Asymptotic Hypercube Embeddings of
Dynamic k-ary Trees

Omer Ejecioglu * and Mazimilian Ibel

Department of Computer Science
University of California Santa Barbara, CA 93106
{omer,ibel}@cs.ucsb.edu

Abstract

Several algorithms are known for embedding dynamically growing
trees onto hypercubes. In a dynamic k-ary tree each leaf node may
spawn k new children at any given time. The embedding process
must not reassign any tree node to another host node in the hyper-
cube once it has been placed. Desirable properties of the embedding
are low dilation and optimal load-balance.

The existing algorithms are mainly directed toward optimizing
the load balance for trees that are comparable in size to the host
graph. It has been observed that in this case the naive approach
of assigning newly spawned leaves to random neighbors in the hy-
percube host yields suboptimal results. We consider the asymptotic
behavior of this naive placement algorithm. For symmetry reasons it
is to be expected that the resulting process should lead to an asymp-
totically balanced load for dynamic k-ary trees. We give a formal
proof of this based on the Matrix-tree theorem for graphs. The proof
generalizes to arbitrary connected regular host graphs, such as tori
networks.

Keywords: Embedding, hypercube, dynamically growing trees,
load balancing, random walk, Matrix-tree theorem.

1 Introduction

Often the structure of computations is not fixed beforehand (as, for ex-
ample, for the Fast Fourier Transform), but rather depends on the input
data or other run time variables. Examples for such irregular computations
are branch-and-bound methods, where the tasks form some adaptive tree

*Supported in part by NSF/NASA/ARPA Grant No. IRI194-11330.

and the children of a task are sub-tasks that have been forked. Also, some
adaptive grid methods can be described as quad-trees that grow dynami-
cally whenever the grid is refined.

Many of these irregular computations are so time-consuming that they
are solved on parallel machines. Naturally the question arises how to dis-
tribute (or embed) the dynamic set of tasks to the hardware, which is
modeled as a graph whose nodes correspond to the individual computers
and edges to the network links. The topology of common multicomputers
are hypercubes (e.g., the Intel NCUBE), meshes (e.g. MasPar MP-1), tori
(e.g. the Cray T3E), rings (e.g., Kendall Square’s KSR-1), or topologies
easily embeddable into the hypercube (e.g., BBN Butterfly). We refer the
reader to Leighton [Lei92] for a detailed description and properties of these
architectures.

Figure 1: Embedding of a binary tree G with 5 leaves into a three-
dimensional hypercube H with dilation 1 and load 2.

Some properties a good embedding must have are:

1. Practicality. It must be straightforward to place a newly generated
task on a host node. In particular, it is not feasible to inquire the
status of all host nodes to determine the least loaded host node close
to the host node of the parent tree node.

2. Low dilation. A child task generated from a parent task should not
be placed on a host node far away from the host node of the parent.

3. Good load balance. All host nodes should at all times have ap-
proximately the same number of tasks. If we assume all tasks take
the same time, and communication occurs only between parents and

children, then nodes which receive a higher proportion of tasks will
take longer than other nodes, and the total computation time will be
longer.

The two seminal publications on dynamic embedding of trees into hy-
percubes are due to Bhatt and Cai [BC89|, and Bhatt, Chung, Leighton,
and Rosenberg [BCLR92]. Bhatt and Cai gave an embedding of an M-node
binary tree into an N-node hypercube, where the children of a tree node are
determined by a random walk of length loglog N in the hypercube. These
embeddings have load O(M /N +1) and dilation O(loglog N). In [BCLR92]
an algorithm based on a specialized random walk of length 1 with dilation
1 and load O(M/N + log N) is presented. Both algorithm are targeted
to yield good results for small M (e.g., M ~ N). A more recent treatise
of dynamical tree embeddings is given in [HM96]. Our contribution is an
analysis of an even simpler embedding algorithm for the case relevant in
practial applications, that is when M > N. This naive placement algo-
rithm turns out to yield asymptotically perfect load balancing. We show
that this follows from the Matrix-tree theorem.

As in [BC89, BCLR92], we assume that once a task has been assigned
to a particular host node, it stays there until its completion. Thus we do
not allow for task migration. Furthermore, we do not deal with deletion
of nodes and consider growing trees only, as the reduction of the case of
mixed insertions and deletions to insertions only is discussed in [BC89]
and [BCLR92]. Our analysis is valid not only for hypercubes but also
for arbitrary connected processor graphs which are regular, such as tori
networks.

The paper is organized as follows. Section 2 introduces the formal prob-
lem description and terminology used throughout the paper. Section 3
describes three different algorithms used to embed dynamically evolving
trees into hypercubes, Section 4 shows that the naive placement algorithm
asymptotically achieves optimal load balance. Section 5 shows some simu-
lation results for the three algorithms. Section 6 concludes the paper and
offers future research directions.

2 Notation and Problem Formulation

In the following, we consider the embedding of a process graph G (guest
graph) into a processor graph H (host graph). The nodes Vi in G =
(Vs, Ec;) represent the tasks, and the edges Eg the dependencies (we as-
sume only depending tasks need to exchange information), whereas nodes
and edges in H = (V, Ey) represent processors and communication links,
respectively. Let us denote the number of tasks |Vg| by M and the number

of processors |V | by N.

Formally, an embedding is defined as a node-mapping f : Vo — Vg and
an edge-mapping g : Eq — P(H), where P(H) is the path set of H and
the routing path g({u,v}) connects f(u) and f(v) in Vg, for {u,v} € Eq.

The following metrics are commonly associated with the embedding
problem: The dilation of the embedding (f,g) is the maximum length of
the routing-path connecting two adjacent nodes in the guest graph. The
load is the maximum, over all host-nodes, of the number of guest-nodes
mapped to a host-node. The edge congestion is the maximum number of
edges of G that are routed by the mapping g over a single edge of H.

Ideally, the load of each host node is M/N (i.e., the work is shared
equally), and the dilation is 1 (i.e., adjacent nodes in G are mapped on
adjacent nodes in H). It turns out that load and dilation are conflicting
parameters: If the dilation is kept small, we need to increase the maximum
load, whereas good load balancing is facilitated by allowing for higher dila-
tion. In order to simplify our analysis, we assume that each task takes unit
time to execute on any processor, and only leaf nodes are contributing to
the computation at any time. Therefore, the load of any host node is the
number of tree leaves mapped to it.

We model dynamic k-ary trees as follows: starting with a single root
node, we repeatedly generate larger trees. In each step, we choose one of
the leaves of the current tree. This leaf then spawns k new children. A
example for k = 2 is given in Figure 2, where the three possible successors
of a binary tree with a total of 3 leaves are shown. We assume that the leaf
picked for expansion in each step is chosen with equal probability from the
set of all current leaves of the tree.

p—]J3 p—1/3 p—1/3

fﬁ&

Figure 2: Three possible successors generated with equal probability 1/3
from a binary tree with 3 leaves.

Let H, denote the d-dimensional hypercube, whose nodes are numbered

from 0 to N — 1, where N = 2%, The d = log N nodes adjacent to z are
given by z[i] = XOR 27, for 0 < i < d. We also use the notation z < y
for adjacent nodes x and y.

3 Three Tree Embedding Algorithms

3.1 Naive Placement Algorithm

The most straightforward embedding algorithm, henceforth called naive
placement, starts by mapping the root of the source tree G to a fixed node,
say node 0 of the host hypercube H. When a leaf node u which has already
been mapped to a host node z in the hypercube is expanded, we randomly
choose k of the d neighbors of x to assign the newly spawned k children of
u. We analyze this algorithm in Section 4.

3.2 Random Walk Algorithm

It has been noted that the naive placement does not perform well for some
task trees of approximately the same size as the host graph, for example
complete binary trees. Bhatt and Cai [BC89] proposed the following em-
bedding algorithm: A newly spawned child v is not placed at a neighbor
of the hypercube node = hosting the parent u of v, but rather, a random
walk of length O(loglog N) starting from z is taken, and the new host
node is taken to be the endpoint of this walk. Bhatt and Cai showed that
with high probability, the resulting load is O(M /N + 1), and the dilation
is O(loglog N). They also showed that if the random walk length is chosen
smaller, say o(loglog N), and the embedded tree is a complete binary tree
with N ~ M, then at least one node has load Q(log® N) for any k, implying
that the load balance will be very poor in this case.

3.3 Flip-Bit Algorithm

The dilation of O(loglog N) is a high price to pay for acceptable load bal-
ancing. Bhatt et al. [BCLR92] showed how to embed binary trees into
butterfly networks with load O(M/N + log N) and dilation 1 with high
probability. The flip-bit algorithm can also be generalized to hypercubes,
yielding the same load and dilation. Each node in the tree is assigned a
dimension number equal to its depth in the tree modulo log N. When a
leaf with dimension number n spawns a child, it either is mapped to the
parent’s host node or the node reachable from the parent host node by
inverting bit n. The same paper also describes an improved algorithm that
achieves load O(M /N +1) and dilation O(1). The constant for the dilation
for this algorithm is 12.

The main reason for the rejection of the naive placement algorithm
was its unsuitability for trees equal in size to the host hypercube. We
therefore analyze in the next section the performance of the naive placement,
algorithm for large M /N, as N depends on the hardware and stays fixed
while M can get arbitrarily large.

4 Asymptotic Behavior of the Naive Place-
ment Algorithm

We first show how the Matrix-tree theorem implies that there exists exactly
one load distribution that is stationary with respect to the expansion of
nodes. A formal proof of convergence follows by modeling the embedding
process as a non-stationary Markov chain with convergent time-dependent
transition probabilities.

Define the load vector L = (Lo, Ly,... ,Ln_1), where L; is the number
of leaves hosted by hypercube node i. M = Lo+ - -+ Lx_; is the total
number of leaves. Initially, the tree consists only of a root node hosted at
processor 0, so that L = (1,0,0,...,0). Clearly, for load-balance we want
all elements in the load vector to be of the approximately the same size.

As an example for k = 2, let us consider the 3 dimensional hypercube
with nodes 0 to 7, and binary guest trees. Table 1 shows possible mapping
of children to hypercube nodes for all possible parent nodes. For example,
if a leaf hosted by hypercube node 0 is expanded the two new leaf news will
be placed at {1,2}, {1,4}, or {2,4}.

Parent || Choice 1 | Choice 2 | Choice 3
0 {1,2} {1,4} {2,4}
{0,2} {0,3} {2,3}
{0,3} {0,5} {3,5}
{1,2} {1,7} {2,7}
{0,5} {0,6} {5,6}
{1,4} {1,7} {4,7}
{2,4} {2,7} {4,7}
{3,5} {3,6} {5,6}

Table 1: Possible pairs of children mappings for each parent in the hyper-
cube.

N O Uk W N

In general, consider the d-dimensional hypercube (d = log N), in which
a leaf spawns k£ new children. There are (z) choices for placing the newly
created leaves!. Once this placement is made, let us consider the change

'k is taken to be (k mod d) if k > d.

4y, on the current load vector. Since we are counting leaves only towards
the load, the expanded node will vanish from the load vector and the cor-
responding entry in the load vector is decremented. Similarly, the entries
in the load vector corresponding to the k& newly placed children will be
incremented.

Let us again consider our example and assume a leaf on hypercube
node 0 is expanded. Then, the 3 choices to place 2 children, {1,2}, {1,4},
and {2,4}, will result in the relative changes §;, = (—1,1,1,0,0,0,0,0),
0, =(-1,1,0,0,1,0,0,0),and 6, = (—1,0,1,0,1,0,0,0) to the load vector,
respectively.

Given a particular load vector L, the probability p; of choosing node i
for expansion is L0+___LiLN71 = LM Now consider the probabilities by which
entries in the load vector change:

1. The probability L; is decremented is p;, since L; is decremented if
and only if node 7 is expanded.

d
obtained as follows. Since each neighbor j picks k of the d neighbors,
we need to calculate the probability that node ¢ is chosen as one of

the children. This probability is (Zj)/(z) = %

2. The probability that L; is incremented is %Z]Hi p;. The factor LT

3. The probability L; remains unchanged is ¢; = 1 — p; — %Zjeipﬁ
since this event is complementary to the first two.

In our example, we find

1. P(Lg is decremented) = py,
2. P(Lg is incremented) = %(pl + pa + pa),
3. P(Lg is unchanged) =qo=1—po — %(m +p2 + pa).

For a stationary load vector (i.e. at equilibrium), the ratio of leaves
allocated to each host-node to the total number of nodes remains relatively
unchanged after expanding nodes, while the total number of nodes increases
from M to M + k — 1. We therefore obtain

(L;i = 1) ’“(Zm (Li +1) L; Li

? -
Piyryr—1t4d Mi+k—1 Ytk _1 M

jeri
This means

Li*l’i*‘%ZjHipj
M+k-1

=pi - (1)

r+a
y+b

Since for positive z,y,a, b, r the implication % =rA =r=g4=r

holds, we obtain from (1)
—Dpi + % Z]‘Hipj o
E_1 = Di;

dpi - ij =0.

Using the last equation for all nodes i in the host graph, we obtain the
matrix equation

or after rearranging

(A= A)(po,p1,... ,pn—1)" =0. (2)

Here, A is the diagonal matrix with d’s down the diagonal, and A the
adjacency matrix of the hypercube. The matrix A — A is the so-called
Laplacian of H. The Matrix-tree theorem states that every cofactor of the
Laplacian is equal to the number of spanning trees of H, a positive integer.
Therefore the determinant of every (N — 1) x (N — 1) submatrix is nonzero,
and hence the subspace of solutions of (2) is at most one-dimensional. Since

we can eagsily verify that po = p1 = -+ = py_1 is a solution, the solution
space is exactly one-dimensional. Therefore the stationary probabilities are
Po=pP1=""=PN-1= %

Next, we go on to prove that the embedding process will yield a limiting
distribution of tree nodes onto hypercube nodes.

Instead of the equation for a stationary distribution, we now have a re-
cursion formula. Let L(t) = (Lo(t),... ,Ln_1(t)) denote the load vector at
time ¢, M (t) denote the number of leaves at time ¢, and z;(t) = L;(t)/M(t)
denote the expected load at node ¢ at time ¢. Since in each expansion step
the number of leaves grows by k — 1, M (t) = t(k — 1) + 1. Therefore

_ Lit—1) b Li(t— 1)
m(Li(tfl)fl)-l-Ezm(Li(tfl)+l)+

i)

Li(t—-1) k L;(t—1)

1- 20T BN) 1),
+ ME—1) ding(t—l) (t=1),
or in terms of the expectations z;(¢):

s M(t-1) E azj(t—l)_:vi(t—l)
7ilt) = @it =) =37+ d; 0 wg o ®

If we write the latter equation in matrix form, denoting by X (t) the
vector (zo(t),...,zn_1(t))", we obtain

where A D1 L
t . _
C; = I A.
t < M)) Y0
We only need to prove that lim;_,, C¢-Cy_1 - - - Cq exists. The application
of the Matrix-tree theorem then shows that X (t) = (%, %,.--,)" . We

only give a sketch of the proof of the existence of this limit. It is known
that for a d-regular graph, d is an eigenvalue of maximal modulus of the
adjacency matrix A [Big93]. Let T be the matrix that brings A to its
Jordan canonical form F: F = TAT!. Let B = TC;T~!'. Then

00 *
01 3

By

Il
—

N
=

where |6;] < 1 and the elements denoted as % are O(1/t). An estimate for
the growth rate of the entries in the product then shows that B¢-By_1 --- B3
converges.

It can be shown using the recursion (3) that the variance of the x; goes
to 0, so that the convergence to equal load is not only in expectation, but
also in probability.

We conclude this section with two important observations: The key
part of our analysis was the proof that equal load is the unique stationary
distribution. Therefore, we can replace the hypercube as host graph with an
arbitrary connected d-regular graph, and the same argument goes through.
Secondly, we used a randomized method to generate k-ary trees. However,
the embedding algorithm and our analysis does not depend on the shape
of the guest tree generated. In particular, we can replace random trees by
complete binary trees and still obtain good load distribution.

5 Experimental Results

We implemented the three embedding algorithms on two data sets. First,
we generated random binary trees as described in Section 2 with a total of
219 — 1 nodes (2'8 leaves). We then embedded the trees into a hypercube
of dimensions 2,3, ... ,17 and measured the load-factor, which we define as

the maximum load divided by the optimal load (i.e., M/N). Ideally, the
load-factor is 1.

The result of the first experiment is shown in Figure 3. For a config-
uration in which each hypercube node hosts about 1000 guest nodes, the
three algorithms random walk, flip-bit, and naive placement do not differ
significantly. For a smaller M /N, the naive placement method is slightly
worse than the random walk and the flip-bit algorithms as expected. For
the embedding of the tree in a hypercube with comparable size, the load-
factor increases to 6.5 with naive placement, 5.5 using the random walk,
and 5 using the flip-bit algorithm.

8.0 -
= 6.0 - C—>9 naive placement
S 6.
= random walk
c‘g S—= flip bit
s
€ 40 - _
1
S
S
8
°©
C_g 20 + -

VY
0.0 ! ! |
1 100 10000 1000000

M/N = optimal leaves per host node
Figure 3: Maximum load for randomly generated binary trees

In the second experiment we embedded a complete binary with 219 — 1
nodes into the same hypercubes. By construction, the flip-bit algorithm
distributes the nodes always perfectly, that is, every host node receives an
equal share of guest nodes. Note that for both the random walk and the
naive placement algorithms, the number of bits inverted for each pair of
nodes of the same height is equal. Therefore, all leaves are mapped on
one half of the host hypercube, and the other half is only used by internal
nodes. Therefore, the load-factor of both algorithms starts with 2 instead
of 1, as evidenced in Figure 4. Let us note here that this anomaly is easy
to fix, for example by allowing, as in the flip-bit algorithm, for children of

a node to reside at the same host node as the parent (i.e., not inverting
any bit). In this simulation the naive placement performed as well as the
random walk when the expected load per host node was around 500.

8.0

6.0 - i
G——0 random walk

o *k——% naive placement

4.0 -

2.0 r

load factor = max(load)*N/M

Y 7.} B)
oY KoY 4> Ko a7 Ko

OO ool L | L | L | L L
1 10 100 1000 10000 100000
M/N = optimal number of leaves per host node

Figure 4: Maximum load for embedded complete binary trees

6 Conclusion

We have presented an analysis of the naive placement algorithm for embed-
ding large k-ary trees into fixed size hypercubes. The Matrix-tree theorem
is used to show that equal load distribution of leaf nodes to host nodes is the
only stationary distribution. The proof generalizes easily from hypercubes
to arbitrary connected regular graphs.

The naive placement algorithm was compared with two other embedding
algorithms designed especially for small (complete) trees. Naive placement
performs as well as these other algorithms for larger tree sizes, and has the
advantage of conceptual simplicity and ease of implementation.

In future work, we can consider generalizations in two directions: it
would be of interest to look into different guest graphs than k-ary trees,
for example irregular grids or similar graphs the occur in real life irregular
computations. It would also be interesting to augment the asymptotic study
done in this paper and find a quantification of the achieved load balancing

as a function of the host/guest graph parameters.

Acknowledgment

We thank Sabine Ohring for much valued advice and fruitful discussions
that helped creating this paper.

References

[BC8Y]

[BCLR92]

[Big93]

[HMO6]

[Lei92]

S.N. Bhatt and Jin-Yi Cai. Take a walk, grow a tree. In Pro-
ceedings of the 29th Annual Symposium on Foundations of Com-
puter Science, pages 469-478, Los Alamitos, USA, 1989. IEEE
Computer Society Press.

S.N. Bhatt, F. R.K. Chung, F.T. Leighton, and A.L. Rosenberg.
Efficient embeddings of trees in hypercubes. SIAM Journal on
Computing, 21(1):151 162, 1992.

N. Biggs. Algebraic Graph Theory. Cambridge University Press,
1993.

V. Heun and E.W. Mayr. Efficient dynamic embeddings of ar-
bitrary binary trees into hypercubes. In Proceedings of the 3rd
International Workshop on Parallel Algorithms for Irreqularly
Structured Problems (LNCS 1117), Santa Barbara, 1996.

F.T. Leighton. Introduction to Parallel Algorithms and Archi-
tectures : Arrays Trees Hypercubes. Morgan Kaufmann Pub-
lishers, San Mateo, CA, 1992.

