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1. INTRODUCTION 

Fast algorithms (serial complexity less than O(N2) and parallel com- 
plexity less then O(N) for N input pairs) and asymptotic bounds for 
polynomial interpolation using as information the value of a function at N 
distinct points (called simply interpolation from here onward) have been 
presented by many researchers in the literature (Aho er al., 1974; Chin, 
1976; Horowitz, 1972; Kung, 1973; Reif, 1986). In Egecioglu et al. (1987a) 
the authors presented a new algorithm for the fast calculation of the 
divided difference coefficients of the Newton representation for the inter- 
polating polynomial. The method has parallel complexity’ 2llog Nl + 2 
and is based on the parallel prefix algorithm2 (Ladner and Fischer, 1980; 
and the Appendix). 

In this paper we investigate the more general problem of Hermite inter- 
polation, where the input is a set of distinct points and corresponding to 
each point, prescribed values for a function f and all its derivatives up to 
some arbitrary order. We show that for large M and N, the computation of 
the corresponding interpolating polynomial has parallel complexity @log2 
M + log N), where M - 1 is the order of the highest derivative informa- 
tion and N is the number of distinct points used in the interpolation. Our 
construction is based on a fast algorithm for the evaluation of all the 
required polynomial coefficients, the generalized divided differences. 

The resulting upper bound extends and improves previous work for 
polynomial interpolation. Table I compares the current computational 
complexity results for polynomial interpolation. When N = M the inter- 
polation can be done in @log2 N) parallel steps, whereas when M = 1 
(i.e., no derivatives are involved) the complexity is O(log N). We show 
that the algorithm for the latter case of M = 1 is identical with the one 
presented by the authors in Egecioglu et al. (1987a). Recently, the authors 
presented another parallel algorithm for Hermite interpolation based on 
algebraic arguments (Egecioglu et al., 1987b), which has parallel com- 
plexity @log N) for M fixed. Nevertheless, as mentioned in that paper, in 
this case the order of complexity depends exponentially on M, if M is 
allowed to vary. Consequently, what we present here is a substantial 
improvement over the latter paper in terms of theoretical parallel time 
complexity. 

It could be argued that an actual implementation of the proposed algo- 
rithm is impractical, since, as is well known, by the time the size of the 
problem becomes large enough to justify the use of parallelism, polyno- 
mial interpolation may break down. We note however that as is men- 

I The complexity counts give the number of parallel (elementary) arithmetic operations, 
which we take to be over the real field for consistency. 

2 All logarithms are base 2. 



Re
pr

es
en

tat
ion

 

TA
BL

E 
1 

C
O

M
PL

EX
IT

Y ES
TI

M
AT

ES
 

FO
R

PO
LY

N
O

M
IA

L IN
TE

R
PO

LA
TI

O
N

" 

No
no

sc
ula

ior
y 

Se
qu

en
tia

l 
Re

f. 
Pa

ra
lle

l 
Re

f. 

La
gr

an
ge

 
O(

N 
log

2 
Nj

 
Ne

wt
on

 
OW

) 
Ku

ng
, 

19
73

 
Kr

og
h,

 
19

70
 

Of
log

 
N)

 
Re

if,
 

19
86

; A
tw

oo
d,

 
19

88
 

2 
2 

log
 N

 +
 2

 
Eg

ec
iog

lu 
ef

 a
l., 

19
87

a,
 

Co
r. 

4.
2 

3 

Os
cu

lat
ory

 
2 

La
gr

an
ge

-H
em

&e
 

U(
n 

log
 n

(lo
g 

N 
+ 

1))
 

Ch
in

, 
19

76
 

Ne
wt

on
 

OW
) 

Ts
ao

 a
nd

 P
rio

r, 
19

78
 

a s
(M

) 
is 

ex
po

ne
nt

ial
 

fu
nc

tio
n 

of
 M

 
an

d 
n 

is 
de

fin
ed

 
in 

Eq
. 

(1
). 

ON
W

og
 

N)
 

O(
log

 
N 

+ 
log

2 
M

) 
Eg

ec
iog

lu 
et

 a
l., 

19
87

b 
Th

m
. 

4.
1 

5 2 



420 EC;ECIOC;LU,GALLOPOULOS, AND KOC 

tioned in Section 7, certain point arrangements will delay this breakdown. 
Results of Egecioglu et al. (1987a) indicate that at least Newton nonoscu- 
latory interpolation based on the proposed algorithm for these special 
points could be of some practical value. 

We also remark that the parallel arithmetic complexity of @log* A4 + 
log N) operations achieved by our algorithm may require a large (but 
polynomial in the input size) number of processors. Thus its sequential 
implementation will be less efficient than standard serial algorithms for 
interpolation. The issues of exact processor count and processor-time 
trade-offs for our algorithm are left for future discussion and not ad- 
dressed here. 

Section 2 introduces notation and describes the problem. In Section 3 
(Lemma 3.1) the appropriate representation of the GDD (from the point of 
view of the interpolation algorithm) is introduced. The material in Section 
4 culminates in Theorem 4.1, proving the main result. Section 5 contains a 
brief discussion on polynomial evaluation. Finally, Sections 6 and 7 re- 
spectively contain applications and conclusions. 

2. NOTATION AND DESCRIPTION OF THE PROBLEM 

We are given as input a set of distinct points {z,; q = 0, . . . , N - I} 
and for each of these points a set of valuesfr’ with k = 0, 1, . . . , py - 1 
for pq E Z+, where Z+ denotes the set of positive integers. We define the 
multiplicity vector p of the input as 

p = (PO, . . . 3 PN-I). 

Based on this information, we are required to construct a polynomial P of 
degree II - 1, where 

N-l 

n=Cp, 
y=o 

(1) 

such that 

f!) = P(Q); k=O,. . . ,pq-1; q=O,. . . ,N-1. (2) 

Here P(“(z,) denotes the derivative of order k of the polynomial P evalu- 
ated at the point z,. 

The existence and uniqueness of such a polynomial is well known 
(Davis, 1975). For the construction and representation of P two distinct 
approaches may be followed: the Lagrange-Hermite (Traub, 1964) ap- 
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preach and the (generalized) divided difference approach. Here we follow 
the latter. In the simple case of ps = 1 for all q and n = N, the polynomial 
is written in its Newton form 

n-1 q-1 

P(s) = C f;zo....,~,l ,IJ 6 - zj)T 
q=o 

(3) 

where the coefficients of the monomial products are the divided differ- 
ences that are usually constructed recursively by means of tables. These 
constructions however are sequential in nature and require O(n) parallel 
arithmetic operations. An alternative method is to use a closed linear 
formula for each of the divided differences and evaluate them all in paral- 
lel by utilizing the properties of the parallel prefix algorithm. With a slight 
change of wording, a main result of Egecioglu et al. (1987a) is the follow- 
ing theorem. 

THEOREM 2.1. The divided difference coefjcients of the Newton inter- 
polatingpolynomialfor Npoints can be computed in at most 2llog Nl + 2 
parallel arithmetic steps. 

In the general case treated in this paper, there may be more than one 
datum of information per point zi. Hence the definition of the divided 
differences must be extended to cover this case. This is done by taking the 
limit of the ratios defining the divided differences for equal arguments. In 
particular, considering now points x0 5 * * * 5 x, (not necessarily distinct 
and coincident in groups with individual z,s), define 

&,,...,x,+al = 5 (4) 

when xq = Xq+k, and 

Jtr,....,x,+d = 
~xqtl.....Xy+kl - f+J,+r-d 

Xqik - xq 
(5) 

otherwise. These are the generalized divided differences (GDD) whose 
fast evaluation we seek. As with the simpler case of Newton interpola- 
tion, the maximum speedup is limited when these definitions are applied 
directly for the construction of the GDD. 

Define a sequence of n f 1 index-of-multiplicity vectors ti y each of 
dimension N as follows: For 0 5 i 5 po, 

ti = (i, 0, . . . , 0). 
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Otherwise if 

po < i = po + . . . + f3-1 + p 5 po + . . . + PN-, = 12 

for 1 : j3 spl and p E z+, then 

Denote the Ith component of ti by tile For each i, let Q(i) denote the 
smallest index such that ta = 0 for I 2 Q(i). Also put z = (ZO, . . . , ZN-I) 
and define 

which we will also write as 

Z*ti = (ZO(tiO), . * . 9 ZN-l(ti,N-11). 

Clearly the vector sequence ti is nondecreasing in its components and 
(componentwise) 

ti 5 t, = (PO7 * . * 3 PN-1) 

= P. 

The vectors ti provide in increasing order the power index of the factors 
(S - ZJ) in the Newton representation of P. Define 

N-l 

w(“)(S) = JII, (s - Z/P, 

and 

w (‘J( s) 
wtj%) = (s _ zq)l” 

(6) 

N-l 

= E (s - ZIP. 

I+% 
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The Hermite interpolating polynomial can then be written in the form 

P(s) = 2 fiz.ri].W(“-w* (7) 

The coefficients~z,,,l in Eq. (7) are the GDD and we seek their fast evalua- 
tion for 1 5 i 25 n. 

For example, suppose the interpolation information consists of three 
distinct points {ZO, zr, z2} and functional and derivative information corre- 
sponding to the multiplicity vector p = (2, 1, 3), Then n = 6 and 

w(‘o)(s) = 1 

W(“)(S) = (s - zo) 

w(‘2)(s) = (s - z(-J2 

w(“)(S) = (s - zoj2(s - z,) 

w(‘“(s) = (s - zoJ2(s - z,)(s - z2) 

w(‘5)(s) = (s - zo)Z(s - ZI)(S - z2)2 

wqs) = (s - zcJ2(s - Zl)(S - z2j3 2 

P(s) = frzo] + fr&& - zo) + &o,7&z,](s - zoJ2 + &m,z,,& - zo)2(s - Zl) 
+ &,Z0,Z,,Z2,Z*](S - zo12(s - -as - a) 

+ ~~o.zo.z,,z*,z*.zzl(s - zoj2(s - Zl)(S - d2* 

3. REPRESENTATION OFTHEGENERALIZEDDIVIDEDDIFFERENCES 

The elementary definition of the (generalized) divided differences is 
that they are the coefficients of the Newton representation of the interpo- 
lating polynomial. Since a different wording of the objective of polyno- 
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mial interpolation is to construct a polynomial P which interpolates some 
functionffor which we have functional and derivative information avail- 
able, we identify the given datumft) with (dk/dzk)f(zq). We denote by D’ 
the differentiation operator applied r times with respect to the underlying 
variable, 

LEMMA 3.1. Let f be analytic in a simply connected region R and let C 
be a rectijiable Jordan curve lying in a. Suppose the points z, for q = 
0 3. * *, N - 1 lie in the interior of C. Then the GDDs off are given by 

fori= 1,. . . ,n. 

(8) 

Proof. It can be shown (Gel’fond, 1971; Elsner and Met-z, 1975) that 

where C is a closed contour enclosing all points zi (Davis, 1975; Elsner 
and Merz, 1975; Gel’fond, 1971). From 
1974) 

the Residue Theorem (Henrici, 

(s - ZqMS) 
I&) (s - Z,)“’ 1 s=‘? 

with zeros being contributed to the sum whenever t;, = 0. From Leibnitz’ 
rule for the derivatives of a product 

which is the result as seen in Eq. (8). H 

To remain consistent with the previous discussions and complexity 
counts we consider real zis. It is however trivial to adapt the discussion 
for the complex field. In fact, all our results are equally valid for complex 
interpolation if we change the elementary operation unit to be defined 
over the complex field. 

From Eq. (8) it also follows that the GDD can be viewed as a linear 
transformation on !IP, 

6 = G4, (9) 
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where 

6 = (.&.t,l, * * * 7 AZ.f,l)T> 

c#l = (fo, . . . ,p-'), fi, . . . ) fn-I, . . . , f'R-"i'-")T. 

Here G is the lower block triangular matrix J&l 0 . . . . . . 0 
Lo Lll 0 . . . 0 

1: I’. *- : 
L*. . . . . . . . . . . . . 

&v-Lo G-I,, * * : LN-2.N-I LN-;.N-, I7 

in which L, E %PJfi and the Lii are lower triangular. In particular Loo is the 
diagonal matrix 

--(” ‘“I j. l,(p;A l)). 
For example, when pi = 1 for all i (the nonconfluent case) each Lij is 

reduced to a scalar and G is of order N. When N = 1, then G reduces to 
bo- 

It is central to this paper that the construction of the divided differences 
is reducible to the fast computation of Eq. (9). We distinguish two steps: 

1. The computation of all elements of G (assembly phase). 
2. The matrix-vector multiplication in Eq. (9). 

We can already see that the time for step 2 is at most O(log n), or in terms 
of M and N, O(log N + log M). In the subsequent sections we shall see 
how to obtain a fast algorithm for assembly step 1 and its combination 
with step 2. 

4. RESULTS AND ALGORITHM DESCRIPTION 

The arguments in this section lead to a constructive proof of the main 
complexity result presented in Theorem 4.1. 

For the moment let 

(10) 
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for any x, with 

1 &)((). X) = - 4 ’ w @J(x) * 4 

To motivate our discussion we examine in some detail the example 
started in Section 2. From Lemma 3.1 it follows that 

.&l = f(zo) 

f(zo) 1 JTzo) 1 
&21 = m D i + 

-- 
. . O!l! 1 

. . . 

Using Q as in Eq. (IO) above, the matrix G in this case is 

1 0 

I 
0 

i! 

. 0 a”“( I 20) cP(O; zo) 0 
l!O! O!l! 

0 @)(I; zo) P(O~ 0 *O z 1 
l!O! O!I ! 

cub’qo; zo) ab’)‘( 1; LO) 

l!O! O!l! 

0 a’@( 1. zo) ce(O~ 0 90 z ) 
l!O! O!l! 

0 

a:I”(o; 2,) 

qto; ZJ 

cypto; 2,) 

cp(0; z,) 

0 

a:'qo; z2) 0 

&'(l z2) 2 aqo; zz) 2 
l!O! O!l! 

0 

a”6’(2. zz) ce(l. z ) dd(O. z ) 2’ 292zy2 
2!0! l!l! 0!2! 

The evaluation of G is centered around the evaluation of each of the 
blocks L,,. Lemmas 4.1 and 4.2 demonstrate that for given q and i (i.e., in 
a given row of block Lqr), the terms alf”(r; z,) satisfy a linear recurrence in 
r. To solve each of these recurrences, their coefficients and initial values 
must first be evaluated (Lemma 3.1 and Corollary 4.1). The recurrences 
are then solved as described in Lemma 4.3. Finally, all of these steps are 
put together in the description of the algorithm in the proof of Theorem 
4.1. 

The proof of the following lemma follows trivially after application of 
the rules of differentiation. 
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LEMMA~.~. Fori=l,. . .,nandq=O,. . .,N-1,define 

N-l 

(11) 

where the sum is empty (and equal to 0) when N = 1. Then for j 2 1 

&#J.(s) = (-jp). (s) 
9,J 9,J+I * 

From this lemma it immediately follows that 

DqfJs) = (- l)“v!cr:‘:$+,(S). 

LEMMA 4.2. When r 2 I 

[D&-J=;, = 2 (’ ; l)w+li!uY::+l(z,) [~~-l-+J=;,. (12) 9 9 
Proof. Differentiating 

D (3 = - & d%s) w:“‘(S) 9 

with CT defined as in Lemma 4.1, we see that the lemma is valid for r = 1. 
What we have here is an expression for the derivative as a product of two 
known functions. When Leibnitz’ theorem for the higher derivatives of a 
product of functions is applied, it follows that for r 2 1 

D’ (A) = -IF’ (gy) 
9 9’ 

=-py) , ob~‘,(s)D~-l-j (---&), 
9 

and using Lemma 4.1 

=tgJ1) > (-*)j+‘j!ub’i’j+,(s)D’-l-j (p&j,. 
9 

Evaluating at z, gives the result. n 



428 EC;ECIOC;LU, GALLOPOULOS, AND KOC 

From Lemma 3.1, we seek an algorithm for the fast evaluation of Eq. 
(8) as i varies from 1 to n. By substituting the expression derived in 
Lemma 4.2 for the derivatives in Eq. (8), it seems that for the computation 
of each one of the GDD, a triple summation is required. However, we 
next show that a combination of fast algorithms can be used to achieve a 
much more rapid evaluation. 

From Lemma 4.2, for r I 1 

r-l 

ab’i’(r; z,> = c h(j, q, r, tj, z,)a~(r - 1 - j; z,), 
j=O 

where 

I 
W, 4, r, ti, ZJ = (-IV+’ tr’L; “iI! u $fj+ 1 (Zq> 

(13) 

(14) 

are the interaction coefficients. 

LEMMA 4.3. Consider the array 

(11) 01) (11) 
Ug,J(ZO) ul,j(zl) u2,J(z2) * U$!l,j(ZN-I) 

u('z)~zo) @!(z,) afy(z3 * (T~!,,J(ZWl) 
o,J .J 

(13 

u(‘“)(zo) u(‘“!(z,) c#(z2) * a$(,$, J(ZN-l) 0.j I>J 

Each array element cr$;$z,) as defined in Eq. (11) represents the jinite 
sequence 

In particular the sequence is empty if tiq I 1. Let M be the maximum of 
{PO, - . . , PN-I}. Then all sequences defined as in Eq. (16) for each array 
element of Eq. (15) can be evaluated in O(log M + log N) parallel opera- 
tions . 

Proof. First observe that across the array in Eq. (15) each of the tj,‘s 
takes all integer values from 0 to t,/ C= pl I M. Similarly j assumes values 
from 1 to tiq - 1. From Eq. (11) the elements in Eq. (16) for every array 
entry are based upon linear combinations of terms 

(z, - Z[)‘, . . . , (z, - z1P-‘* (17) 
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The evaluation of all such terms can be achieved in O(log fnq) steps by 
means of the parallel prefix algorithm (Theorem A. 1). By applying N(N - 
1) concurrent instances of the same algorithm (for each q and each I) and 
noting that c,, = pq the evaluation of all the terms in Eq. (17) can be done 
in less than flog Ml parallel steps. The required divisions for Eq. (11) can 
be achieved in a single parallel step. Finally the additions require at most 
O[log N) steps. Hence the result follows. n 

The first step in the evaluation of the GDDs from Eq. (8) consists of the 
calculation of all interaction coefficients h(j, q, r, t;, 2,). 

COROLLARY 4.1. With M as dejned above, the calculation of all 

forr= 1,. . . , ti, - 1 can be carried out in O(log N + log M) parallel 
steps. 

Proof. At first all of the differences 

a - z, forOslfq<N-1 

are evaluated in a single parallel subtraction step (not contributing to the 
order of magnitude counts for the complexity of the algorithm). From 
Lemma 4.3 the calculation of all the P terms in Eq. (14) above can be 
performed in O(log N + log M) parallel steps. All the factorial coefficients 
can also be calculated in parallel in at most O(log M) steps by applying 
parallel prefix (Corollary A.l). Thus the result follows. n 

We now proceed to the second major step of the algorithm. 

LEMMA 4.4. Assuming all interaction terms A are available, for each 
value of q and i, all of 

c$‘(r; z,); r=O,. . . yti, 

can be calculated in O(log2 tiq + log N) parallel steps. 

Proof. First we note that if N = 1, then G reduces to Lao, which is a 
diagonal matrix consisting of terms l/k! for k = 0, . . . , M - 1. From 
Corollary A. 1 the evaluation can be completed in time O(log M). The key 
to the proof when N > 1 is the observation that Eq. (13) for each of the 
needed terms c$‘(r; z,) is a linear recurrence of order fiq. Hence at first all 
initial values 

1 
ab”)(o; z,) = - 

wb’i’tzq) 
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for 1 zs i 5 n and 0 s q 5 N - 1 must be computed. The most complicated 
term here corresponds to i = n with 

).$J = (Zl - &)PO . . . (z, - z,-*)P~-~(z, - zq+#q+ . . . (zq - ZN-dPN- 

= (z, - zo)p~-‘(zl - zo) . . . (z, - zq-1p-‘(zq - zq-1) . 

(zq - zq+,p+qzq - z,+J . . . (z, - ZN-,P+-‘(Zq - m-1). 

From Eq. (17) we have already available most partial products of the 
right-hand side since pi - 1 = I,,~ - 1. In a single parallel step the partial 
products are completed by multiplying each (z, - z$‘-i with (z, - zk). 
This is done for all instances of q and ti. The final products are then 
calculated in O(log N) steps by means of parallel prefix. After a parallel 
division step, all initial values (Y~)(O; z,) are available. Finally, the order ti, 
linear recurrences of Eq. (13) are solved for each of 

cd’J(r* z ) 4 7 q for r = 1, . . . , liq 

and each fixed value of q and i. From Theorem A.2 this can be done in 
parallel time O(log* fiq), and the result follows. n 

We have the Lemma 4.4 that all the recurrences, resulting as i and q 
take their possible values, can be solved concurrently in time at most 
O(log* M). The last two steps of the algorithm are described in the proof 
of the main theorem, Theorem 4.1. 

THEOREM 4.1. All of the n generalized divided difference coefjcients 
for the Hermite interpolating polynomial can be evaluated in O(log N + 
log* M) steps when M, N > 1. 

Proof. Using Lemma 3.1 we express each of the GDD as in Eq. (8). 
From Corollary 4.1 the coefficients of all recurrences in Eq. (13) can be 
evaluated in time O(log M + log N). Next the initial values for each of the 
recurrences are calculated in O(log N) steps as in Lemma 4.4. With this 
information, the recurrences may be solved in time O(log* M). The next 
step evaluates the cF:i’ summation of Eq. (8) since by now all the individ- 
ual terms in the sum have been found. For fixed i and q this corresponds 
to a summation of tiq terms, which can be done in at most [log tiq] parallel 
steps. Hence all sums can be evaluated concurrently in time at most O(log 
M). Finally, all these independently calculated terms are added together 
using an additional O(log N) parallel steps. This procedure is applied for 
all n instances of the index i and all the GDD are obtained in this manner. 
Adding the times obtained above gives result. n 

The next corollary shows that the algorithm applied to the special cases 
of it4 = 1 (nonosculatory interpolation) or N = 1 is equivalent to comput- 
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ing the divided differences for the Newton form by means of the method 
of Egecioglu et al. (1987a), or computing the coefficients of the truncated 
Taylor expansion around zo, respectively. 

COROLLARY 4.2. 1. When M = 1 the divided differences can be com- 
puted in 2llog Nl + 2 parallel operations. 

2. When N = 1 the divided differences can be computed on O(log M) 
parallel operations. 

Proof. First let M = 1. In this case pq = 1 for all q, n = N and 

ti = (1, . . . 9 1; 0, * * * 7 0). 

First, all of the z4 -zrforO5q#15N- 1 are calculated in a single 
parallel subtraction. Since all pi’s are equal to 1, the step described in 
Corollary 4.1 is empty. From Eq. (8), the formula for the divided differ- 
ences becomes 

where 

i-l 

wF'(z,) = w (z, -  Z/l. 

1% 

The step described in Lemma 4.4 is reduced to the calculation of the 
initial values 

(p((). z ) 1 = - 4 7 4 wk”‘(ZJ * 

As in the lemma this is done as follows: parallel prefix is used for each q to 
calculate the products 

(z, - zo) 
(z, - zok, - Zl) 

. . . 

(z, - zo)(zq - Zl) . . . (z, - zq-l)(Z, - Zq+l) * * * (z, - a-1) 
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in Ilog(N - I)1 steps. After a parallel division step all of the 

are obtained. Finally, as described in Theorem 4.1 all the divided differ- 
ences are computed by summing in parallel in at most Hog Nl steps. The 
total time for the algorithm is thus found to be exactly Tlog(N - 1)l + flog 
IV1 + 2, which is at most 211og Nl + 2, agreeing with the time given in 
Theorem 2.1. This proves the first part of the lemma. When N = 1 and M 
is arbitrary, Eq. (8) reduces to 

f F’) 
&,I = ci _ I)! . 

Moreover G becomes the diagonal matrix 1500. Now all the required terms 
can be calculated in flog Ml + 1 parallel steps using Corollary A. 1. 
Clearly, this is equivalent to taking the first M terms of the Taylor expan- 
sion forf(z) around ZO. n 

We remark that Egecioglu ef al. (1987a) show that the algorithm pre- 
sented for M = 1 is practical, in the sense that its numerical stability 
properties are similar to those of the serial algorithms. 

5. POLYNOMIAL EVALUATION 

As mentioned by Egecioglu et al. (1987a), a fast algorithm for the inter- 
polation would not be very useful unless an algorithm of comparable 
speed could be designed for the evaluation. 

THEOREM 5.1. Given suficiently many processors, a polynomial of 
degree n - 1 written in its Newton representation can be evaluated in 
2rlog nl + 2 parallel arithmetic steps at points {sl, . . . , sk}. 

Proof. Since we are not concerned with the exact number of proces- 
sors, there can be arbitrarily many points of evaluation. The proof holds 
irrespective of whether some xi’s are equal or not, and hence is a direct 
carry-over from Egecioglu et al. (1987a). First, all of the values 

Sl - Xj; I= 1,. . . ,k; j=O,. . . ,n-I 
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are evaluated in one parallel step. Using parallel prefix and an extra 
multiplication the evaluation of 

[,ifJ(iS[-Xj)}; i= 1,. . * ,Iz- 1 

for-l= 1,. . . , k can be achieved in Ilog(n - 1)l + 1 steps. A parallel 
summation algorithm for each 1 (e.g., parallel prefix or binary tree) for the 
partial results completes the algorithm in an additional flog nl steps. n 

6. APPLICATIONS TO VANDERMONDE SYSTEMS 

Using the combinatorial symbol 

(iv), = N(N - 1) * * * (N - r + l), 

the confluent Vandermonde matrix corresponding to the distinct points 
{z,>, 4 = 0, * . * , IV - 1 and the multiplicity vector p defined in Section 2 
is of the form 

where each of the blocks U, E ‘31Nxpq and 

i 

1 0 0 * 0 

"z': 2: 
0 . 0 

u, = 3 z9 
; 

2 . 0 
% 62, * 

z/-l (N - i)Iz;-2 (iv - ;)2z;-3 : (iv - l);,Z;-Pq-I 

To solve the dual system 

UTa = b (19) 

a parallel solver could be applied directly. However, as it happens with 
systems having a special structure (e.g. Toeplitz), lower-complexity algo- 
rithms can be obtained. The connection with interpolation becomes clear 
after we observe that the solution a of Eq. (19) is the vector of coefficients 
of the unique polynomial p(z) such that p”“(Xi) = pi, where pi is the ith 
element of b. As before, the points Xi come from the unrolling of the 
sequence z, to include the repetitions. The use of divided differences is 
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frequently recommended (Bjorck and Pereyra, 1971; Galimberti and 
Pereyra, 1971; Tang and Golub, 1981). The algorithm, whose sequential 
complexity is O(n2), proceeds in two distinct steps. 

1. Compute the divided difference vector c = [yo, . . . , yn-,IT 
corresponding to the interpolation information pairs {xi, pi}, i = 0, . . . , 
n - 1. 

2. Transform the Newton form polynomial x:Id yi n;ZA (X - Xj) into 
power form 2::; aiXi. The uniqueness of polynomial interpolation implies 
a = [aI& . . . ) a,-,lT. 

LEMMA 6.1. Given the pairs {n, xi}, i = 0, . . . , n - 1, for the 
Newton polynomial representation 

n-l i-l 

Pn-l(X) = 2 Yi fl (X - Xj>, 
i=o j=O 

(20) 

the coefficients {ai}, i = 0, . . . , n - 1, of the power form representation 

n-l 
P,-,(X) = C (YiXi 

i=o 
(21) 

can be computed in O(log n) parallel steps. 

Proof. (see also Koc, 1988). For i = 0, . . . , n - 1, the power form 
for the product I$,: (x - xj) can be computed in parallel time O(log i) from 
Theorem A.3. One parallel step for the multiplication with the yi and an 
O(log i) parallel addition to group the coefficients corresponding to xi 
returns the results in time O(log n). w 

When p = (1, . . . , I), the matrix U in Eq. (18) becomes 

11 ..I 
zo 2; za . zp’ 

u = z1 z: z: 

iL I 
* zr-’ , 

22 . * . zf-’ . . . a-1 zk-* ZL-, . ZKII 

Gohberg et al. (1987) describes a parallel algorithm of time complexity 
O(N) for this case. Using the nonconfluent (44 = 1) version of the algo- 
rithm described in this paper (see also Egecioglu et al., 1987a) steps (1) 
and (2) can be completed in O(log N) parallel time. We summarize the 
discussion in the following lemma. 
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LEMMA 6.2. The dual Vandermonde system in Eq. (19) can be solved 
using O(log* M + log N) parallel operations. 

7. CONCLUSIONS 

We have described algorithms for parallel interpolation, evaluation and 
some applications. This generalizes the work of Chin (1976), Egecioglu et 
al. (1987a), and Reif (1986). The algorithms can be extended to handle the 
more general problem of Hermite-Birkhoff interpolation (Elsner and 
Merz, 1975; Sharma, 1972), whenever well-poised. 

It could be argued that an actual implementation may be impractical 
since by the time the problem becomes large enough to justify the use of 
parallelism, polynomial interpolation could break down due to ill-condi- 
tioning. Certain point distributions however will delay this breakdown. 
The improvement in Lagrange interpolation when Chebyshev rather than 
equidistant points are used is well known. Computing a good set of points 
is a challenging problem (Gautschi, 1975; Kilgore, 1978) and we point to 
recent work by Reichel(l988) and Tal-Ezer (1988) for Newton interpola- 
tion. We also point to work by Higham (1985), where an error analysis is 
performed of the divided difference-based Vandermonde solver of Bjorck 
and Pereyra and its success is explained. 

The algorithms presented here make heavy use of the parallel prefix 
algorithm, as well as of fast parallel algorithms, for the solution of linear 
recurrences and polynomial multiplication. Even though the required 
number of processors is polynomial in the input size, the issue of exact 
processor count is left for future discussion. We only mention that if one 
is interested in the processor-time trade-offs, there are many possibilities 
even in the simplest case of M = 1. This is mainly due to the variety of 
strategies one can follow for parallel prefix. 

APPENDIX 

We review some known concepts and results which are used in the 
paper. 

Let * be an associative binary operation on a set T. The prefix computa- 
tion problem is defined as follows: Given elements yl, . . . , yn E T, 
compute all n initial products (prefixes) yi * y2 * * * * * yi for i = 1, . . . , 
n. Parallel algorithms for this computation are called parallel prefix algo- 
rithms. The following result is well known and essential for the discussion 
(Kruskal et al. 1985; Ladner and Fischer 1980). 
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THEOREM A.1 The n input parallel prefix computation can be per- 
formed in Hog nl parallel time. 

The next corollary follows trivially from Theorem A. 1, 

COROLLARY A. 1 Given a positive integer n, all factorial terms 

I!, 2!, 3!, . . . , n! 

can be computed in Hog nl parallel time. 

The next results concern the parallel solution of lower triangular sys- 
tems, or equivalently of linear recurrences (Sameh and Brent, 1977) and 
fast polynomial multiplication (Reif, 1986). 

THEOREM A.2 The triangular system of equations Lx = f, where L is a 
lower triangular matrix of order n, can be solved in f log2 n + 4 log n + 3 
parallel steps. 

THEOREM A.3. The coefjcients of the power form representation of 
the product of m polynomials with real coefficients of degree n - 1 each, 
can be computed in O(log mn) parallel steps. 

Proof From Reif (1986, Theorem 2.3). n 
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