIR, M. (1985) The power of parallel prefix, IEEE
Trans. Cornput. C-34, No. 10 (October), 965-968.

KUNG, H. T. (1973), “Fast Evaluation and Interpolation,” Tech. Rep., Department of
Computer Science, Carnegie-Mellon University.

LADNER, R., AND FISCHER, M. (1980), Parallel prefix computation, J. Assoc. Comput.
Much. 27 831-838.

REICHEL, L. (1988), “Newton Interpolation in Fejtr and Chebyshev Points,” Tech. Rep.
88/24, IBM Bergen Scientific Centre, May.

REIF, J. (1986), Logarithmic depth circuits for algebraic functions, SIAM J. Comput. 15,
231-242.

SAMEH, A. H., AND BRENT, R. (1977), Solving triangular systems on a parallel computer,
SIAM .I. Numer. Anal. 14, 1101-l 113.

SHARMA, A. (1972), Some poised and nonpoised problems of interpolation, SIAM Rev. 14,
No. 1 (January), 129-151.

TAL-EZER, H. (1988), “High Degree Interpolation Polynomial in Newton Form,” Tech.
Rep. 88-39, ICASE.

TANG, W. P., AND GOLUB, G. H. (1981), The block decomposition of a Vandermonde
matrix and its applications, BIT 21, 505-517.

TRAUB, J. F. (1964), “Iterative Methods for the Solution of Equations,” Prentice-Hall,
Englewood Cliffs, NJ.

TSAO, N. K., AND PRIOR, R. (1978), On multipoint numerical interpolation, ACM Trans.
Math. Software 4, No. 1 (March), 51-56.

