
Asymptotic Hypercube Embeddings ofDynamic k-ary Trees�Omer E�gecio�glu � and Maximilian IbelDepartment of Computer ScienceUniversity of California Santa Barbara, CA 93106fomer,ibelg@cs.ucsb.eduAbstractSeveral algorithms are known for embedding dynamically growingtrees onto hypercubes. In a dynamic k-ary tree each leaf node mayspawn k new children at any given time. The embedding processmust not reassign any tree node to another host node in the hyper-cube once it has been placed. Desirable properties of the embeddingare low dilation and optimal load-balance.The existing algorithms are mainly directed toward optimizingthe load balance for trees that are comparable in size to the hostgraph. It has been observed that in this case the na��ve approachof assigning newly spawned leaves to random neighbors in the hy-percube host yields suboptimal results. We consider the asymptoticbehavior of this na��ve placement algorithm. For symmetry reasons itis to be expected that the resulting process should lead to an asymp-totically balanced load for dynamic k-ary trees. We give a formalproof of this based on the Matrix-tree theorem for graphs. The proofgeneralizes to arbitrary connected regular host graphs, such as torinetworks.Keywords: Embedding, hypercube, dynamically growing trees,load balancing, random walk, Matrix-tree theorem.1 IntroductionOften the structure of computations is not �xed beforehand (as, for ex-ample, for the Fast Fourier Transform), but rather depends on the inputdata or other run time variables. Examples for such irregular computationsare branch-and-bound methods, where the tasks form some adaptive tree�Supported in part by NSF/NASA/ARPA Grant No. IRI94-11330.1



and the children of a task are sub-tasks that have been forked. Also, someadaptive grid methods can be described as quad-trees that grow dynami-cally whenever the grid is re�ned.Many of these irregular computations are so time-consuming that theyare solved on parallel machines. Naturally the question arises how to dis-tribute (or embed) the dynamic set of tasks to the hardware, which ismodeled as a graph whose nodes correspond to the individual computersand edges to the network links. The topology of common multicomputersare hypercubes (e.g., the Intel NCUBE), meshes (e.g. MasPar MP-1), tori(e.g. the Cray T3E), rings (e.g., Kendall Square's KSR-1), or topologieseasily embeddable into the hypercube (e.g., BBN Butter
y). We refer thereader to Leighton [Lei92] for a detailed description and properties of thesearchitectures.
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Figure 1: Embedding of a binary tree G with 5 leaves into a three-dimensional hypercube H with dilation 1 and load 2.Some properties a good embedding must have are:1. Practicality. It must be straightforward to place a newly generatedtask on a host node. In particular, it is not feasible to inquire thestatus of all host nodes to determine the least loaded host node closeto the host node of the parent tree node.2. Low dilation. A child task generated from a parent task should notbe placed on a host node far away from the host node of the parent.3. Good load balance. All host nodes should at all times have ap-proximately the same number of tasks. If we assume all tasks takethe same time, and communication occurs only between parents and



children, then nodes which receive a higher proportion of tasks willtake longer than other nodes, and the total computation time will belonger.The two seminal publications on dynamic embedding of trees into hy-percubes are due to Bhatt and Cai [BC89], and Bhatt, Chung, Leighton,and Rosenberg [BCLR92]. Bhatt and Cai gave an embedding of anM -nodebinary tree into an N -node hypercube, where the children of a tree node aredetermined by a random walk of length log logN in the hypercube. Theseembeddings have load O(M=N+1) and dilation O(log logN). In [BCLR92]an algorithm based on a specialized random walk of length 1 with dilation1 and load O(M=N + logN) is presented. Both algorithm are targetedto yield good results for small M (e.g., M � N). A more recent treatiseof dynamical tree embeddings is given in [HM96]. Our contribution is ananalysis of an even simpler embedding algorithm for the case relevant inpractial applications, that is when M � N . This na��ve placement algo-rithm turns out to yield asymptotically perfect load balancing. We showthat this follows from the Matrix-tree theorem.As in [BC89, BCLR92], we assume that once a task has been assignedto a particular host node, it stays there until its completion. Thus we donot allow for task migration. Furthermore, we do not deal with deletionof nodes and consider growing trees only, as the reduction of the case ofmixed insertions and deletions to insertions only is discussed in [BC89]and [BCLR92]. Our analysis is valid not only for hypercubes but alsofor arbitrary connected processor graphs which are regular, such as torinetworks.The paper is organized as follows. Section 2 introduces the formal prob-lem description and terminology used throughout the paper. Section 3describes three di�erent algorithms used to embed dynamically evolvingtrees into hypercubes, Section 4 shows that the na��ve placement algorithmasymptotically achieves optimal load balance. Section 5 shows some simu-lation results for the three algorithms. Section 6 concludes the paper ando�ers future research directions.2 Notation and Problem FormulationIn the following, we consider the embedding of a process graph G (guestgraph) into a processor graph H (host graph). The nodes VG in G =(VG; EG) represent the tasks, and the edges EG the dependencies (we as-sume only depending tasks need to exchange information), whereas nodesand edges in H = (VH ; EH) represent processors and communication links,respectively. Let us denote the number of tasks jVGj by M and the numberof processors jVH j by N .



Formally, an embedding is de�ned as a node-mapping f : VG ! VH andan edge-mapping g : EG ! P(H), where P(H) is the path set of H andthe routing path g(fu; vg) connects f(u) and f(v) in VH , for fu; vg 2 EG.The following metrics are commonly associated with the embeddingproblem: The dilation of the embedding (f; g) is the maximum length ofthe routing-path connecting two adjacent nodes in the guest graph. Theload is the maximum, over all host-nodes, of the number of guest-nodesmapped to a host-node. The edge congestion is the maximum number ofedges of G that are routed by the mapping g over a single edge of H .Ideally, the load of each host node is M=N (i.e., the work is sharedequally), and the dilation is 1 (i.e., adjacent nodes in G are mapped onadjacent nodes in H). It turns out that load and dilation are con
ictingparameters: If the dilation is kept small, we need to increase the maximumload, whereas good load balancing is facilitated by allowing for higher dila-tion. In order to simplify our analysis, we assume that each task takes unittime to execute on any processor, and only leaf nodes are contributing tothe computation at any time. Therefore, the load of any host node is thenumber of tree leaves mapped to it.We model dynamic k-ary trees as follows: starting with a single rootnode, we repeatedly generate larger trees. In each step, we choose one ofthe leaves of the current tree. This leaf then spawns k new children. Aexample for k = 2 is given in Figure 2, where the three possible successorsof a binary tree with a total of 3 leaves are shown. We assume that the leafpicked for expansion in each step is chosen with equal probability from theset of all current leaves of the tree.
p=1/3 p=1/3p=1/3

Figure 2: Three possible successors generated with equal probability 1=3from a binary tree with 3 leaves.Let Hd denote the d-dimensional hypercube, whose nodes are numbered



from 0 to N � 1, where N = 2d. The d = logN nodes adjacent to x aregiven by x[i] = x XOR 2i, for 0 � i < d. We also use the notation x $ yfor adjacent nodes x and y.3 Three Tree Embedding Algorithms3.1 Na��ve Placement AlgorithmThe most straightforward embedding algorithm, henceforth called na��veplacement , starts by mapping the root of the source tree G to a �xed node,say node 0 of the host hypercube H . When a leaf node u which has alreadybeen mapped to a host node x in the hypercube is expanded, we randomlychoose k of the d neighbors of x to assign the newly spawned k children ofu. We analyze this algorithm in Section 4.3.2 Random Walk AlgorithmIt has been noted that the na��ve placement does not perform well for sometask trees of approximately the same size as the host graph, for examplecomplete binary trees. Bhatt and Cai [BC89] proposed the following em-bedding algorithm: A newly spawned child v is not placed at a neighborof the hypercube node x hosting the parent u of v, but rather, a randomwalk of length O(log logN) starting from x is taken, and the new hostnode is taken to be the endpoint of this walk. Bhatt and Cai showed thatwith high probability, the resulting load is O(M=N + 1), and the dilationis O(log logN). They also showed that if the random walk length is chosensmaller, say o(log logN), and the embedded tree is a complete binary treewith N �M , then at least one node has load 
(logkN) for any k, implyingthat the load balance will be very poor in this case.3.3 Flip-Bit AlgorithmThe dilation of O(log logN) is a high price to pay for acceptable load bal-ancing. Bhatt et al. [BCLR92] showed how to embed binary trees intobutter
y networks with load O(M=N + logN) and dilation 1 with highprobability. The 
ip-bit algorithm can also be generalized to hypercubes,yielding the same load and dilation. Each node in the tree is assigned adimension number equal to its depth in the tree modulo logN . When aleaf with dimension number n spawns a child, it either is mapped to theparent's host node or the node reachable from the parent host node byinverting bit n. The same paper also describes an improved algorithm thatachieves load O(M=N +1) and dilation O(1). The constant for the dilationfor this algorithm is 12.



The main reason for the rejection of the na��ve placement algorithmwas its unsuitability for trees equal in size to the host hypercube. Wetherefore analyze in the next section the performance of the na��ve placementalgorithm for large M=N , as N depends on the hardware and stays �xedwhile M can get arbitrarily large.4 Asymptotic Behavior of the Na��ve Place-ment AlgorithmWe �rst show how the Matrix-tree theorem implies that there exists exactlyone load distribution that is stationary with respect to the expansion ofnodes. A formal proof of convergence follows by modeling the embeddingprocess as a non-stationary Markov chain with convergent time-dependenttransition probabilities.De�ne the load vector L = (L0; L1; : : : ; LN�1), where Li is the numberof leaves hosted by hypercube node i. M = L0 + � � � + LN�1 is the totalnumber of leaves. Initially, the tree consists only of a root node hosted atprocessor 0, so that L = (1; 0; 0; : : : ; 0). Clearly, for load-balance we wantall elements in the load vector to be of the approximately the same size.As an example for k = 2, let us consider the 3 dimensional hypercubewith nodes 0 to 7, and binary guest trees. Table 1 shows possible mappingof children to hypercube nodes for all possible parent nodes. For example,if a leaf hosted by hypercube node 0 is expanded the two new leaf news willbe placed at f1; 2g, f1; 4g, or f2; 4g.Parent Choice 1 Choice 2 Choice 30 f1; 2g f1; 4g f2; 4g1 f0; 2g f0; 3g f2; 3g2 f0; 3g f0; 5g f3; 5g3 f1; 2g f1; 7g f2; 7g4 f0; 5g f0; 6g f5; 6g5 f1; 4g f1; 7g f4; 7g6 f2; 4g f2; 7g f4; 7g7 f3; 5g f3; 6g f5; 6gTable 1: Possible pairs of children mappings for each parent in the hyper-cube.In general, consider the d-dimensional hypercube (d = logN), in whicha leaf spawns k new children. There are �dk� choices for placing the newlycreated leaves1. Once this placement is made, let us consider the change1k is taken to be (k mod d) if k > d.



�L on the current load vector. Since we are counting leaves only towardsthe load, the expanded node will vanish from the load vector and the cor-responding entry in the load vector is decremented. Similarly, the entriesin the load vector corresponding to the k newly placed children will beincremented.Let us again consider our example and assume a leaf on hypercubenode 0 is expanded. Then, the 3 choices to place 2 children, f1; 2g, f1; 4g,and f2; 4g, will result in the relative changes �L = (�1; 1; 1; 0; 0; 0; 0; 0),�L = (�1; 1; 0; 0; 1; 0; 0; 0), and �L = (�1; 0; 1; 0; 1; 0; 0; 0) to the load vector,respectively.Given a particular load vector L, the probability pi of choosing node ifor expansion is LiL0+:::+LN�1 = LiM . Now consider the probabilities by whichentries in the load vector change:1. The probability Li is decremented is pi, since Li is decremented ifand only if node i is expanded.2. The probability that Li is incremented is kdPj$i pj . The factor kd isobtained as follows. Since each neighbor j picks k of the d neighbors,we need to calculate the probability that node i is chosen as one ofthe children. This probability is �d�1k�1�=�dk� = kd .3. The probability Li remains unchanged is qi = 1 � pi � kdPj$i pj ,since this event is complementary to the �rst two.In our example, we �nd1. P (L0 is decremented ) = p0,2. P (L0 is incremented ) = 23 (p1 + p2 + p4),3. P (L0 is unchanged ) = q0 = 1� p0 � 23 (p1 + p2 + p4).For a stationary load vector (i.e. at equilibrium), the ratio of leavesallocated to each host-node to the total number of nodes remains relativelyunchanged after expanding nodes, while the total number of nodes increasesfrom M to M + k � 1. We therefore obtainpi (Li � 1)M + k � 1 + kd (Xj$i pj) (Li + 1)M + k � 1 + qi LiM + k � 1 = LiM :This means Li � pi + kdPj$i pjM + k � 1 = pi : (1)



Since for positive x; y; a; b; r the implication xy = r ^ x+ay+b = r ) ab = rholds, we obtain from (1) �pi + kdPj$i pjk � 1 = pi;or after rearranging dpi �Xj$i pj = 0:Using the last equation for all nodes i in the host graph, we obtain thematrix equation (��A)(p0; p1; : : : ; pN�1)T = 0: (2)Here, � is the diagonal matrix with d's down the diagonal, and A theadjacency matrix of the hypercube. The matrix ��A is the so-calledLaplacian of H . The Matrix-tree theorem states that every cofactor of theLaplacian is equal to the number of spanning trees of H , a positive integer.Therefore the determinant of every (N �1)� (N�1) submatrix is nonzero,and hence the subspace of solutions of (2) is at most one-dimensional. Sincewe can easily verify that p0 = p1 = � � � = pN�1 is a solution, the solutionspace is exactly one-dimensional. Therefore the stationary probabilities arep0 = p1 = � � � = pN�1 = 1N .Next, we go on to prove that the embedding process will yield a limitingdistribution of tree nodes onto hypercube nodes.Instead of the equation for a stationary distribution, we now have a re-cursion formula. Let L(t) = (L0(t); : : : ; LN�1(t)) denote the load vector attime t, M(t) denote the number of leaves at time t, and xi(t) = Li(t)=M(t)denote the expected load at node i at time t. Since in each expansion stepthe number of leaves grows by k � 1, M(t) = t(k � 1) + 1. ThereforeLi(t) = Li(t� 1)M(t� 1) (Li(t� 1)� 1) + kdXi$j Lj(t� 1)M(t� 1) (Li(t� 1) + 1)++0@1� Li(t� 1)M(t� 1) � kdXi$j Lj(t� 1)M(t� 1)1ALi(t� 1);or in terms of the expectations xi(t):xi(t) = xi(t� 1)M(t� 1)M(t) + kdXi$j xj(t� 1)M(t) � xi(t� 1)M(t) : (3)



If we write the latter equation in matrix form, denoting by X(t) thevector (x0(t); : : : ; xN�1(t))T , we obtainX(t) = CtX(t� 1)where Ct = �M(t� 1)� 1M(t) � I+ kdM(t)A:We only need to prove that limt!1Ct �Ct�1 � � �C1 exists. The applicationof the Matrix-tree theorem then shows that X(t) ! ( 1N ; 1N ; : : : ; 1N )T . Weonly give a sketch of the proof of the existence of this limit. It is knownthat for a d-regular graph, d is an eigenvalue of maximal modulus of theadjacency matrix A [Big93]. Let T be the matrix that brings A to itsJordan canonical form F: F = TAT�1. Let Bt = TCtT�1. ThenBt = 0BBBBB@ �0 ��1 � . . . �N�2 ��N�1
1CCCCCA ; (4)where j�ij � 1 and the elements denoted as � are O(1=t). An estimate forthe growth rate of the entries in the product then shows thatBt�Bt�1 � � �B1converges.It can be shown using the recursion (3) that the variance of the xi goesto 0, so that the convergence to equal load is not only in expectation, butalso in probability.We conclude this section with two important observations: The keypart of our analysis was the proof that equal load is the unique stationarydistribution. Therefore, we can replace the hypercube as host graph with anarbitrary connected d-regular graph, and the same argument goes through.Secondly, we used a randomized method to generate k-ary trees. However,the embedding algorithm and our analysis does not depend on the shapeof the guest tree generated. In particular, we can replace random trees bycomplete binary trees and still obtain good load distribution.5 Experimental ResultsWe implemented the three embedding algorithms on two data sets. First,we generated random binary trees as described in Section 2 with a total of219 � 1 nodes (218 leaves). We then embedded the trees into a hypercubeof dimensions 2; 3; : : : ; 17 and measured the load-factor, which we de�ne as



the maximum load divided by the optimal load (i.e., M=N). Ideally, theload-factor is 1.The result of the �rst experiment is shown in Figure 3. For a con�g-uration in which each hypercube node hosts about 1000 guest nodes, thethree algorithms random walk, 
ip-bit, and na��ve placement do not di�ersigni�cantly. For a smaller M=N , the naive placement method is slightlyworse than the random walk and the 
ip-bit algorithms as expected. Forthe embedding of the tree in a hypercube with comparable size, the load-factor increases to 6.5 with na��ve placement, 5.5 using the random walk,and 5 using the 
ip-bit algorithm.
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Figure 3: Maximum load for randomly generated binary treesIn the second experiment we embedded a complete binary with 219 � 1nodes into the same hypercubes. By construction, the 
ip-bit algorithmdistributes the nodes always perfectly, that is, every host node receives anequal share of guest nodes. Note that for both the random walk and thena��ve placement algorithms, the number of bits inverted for each pair ofnodes of the same height is equal. Therefore, all leaves are mapped onone half of the host hypercube, and the other half is only used by internalnodes. Therefore, the load-factor of both algorithms starts with 2 insteadof 1, as evidenced in Figure 4. Let us note here that this anomaly is easyto �x, for example by allowing, as in the 
ip-bit algorithm, for children of



a node to reside at the same host node as the parent (i.e., not invertingany bit). In this simulation the na��ve placement performed as well as therandom walk when the expected load per host node was around 500.
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Figure 4: Maximum load for embedded complete binary trees6 ConclusionWe have presented an analysis of the na��ve placement algorithm for embed-ding large k-ary trees into �xed size hypercubes. The Matrix-tree theoremis used to show that equal load distribution of leaf nodes to host nodes is theonly stationary distribution. The proof generalizes easily from hypercubesto arbitrary connected regular graphs.The na��ve placement algorithm was compared with two other embeddingalgorithms designed especially for small (complete) trees. Na��ve placementperforms as well as these other algorithms for larger tree sizes, and has theadvantage of conceptual simplicity and ease of implementation.In future work, we can consider generalizations in two directions: itwould be of interest to look into di�erent guest graphs than k-ary trees,for example irregular grids or similar graphs the occur in real life irregularcomputations. It would also be interesting to augment the asymptotic studydone in this paper and �nd a quanti�cation of the achieved load balancing
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