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 Approximation Algorithms forHigh-Dimensional Eu
lidean Similarity�Omer E�ge
io�glu?Department of Computer S
ien
e,University of California, Santa Barbara, CA 93106 USAomer�
s.u
sb.eduAbstra
t. We introdu
e a spe
trum of algorithms for measuring thesimilarity of high-dimensional ve
tors in Eu
lidean spa
e. The algorithmsproposed 
onsist of a 
onvex 
ombination of two measures: one whi
h
ontains summary data about the shape of a ve
tor, and the other aboutthe relative magnitudes of the 
oordinates. The former is based on a
on
ept 
alled bin-s
ore permutations and a metri
 to quantify simi-larity of permutations, the latter on another novel approximation forinner-produ
t 
omputations based on power symmetri
 fun
tions, whi
hgeneralizes the Cau
hy-S
hwarz inequality. We present experiments ontime-series data on labor statisti
s unemployment �gures that show thee�e
tiveness of the algorithm as a fun
tion of the parameter that 
om-bines the two parts.1 Introdu
tionModern databases and appli
ations use multiple types of digital data, su
has do
uments, images, audio, video, et
. Some examples of su
h appli
ationsare do
ument databases [6℄, medi
al imaging [16℄, and multimedia informationsystems [18℄. The general approa
h is to represent the data obje
ts as multi-dimensional points in Eu
lidean spa
e, and to measure the similarity betweenobje
ts by the distan
e between the 
orresponding multi-dimensional points [13,6℄. It is assumed that the 
loser the points, the more similar the data obje
ts.Sin
e the dimensionality and the amount of data that need to be pro
essed in-
reases very rapidly, it be
omes important to support eÆ
ient high-dimensionalsimilarity sear
hing in large-s
ale systems. This support depends on the devel-opment of eÆ
ient te
hniques to support approximate sear
hing. To this end,a number of index stru
tures for retrieval of multi-dimensional data along withasso
iated algorithms for similarity sear
h have been developed [11, 19, 4℄. Fortime-series data, there are a number of proposed ways to measure similarity.These range from the Eu
lidean distan
e to non-Eu
lidean metri
s and the rep-resentation of the sequen
e by appropriate sele
tion of lo
al extremal points [17℄.Agrawal, Lin, Sawhney, and Shim [1℄ 
onsidered fast similarity sear
h in the pres-en
e of noise, s
aling, and translation by making use of the L1 norm. Bollobas,? Supported in part by NSF Grant No. CCR{9821038.



Das, Gunopulos, and Mannila [2℄ 
onsidered similarity de�nitions based on the
on
ept of well-separated geometri
 sets. It has been noted in the literature how-ever, that as dimensionality in
reases, query performan
e degrades signi�
antly,an anomaly known as the dimensionality 
urse [5, 10℄. Common approa
hes forover
oming the dimensionality 
urse by dimension redu
tion are linear-algebrai
methods su
h as the Singular Value De
omposition (SVD), or appli
ations ofmathemati
al transforms su
h as the Dis
rete Fourier Transform (DFT), Dis-
rete Cosine Transform (DCT), or Dis
rete Wavelet Transform (DWT). In thesemethods, lower dimensional ve
tors are 
reated by taking the �rst few leading
oeÆ
ients of the transformed ve
tors [3℄.This paper introdu
es a spe
trum of similarity algorithms whi
h 
onsist ofa 
onvex 
ombination of two di�erent measures. A shape measure on high-dimensional ve
tors based on the similarity of permutations through inversionpairs, followed by an asso
iated dimension redu
tion by bin-s
ore permutations;and a symmetri
 magnitude measure based on the 
omputation of the inner-produ
t and 
onsequently the 
osine of the angle between two ve
tors by a lowdimensional representation.2 The Main De
ompositionAn n-dimensional real ve
tor x = (x1; x2; : : : ; xn) 2 IRn 
an be de
omposed as apair (s(x); �(x)) where s(x) is the sorted version of x into weakly in
reasing 
o-ordinates, and �(x) is the permutation of the indi
es f1; 2; : : : ; ng that a
hievesthis ordering. We impose the additional 
ondition that the elements of the per-mutation �(x) are put in in
reasing order on any set of indi
es for whi
h thevalue of the 
oordinate is 
onstant. For example when x = (3; 3; 1; 5; 2; 0; 1; 6; 1),s(x) = (0; 1; 1; 1; 2; 3; 3; 5; 6), and in one line notation, �(x) = 6 3 7 9 5 1 2 4 8.Note that in x the smallest 
oordinate value is x6 = 0, the next smallest isx3 = x7 = x9 = 1, et
. Given x; y 2 IRn, we aim to approximate the Eu
lideandistan
e kx� yk as a 
onvex 
ombination�s(x; y) + (1� �)�(x; y) ; (1)where� s(x; y) is a measure of distan
e between s(x) and s(y) whi
h is a symmetri
fun
tion of the 
oordinates separately in x and y (we refer to this as themagnitude or the symmetri
 part),� �(x; y) is a measure of the distan
e between the permutations �(x) and �(y)(we refer to this as the shape part),� 0 � � � 1 is a parameter that 
ontrols the bias of the algorithm towardsmagnitude/symmetry versus shape.



In order for su
h a s
heme to be useful, the individual fun
tions s(x; y) and�(x; y) must be amenable to 
omputation using data with redu
ed dimensional-ity� n. In the te
hnique proposed here, this redu
ed dimension 
an be sele
tedseparately and independently for the two parts. First we dis
uss the 
onstru
tionof the parts themselves and then present the results of the experiments.The outline of this paper is as follows. In se
tion 3 we 
onsider the fastapproximate 
al
ulation of s(x; y) whi
h is based on a novel low-dimensionalrepresentation to 
ompute the inner produ
t introdu
ed in [7℄ and developed in[8℄. Se
tion 4 des
ribes how to measure the distan
e �(x; y) on permutations witha low-dimensional representation. This is based on a metri
 on permutations thatwe introdu
e, and the approximation of the metri
 by bin-s
ore permutations.Experiments on labor statisti
s time-series data are presented in se
tion 5, and
on
lusions in se
tion 6.3 The magnitude part: power symmetri
 fun
tionsOur representation of data in IRn with redu
ed number of dimensions m withm � n for the 
omputation of the magnitude part s(x; y) in (1) is based ona novel approximation for the inner produ
t introdu
ed in [7℄ and further de-veloped in [8℄. For integers n; p > 0 and z 2 IRn, the p-th power symmetri
fun
tion is de�ned by  p(z) = zp1 + zp2 + � � � + zpn. Note that the ordinary Eu-
lidean distan
e between x and y and the power symmetri
 fun
tions are relatedby kx� yk =p 2(x) +  2(y)� 2 < x; y > ; (2)where < x; y >= x1y1+x2y2+ : : :+xnyn is the standard inner-produ
t. Usingthe  p(z) pre
omputed for ea
h ve
tor z in the dataset, we look for an estimatefor < x; y > by approximating its m-th power in the form< x; y >m � b1 1(x) 1(y) + b2 2(x) 2(y) + � � �+ bm m(x) m(y) (3)for large n, where the bi are universal 
onstants 
hosen independently of x andy. For ea
h high-dimensional ve
tor x, we 
al
ulate  1(x);  2(x); : : : ;  m(x), andkeep thesem real numbers as a representative of the original ve
tor x. For a givenquery ve
tor y, we 
ompute  1(y);  2(y); : : : ;  m(y) and approximate < x; y >via (3), and the Eu
lidean distan
e via (2).Our assumption on the stru
ture of the dataset for the 
omputation of s(x; y)by this method is as follows: it 
onsists of n-dimensional ve
tors whose 
ompo-nents are independently drawn from a 
ommon (but possibly unknown) distri-bution with density [12℄. In [7℄ the best set of 
onstants b1; b2; : : : ; bm for theapproximation (3) in the sense of least-squares was 
omputed. In parti
ular forthe uniform distribution and m = 2 the optimal values are shown to beb1 = � 116 ; b2 = 4564 : (4)



This means that for m = 2, < x; y > is approximated by the expressions����� 116 1(x) 1(y) + 4564 2(x) 2(y)����In fa
t in the general 
ase of a density with i-th moment �i (about the origin), it
an be proved [7℄ that the 
onstants b1; b2 are fun
tions of the �rst four momentsof the density f(x). They are given by the formulasb1 = �21 � 2�32 + �21�4 � 3�1�2�3�32 + �21�4 � 2�1�2�3 ;b2 = �41�2 � �1�3 � �22�32 + �21�4 � 2�1�2�3 : (5)The moments of the uniform distribution are �i = 1=(i + 1), for whi
h theformulas in (5) redu
e to the values in (4) above.A se
ondary problem of interest in the 
ontext of the determination of thebest set of 
onstants is dynami
 in nature. When the 
ontents of the database
hanges by adding new data ve
tors, for example, the parameters used for theapproximation problem to the inner-produ
t 
al
ulation 
an be adjusted eÆ-
iently. In parti
ular, one need not know the density of the distribution of the
oordinates in the dataset parametri
ally. The moments ui 
an be estimated asthe limit of the N -th estimate �i(N) as the dataset is a

umulated via�i(N + 1) = 1N + 1 �N�i(N) + tiN+1� : (6)where tN is the N -th sample 
oordinate observed.4 The shape part: bin-s
ore permutationsFor a permutation � = �1�2 � � � �n of the integers f1; 2; : : : ; ng in one-line nota-tion, an inversion is a pair �i > �j 
orresponding to a pair of indi
es i < j. LetInv(�) denote the total number of inversions of �. For example for � = 4 3 5 2 1the set of inversions is f(5; 2); (5; 1); (4; 3); (4; 2); (4; 1); (3; 2); (3; 1); (2; 1)g andthus Inv(�) = 8 . For any permutation �,0 � Inv(�) � 12 n(n � 1 )with Inv(�) = 0 i� � = 1 2 � � �n is the identity permutation and Inv(�) =12 n(n � 1 ) i� � = n � � � 2 1 is the reverse of the identity permutation. For thedetails of the underlying partially ordered set see [14℄. Inversions arise naturallyin the 
ontext of sorting as a measure of presortedness [15℄ when the numberof 
omparisons is the basi
 measure. The idea of 
ounting inversions is one ofmany ways of putting a measure of similarity on permutations [9℄. Given twopermutations � and � , we 
ount the number of inversions � would have if we



were to use �1�2 � � � �n as the index set. In other words we 
ompute Inv(���1 ).Put �(�; �) = 2n(n� 1) Inv(���1 ) (7)to normalize this measure to the unit interval. Some relevant properties of � areas follows1. 0 � �(�; �) � 1,2. �(�; �) = 0 i� � = � ,3. �(�; �) = 1 i� �+ �i = n+ 1 for i = 1; 2; : : : n,4. �(�; �) = �(�; �),5. �(�; �) � �(�; Æ) + �(Æ; �) for any permutation Æ.In parti
ular � is a metri
 on permutations. However, we 
annot realisti
allyuse the permutations � = �(x) and � = �(y) introdu
ed in se
tion 2 to 
omputethis distan
e, sin
e then there is no redu
tion in the dimension. The question isthen whether or not approximations to the permutations � and � by some lowerdimensional representation 
an be made, that would allow us to 
ompute thismeasure without mu
h deviation from the a
tual value.To this end, we 
onsider bin-s
ore permutations. For simpli
ity, assume n =2r and � is a permutation on f1; 2; : : : ; ng. For any integer s = 0; 1; : : : ; r, we maydivide the index set into b = 2s 
onse
utive subsets (bins) of length b0 = nb = 2r�sea
h. The i-th bin is des
ribed by the b0 
onse
utive indi
esi1 = (i� 1)b0 + 1; i2 = (i� 1)b0 + 2; : : : ; ib0 = (i� 1)b0 + b0:The s
ore of this bin is the sum �i1 + �i2 + � � �+ �ib0 . In this way we 
onstru
t amyopi
 version of � on f1; 2; : : : ; bg obtained by pla
ing 1 for the smallest entryamong the bin-s
ores 
omputed, 2 for the next smallest, et
. In 
ase of ties, wemake the indi
es in
rease from left to right, as in the 
ase of the 
onstru
tionof �(x) des
ribed in se
tion 2 (in fa
t, this permutation is simply �(x0) wherex0 is the b-dimensional ve
tor of bin-s
ores of x). The bin-s
ore permutation
orresponding to b = n is � itself, and for b = 1 it is the singleton 1. As anexample, for n = 8, the bin-s
ore permutations of � = 5 8 2 6 4 3 1 7 for b = 4; 2are obtained from the s
ores 13; 8; 7; 8, and 21; 15 as the permutations 4 2 1 3and 2 1, respe
tively. Note that any bin-s
ore permutation 
an be obtained byrepeated appli
ation of the b0 = 2 
ase.5 ExperimentsFor the experiments, we have used time series data of the seasonally adjustedlo
al area unemployment rate �gures (Lo
al Area Unemployment Statisti
s)for the 51 states supplied online by the U.S. Department of Labor's Bureauof Labor Statisti
s. The monthly rates were extra
ted for 256 months, 
overing



the period between January 1979 through April 2000 for ea
h state1. The datasetwe used for the experiments 
ondu
ted 
onsisted of 51 ve
tors in IR256 of thestates, alphabeti
ally ordered as Alabama through Wyoming, and indexed asx[1℄; x[2℄; : : : ; x[51℄. Thus ea
h x[i℄ is a ve
tor in n = 256 dimensional spa
e.For the query ve
tor y, we used the unemployment rate �gures for the sameperiod for the seasonally adjusted national average �gures. The purpose of theexperiments 
an be thought of as determining whi
h state in the union has hadan unemployment rate history that is 
losest to the national average for theperiod of time in question, where 
losest 
an be given di�erent meanings byaltering the bias parameter � of the algorithm.5.1 Estimation of the parameters: the magnitude partThe maximum 
oordinate over all the ve
tors in the dataset was found to be19.5 and the minimum entry as 2.1. Sin
e we have no reason to expe
t the datato be uniform in this interval, we 
omputed b1 and b2 using (5) after a linearnormalization to the unit interval.
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Fig. 1. The estimate to b1 and b2 
omputed for 50 ve
tors, ea
h of dimension 16 withentries from the uniform distribution on [0,1℄. The theoreti
ally obtained asymptoti
values are b1 = �0:0625, b2 = 0:703125.To 
ompute the number of sample ve
tors of dimension 256 required to obtaina meaningful estimate using (5) and the estimates of the �rst four moments of thedensity obtained through (6), we �rst experimented with uniform distributionfor whi
h we know the asymptoti
 values b1 = � 116 , b2 = 4564 . Two to three256-dimensional ve
tors were enough for 
onvergen
e. We generated 50 ve
torsof dimension 16 ea
h. The 
orresponding values of b1 and b2 
al
ulated from theestimates of the moments are shown in Figure 1. We see that the 
onvergen
erequires about 20 ve
tors or about 300 samples. This means that the lowerbound on the number of 256 dimensional ve
tors we need to obtain a reasonableestimates to b1 and b2 in the general 
ase is very small.1 In California unemployment rates, the 1979 year data supplied were 0.0. These wereall repla
ed with the January 1980 value of 5.9.



Computing with 51 � 256 = 13056 normalized sample 
oordinates in thedataset, the approximate moments were 
al
ulated by Mathemati
a to be �1 =0:236, �2 = 0:072, �3 = 0:026, �4 = 0:012. Using the formulas (5) givesb1 = 0:017 ; b2 = 0:415 (8)With these values, we 
omputed the the summary data  1(x[1℄); : : : ;  1(x[51℄)and  2(x[1℄); : : : ;  2(x[51℄) required.The following ve
tor of length 51 gives the (approximate)  1 values of thenormalized ve
tors 
omputed in this fashion:85:3; 95:5; 58:4; 74:1; 74:1; 47:9; 43:7; 48:5; 86:0; 58:3; 52:1; 43:3; 66:6; 73:2; 63:1; 43:3; 36:7;75:2; 92:3; 58:7; 48:2; 47:1; 90:9; 41:2; 87:8; 56:9; 65:0; 22:7; 60:1; 34:2; 58:6; 78:2; 66:2; 45:0;34:4; 72:0; 52:1; 74:6; 69:1; 60:4; 60:6; 27:2; 66:7; 62:9; 44:4; 40:5; 40:3; 75:7; 117:7; 51:6; 53:1and the following the  2 values 
omputed34:6; 37:6; 15:3; 23:8; 23:5; 10:6; 9:0; 11:8; 31:1; 14:7; 11:5; 8:8; 19:4; 24:6; 21:0; 10:1; 5:8;25:7; 38:0; 15:6; 10:4; 11:4; 41:6; 8:4; 34:3; 15:0; 17:6; 3:1; 16:5; 6:9; 15:3; 25:3; 18:5; 10:2;5:5; 25:1; 12:9; 24:9; 22:1; 17:5; 17:2; 3:5; 21:3; 16:9; 9:9; 7:8; 7:5; 25:8; 62:0; 14:4; 13:2For example for the state of Alabama, the summary magnitude information is 1(x[1℄) = 85:3 and  2(x[1℄) = 34:6:We also 
al
ulated that for the query ve
tor y of normalized national averagerates, the two  values are 1(y) = 63:9 and  2(y) = 17:8:Now for every ve
tor x in the dataset, we 
al
ulate the approximation to< x; y > as pb1 1(x) 1(y) + b2 2(x) 2(y)where b1 and b2 are as given in (8). Therefore as a measure of distan
e of thesymmetri
 part, we sets(x; y) =pj 2(x) +  2(y)� 0:0350342 1(x) 1(y)� 0:82938 2(x) 2(y)jby using (2).To see how the approximations to the magnitude part and the a
tual Eu-
lidean distan
e values 
ompare, we plotted the normalized a
tual values andthe normalized approximations for the 51 states in Figure 2. Considering thatwe are only using the m = 2 algorithm for the 
omputation of s(x; y), i.e. thedimension is vastly redu
ed, the results are satisfa
tory.
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Fig. 2. The magnitude part: normalized a
tual distan
es (left), normalized approxi-mations (right).5.2 Estimation of the parameters: the shape partTo get an idea on the number of bins b to use for the 
omputation of the ap-proximate values �(x; y), we 
al
ulated ve
tors of distan
es �(x; y) through theexpression (7) with bin-s
ore permutations instead of the a
tual permutations.Bin-s
ore permutations for ea
h ve
tor x[1℄; : : : ; x[51℄ and the query ve
tor ywas 
omputed for b ranging from 4 to 256. The resulting distan
es are plottedin Figure 3. From the �gure, it is 
lear that even b = 8 is a reasonable approx-imation to the a
tual 
urve (i.e. b = 256). In the experiments we used the 
aseof b = 16 bins.
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Fig. 3. The shape part: plot of bin{s
ore permutation distan
es for 4{256 bins.6 Parametri
 Experiments and Con
lusionsIn Figures 5{8, the data plotted is the seasonally adjusted monthly unemploy-ment rates for 256 months spanning January 1979 through April 2000. In ea
h�gure, the plot on the left is the a
tual rates through this time period, and the



one on the right is the plot of the rates sorted in in
reasing order. Consider thefun
tion (1) for � 
hanging from 0 to 1 in in
rements of 0:01, where for ea
h �value, s(x; y) makes use of the approximate distan
e 
omputation des
ribed form = 2, and �(x; y) is the distan
e between the bin-s
ore permutations �(x) and�(y) for b = 16 bins. For ea
h value of � in this range we 
omputed the state(i.e. the ve
tor x[i℄) where the minimum approximate distan
e is obtained.� For 0:0 � � < 0:5, the minimum is obtained at x[15℄, whi
h 
orresponds tothe state of Indiana,� For 0:5 � � � 0:9, the minimum is obtained at x[46℄, whi
h 
orresponds tothe state of Vermont,� For 0:9 < � � 1:0, the minimum is obtained at x[11℄, whi
h 
orresponds tothe state of Georgia.The observed \
ontinuity" of these results as a fun
tion of � is a desirableaspe
t of any su
h family of algorithms.Figures 5{8 indi
ate the behavior of the algorithm on the dataset. For smallvalues of �, the bias is towards the shapes of the 
urves. In these 
ases thealgorithm �nds the time-series data of the national rates (Figure 8, left), resemblemost that of Indiana (Figure 5, left) out of the 51 states in the dataset. On theother extreme, for values of � 
lose to 1, the bias is towards the magnitudes,and the algorithm �nds the sorted data of the national rates (Figure 8, right),resemble most that of the state of Georgia (Figure 7, right). The intermediatevalues pi
k the state of Vermont (Figure 6) as the 
losest to the national averagerates.In 
on
lusion, we proposed a spe
trum of dynami
 dimensionality redu
-tion algorithms based on the approximation of the standard inner-produ
t, andbin-s
ore permutations based on an inversion measure on permutations. Theexperiments on time-series data show that with this te
hnique, the similaritybetween two obje
ts in high-dimensional spa
e 
an be well approximated by asigni�
antly lower dimensional representation.We remark that even though we used a 
onvex 
ombination of the two mea-sures 
ontrolled by a parameter �, it is possible to 
ombine s(x; y) and �(x; y)for the �nal similarity measure in many other ways,s(x; y)��(x; y)1��;for example. In any su
h formulation, the determination of the best value of �for a given appli
ation will most likely require the experimental evaluation of thebehavior of the approximate distan
e fun
tion by sampling from the dataset.
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Fig. 4. x[15℄ = State of Indiana unemployment rate data: a
tual (left), sorted (right).For parameter � in the range 0:0 � � < 0:5, the algorithm pi
ks the state of Indiana'sdata as the one 
losest to the national average data in Figure 7.
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Fig. 5. x[46℄ = State of Vermont unemployment rate data: a
tual (left), sorted (right).For parameter � in the range 0:5 � � � 0:9, the algorithm pi
ks the state of Vermont'sdata as the one 
losest to the national average data in Figure 7.
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Fig. 6. x[11℄ = State of Georgia unemployment rate data: a
tual (left), sorted (right).For parameter � in the range 0:9 < � � 1:0, the algorithm pi
ks the state of Georgia'sdata as the one 
losest to the national average data in Figure 7.



50 100 150 200 250

2

4

6

8

10

12

14

50 100 150 200 250

2

4

6

8

10

12

14

Fig. 7. Query data y = National average unemployment rates: a
tual (left), sorted(right). The dataset is the seasonally adjusted monthly unemployment rates for 256months spanning January 1979 through April 2000.Referen
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