
Parametri Approximation Algorithms forHigh-Dimensional Eulidean Similarity�Omer E�geio�glu?Department of Computer Siene,University of California, Santa Barbara, CA 93106 USAomer�s.usb.eduAbstrat. We introdue a spetrum of algorithms for measuring thesimilarity of high-dimensional vetors in Eulidean spae. The algorithmsproposed onsist of a onvex ombination of two measures: one whihontains summary data about the shape of a vetor, and the other aboutthe relative magnitudes of the oordinates. The former is based on aonept alled bin-sore permutations and a metri to quantify simi-larity of permutations, the latter on another novel approximation forinner-produt omputations based on power symmetri funtions, whihgeneralizes the Cauhy-Shwarz inequality. We present experiments ontime-series data on labor statistis unemployment �gures that show thee�etiveness of the algorithm as a funtion of the parameter that om-bines the two parts.1 IntrodutionModern databases and appliations use multiple types of digital data, suhas douments, images, audio, video, et. Some examples of suh appliationsare doument databases [6℄, medial imaging [16℄, and multimedia informationsystems [18℄. The general approah is to represent the data objets as multi-dimensional points in Eulidean spae, and to measure the similarity betweenobjets by the distane between the orresponding multi-dimensional points [13,6℄. It is assumed that the loser the points, the more similar the data objets.Sine the dimensionality and the amount of data that need to be proessed in-reases very rapidly, it beomes important to support eÆient high-dimensionalsimilarity searhing in large-sale systems. This support depends on the devel-opment of eÆient tehniques to support approximate searhing. To this end,a number of index strutures for retrieval of multi-dimensional data along withassoiated algorithms for similarity searh have been developed [11, 19, 4℄. Fortime-series data, there are a number of proposed ways to measure similarity.These range from the Eulidean distane to non-Eulidean metris and the rep-resentation of the sequene by appropriate seletion of loal extremal points [17℄.Agrawal, Lin, Sawhney, and Shim [1℄ onsidered fast similarity searh in the pres-ene of noise, saling, and translation by making use of the L1 norm. Bollobas,? Supported in part by NSF Grant No. CCR{9821038.



Das, Gunopulos, and Mannila [2℄ onsidered similarity de�nitions based on theonept of well-separated geometri sets. It has been noted in the literature how-ever, that as dimensionality inreases, query performane degrades signi�antly,an anomaly known as the dimensionality urse [5, 10℄. Common approahes foroveroming the dimensionality urse by dimension redution are linear-algebraimethods suh as the Singular Value Deomposition (SVD), or appliations ofmathematial transforms suh as the Disrete Fourier Transform (DFT), Dis-rete Cosine Transform (DCT), or Disrete Wavelet Transform (DWT). In thesemethods, lower dimensional vetors are reated by taking the �rst few leadingoeÆients of the transformed vetors [3℄.This paper introdues a spetrum of similarity algorithms whih onsist ofa onvex ombination of two di�erent measures. A shape measure on high-dimensional vetors based on the similarity of permutations through inversionpairs, followed by an assoiated dimension redution by bin-sore permutations;and a symmetri magnitude measure based on the omputation of the inner-produt and onsequently the osine of the angle between two vetors by a lowdimensional representation.2 The Main DeompositionAn n-dimensional real vetor x = (x1; x2; : : : ; xn) 2 IRn an be deomposed as apair (s(x); �(x)) where s(x) is the sorted version of x into weakly inreasing o-ordinates, and �(x) is the permutation of the indies f1; 2; : : : ; ng that ahievesthis ordering. We impose the additional ondition that the elements of the per-mutation �(x) are put in inreasing order on any set of indies for whih thevalue of the oordinate is onstant. For example when x = (3; 3; 1; 5; 2; 0; 1; 6; 1),s(x) = (0; 1; 1; 1; 2; 3; 3; 5; 6), and in one line notation, �(x) = 6 3 7 9 5 1 2 4 8.Note that in x the smallest oordinate value is x6 = 0, the next smallest isx3 = x7 = x9 = 1, et. Given x; y 2 IRn, we aim to approximate the Eulideandistane kx� yk as a onvex ombination�s(x; y) + (1� �)�(x; y) ; (1)where� s(x; y) is a measure of distane between s(x) and s(y) whih is a symmetrifuntion of the oordinates separately in x and y (we refer to this as themagnitude or the symmetri part),� �(x; y) is a measure of the distane between the permutations �(x) and �(y)(we refer to this as the shape part),� 0 � � � 1 is a parameter that ontrols the bias of the algorithm towardsmagnitude/symmetry versus shape.



In order for suh a sheme to be useful, the individual funtions s(x; y) and�(x; y) must be amenable to omputation using data with redued dimensional-ity� n. In the tehnique proposed here, this redued dimension an be seletedseparately and independently for the two parts. First we disuss the onstrutionof the parts themselves and then present the results of the experiments.The outline of this paper is as follows. In setion 3 we onsider the fastapproximate alulation of s(x; y) whih is based on a novel low-dimensionalrepresentation to ompute the inner produt introdued in [7℄ and developed in[8℄. Setion 4 desribes how to measure the distane �(x; y) on permutations witha low-dimensional representation. This is based on a metri on permutations thatwe introdue, and the approximation of the metri by bin-sore permutations.Experiments on labor statistis time-series data are presented in setion 5, andonlusions in setion 6.3 The magnitude part: power symmetri funtionsOur representation of data in IRn with redued number of dimensions m withm � n for the omputation of the magnitude part s(x; y) in (1) is based ona novel approximation for the inner produt introdued in [7℄ and further de-veloped in [8℄. For integers n; p > 0 and z 2 IRn, the p-th power symmetrifuntion is de�ned by  p(z) = zp1 + zp2 + � � � + zpn. Note that the ordinary Eu-lidean distane between x and y and the power symmetri funtions are relatedby kx� yk =p 2(x) +  2(y)� 2 < x; y > ; (2)where < x; y >= x1y1+x2y2+ : : :+xnyn is the standard inner-produt. Usingthe  p(z) preomputed for eah vetor z in the dataset, we look for an estimatefor < x; y > by approximating its m-th power in the form< x; y >m � b1 1(x) 1(y) + b2 2(x) 2(y) + � � �+ bm m(x) m(y) (3)for large n, where the bi are universal onstants hosen independently of x andy. For eah high-dimensional vetor x, we alulate  1(x);  2(x); : : : ;  m(x), andkeep thesem real numbers as a representative of the original vetor x. For a givenquery vetor y, we ompute  1(y);  2(y); : : : ;  m(y) and approximate < x; y >via (3), and the Eulidean distane via (2).Our assumption on the struture of the dataset for the omputation of s(x; y)by this method is as follows: it onsists of n-dimensional vetors whose ompo-nents are independently drawn from a ommon (but possibly unknown) distri-bution with density [12℄. In [7℄ the best set of onstants b1; b2; : : : ; bm for theapproximation (3) in the sense of least-squares was omputed. In partiular forthe uniform distribution and m = 2 the optimal values are shown to beb1 = � 116 ; b2 = 4564 : (4)



This means that for m = 2, < x; y > is approximated by the expressions����� 116 1(x) 1(y) + 4564 2(x) 2(y)����In fat in the general ase of a density with i-th moment �i (about the origin), itan be proved [7℄ that the onstants b1; b2 are funtions of the �rst four momentsof the density f(x). They are given by the formulasb1 = �21 � 2�32 + �21�4 � 3�1�2�3�32 + �21�4 � 2�1�2�3 ;b2 = �41�2 � �1�3 � �22�32 + �21�4 � 2�1�2�3 : (5)The moments of the uniform distribution are �i = 1=(i + 1), for whih theformulas in (5) redue to the values in (4) above.A seondary problem of interest in the ontext of the determination of thebest set of onstants is dynami in nature. When the ontents of the databasehanges by adding new data vetors, for example, the parameters used for theapproximation problem to the inner-produt alulation an be adjusted eÆ-iently. In partiular, one need not know the density of the distribution of theoordinates in the dataset parametrially. The moments ui an be estimated asthe limit of the N -th estimate �i(N) as the dataset is aumulated via�i(N + 1) = 1N + 1 �N�i(N) + tiN+1� : (6)where tN is the N -th sample oordinate observed.4 The shape part: bin-sore permutationsFor a permutation � = �1�2 � � � �n of the integers f1; 2; : : : ; ng in one-line nota-tion, an inversion is a pair �i > �j orresponding to a pair of indies i < j. LetInv(�) denote the total number of inversions of �. For example for � = 4 3 5 2 1the set of inversions is f(5; 2); (5; 1); (4; 3); (4; 2); (4; 1); (3; 2); (3; 1); (2; 1)g andthus Inv(�) = 8 . For any permutation �,0 � Inv(�) � 12 n(n � 1 )with Inv(�) = 0 i� � = 1 2 � � �n is the identity permutation and Inv(�) =12 n(n � 1 ) i� � = n � � � 2 1 is the reverse of the identity permutation. For thedetails of the underlying partially ordered set see [14℄. Inversions arise naturallyin the ontext of sorting as a measure of presortedness [15℄ when the numberof omparisons is the basi measure. The idea of ounting inversions is one ofmany ways of putting a measure of similarity on permutations [9℄. Given twopermutations � and � , we ount the number of inversions � would have if we



were to use �1�2 � � � �n as the index set. In other words we ompute Inv(���1 ).Put �(�; �) = 2n(n� 1) Inv(���1 ) (7)to normalize this measure to the unit interval. Some relevant properties of � areas follows1. 0 � �(�; �) � 1,2. �(�; �) = 0 i� � = � ,3. �(�; �) = 1 i� �+ �i = n+ 1 for i = 1; 2; : : : n,4. �(�; �) = �(�; �),5. �(�; �) � �(�; Æ) + �(Æ; �) for any permutation Æ.In partiular � is a metri on permutations. However, we annot realistiallyuse the permutations � = �(x) and � = �(y) introdued in setion 2 to omputethis distane, sine then there is no redution in the dimension. The question isthen whether or not approximations to the permutations � and � by some lowerdimensional representation an be made, that would allow us to ompute thismeasure without muh deviation from the atual value.To this end, we onsider bin-sore permutations. For simpliity, assume n =2r and � is a permutation on f1; 2; : : : ; ng. For any integer s = 0; 1; : : : ; r, we maydivide the index set into b = 2s onseutive subsets (bins) of length b0 = nb = 2r�seah. The i-th bin is desribed by the b0 onseutive indiesi1 = (i� 1)b0 + 1; i2 = (i� 1)b0 + 2; : : : ; ib0 = (i� 1)b0 + b0:The sore of this bin is the sum �i1 + �i2 + � � �+ �ib0 . In this way we onstrut amyopi version of � on f1; 2; : : : ; bg obtained by plaing 1 for the smallest entryamong the bin-sores omputed, 2 for the next smallest, et. In ase of ties, wemake the indies inrease from left to right, as in the ase of the onstrutionof �(x) desribed in setion 2 (in fat, this permutation is simply �(x0) wherex0 is the b-dimensional vetor of bin-sores of x). The bin-sore permutationorresponding to b = n is � itself, and for b = 1 it is the singleton 1. As anexample, for n = 8, the bin-sore permutations of � = 5 8 2 6 4 3 1 7 for b = 4; 2are obtained from the sores 13; 8; 7; 8, and 21; 15 as the permutations 4 2 1 3and 2 1, respetively. Note that any bin-sore permutation an be obtained byrepeated appliation of the b0 = 2 ase.5 ExperimentsFor the experiments, we have used time series data of the seasonally adjustedloal area unemployment rate �gures (Loal Area Unemployment Statistis)for the 51 states supplied online by the U.S. Department of Labor's Bureauof Labor Statistis. The monthly rates were extrated for 256 months, overing



the period between January 1979 through April 2000 for eah state1. The datasetwe used for the experiments onduted onsisted of 51 vetors in IR256 of thestates, alphabetially ordered as Alabama through Wyoming, and indexed asx[1℄; x[2℄; : : : ; x[51℄. Thus eah x[i℄ is a vetor in n = 256 dimensional spae.For the query vetor y, we used the unemployment rate �gures for the sameperiod for the seasonally adjusted national average �gures. The purpose of theexperiments an be thought of as determining whih state in the union has hadan unemployment rate history that is losest to the national average for theperiod of time in question, where losest an be given di�erent meanings byaltering the bias parameter � of the algorithm.5.1 Estimation of the parameters: the magnitude partThe maximum oordinate over all the vetors in the dataset was found to be19.5 and the minimum entry as 2.1. Sine we have no reason to expet the datato be uniform in this interval, we omputed b1 and b2 using (5) after a linearnormalization to the unit interval.
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Fig. 1. The estimate to b1 and b2 omputed for 50 vetors, eah of dimension 16 withentries from the uniform distribution on [0,1℄. The theoretially obtained asymptotivalues are b1 = �0:0625, b2 = 0:703125.To ompute the number of sample vetors of dimension 256 required to obtaina meaningful estimate using (5) and the estimates of the �rst four moments of thedensity obtained through (6), we �rst experimented with uniform distributionfor whih we know the asymptoti values b1 = � 116 , b2 = 4564 . Two to three256-dimensional vetors were enough for onvergene. We generated 50 vetorsof dimension 16 eah. The orresponding values of b1 and b2 alulated from theestimates of the moments are shown in Figure 1. We see that the onvergenerequires about 20 vetors or about 300 samples. This means that the lowerbound on the number of 256 dimensional vetors we need to obtain a reasonableestimates to b1 and b2 in the general ase is very small.1 In California unemployment rates, the 1979 year data supplied were 0.0. These wereall replaed with the January 1980 value of 5.9.



Computing with 51 � 256 = 13056 normalized sample oordinates in thedataset, the approximate moments were alulated by Mathematia to be �1 =0:236, �2 = 0:072, �3 = 0:026, �4 = 0:012. Using the formulas (5) givesb1 = 0:017 ; b2 = 0:415 (8)With these values, we omputed the the summary data  1(x[1℄); : : : ;  1(x[51℄)and  2(x[1℄); : : : ;  2(x[51℄) required.The following vetor of length 51 gives the (approximate)  1 values of thenormalized vetors omputed in this fashion:85:3; 95:5; 58:4; 74:1; 74:1; 47:9; 43:7; 48:5; 86:0; 58:3; 52:1; 43:3; 66:6; 73:2; 63:1; 43:3; 36:7;75:2; 92:3; 58:7; 48:2; 47:1; 90:9; 41:2; 87:8; 56:9; 65:0; 22:7; 60:1; 34:2; 58:6; 78:2; 66:2; 45:0;34:4; 72:0; 52:1; 74:6; 69:1; 60:4; 60:6; 27:2; 66:7; 62:9; 44:4; 40:5; 40:3; 75:7; 117:7; 51:6; 53:1and the following the  2 values omputed34:6; 37:6; 15:3; 23:8; 23:5; 10:6; 9:0; 11:8; 31:1; 14:7; 11:5; 8:8; 19:4; 24:6; 21:0; 10:1; 5:8;25:7; 38:0; 15:6; 10:4; 11:4; 41:6; 8:4; 34:3; 15:0; 17:6; 3:1; 16:5; 6:9; 15:3; 25:3; 18:5; 10:2;5:5; 25:1; 12:9; 24:9; 22:1; 17:5; 17:2; 3:5; 21:3; 16:9; 9:9; 7:8; 7:5; 25:8; 62:0; 14:4; 13:2For example for the state of Alabama, the summary magnitude information is 1(x[1℄) = 85:3 and  2(x[1℄) = 34:6:We also alulated that for the query vetor y of normalized national averagerates, the two  values are 1(y) = 63:9 and  2(y) = 17:8:Now for every vetor x in the dataset, we alulate the approximation to< x; y > as pb1 1(x) 1(y) + b2 2(x) 2(y)where b1 and b2 are as given in (8). Therefore as a measure of distane of thesymmetri part, we sets(x; y) =pj 2(x) +  2(y)� 0:0350342 1(x) 1(y)� 0:82938 2(x) 2(y)jby using (2).To see how the approximations to the magnitude part and the atual Eu-lidean distane values ompare, we plotted the normalized atual values andthe normalized approximations for the 51 states in Figure 2. Considering thatwe are only using the m = 2 algorithm for the omputation of s(x; y), i.e. thedimension is vastly redued, the results are satisfatory.
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Fig. 2. The magnitude part: normalized atual distanes (left), normalized approxi-mations (right).5.2 Estimation of the parameters: the shape partTo get an idea on the number of bins b to use for the omputation of the ap-proximate values �(x; y), we alulated vetors of distanes �(x; y) through theexpression (7) with bin-sore permutations instead of the atual permutations.Bin-sore permutations for eah vetor x[1℄; : : : ; x[51℄ and the query vetor ywas omputed for b ranging from 4 to 256. The resulting distanes are plottedin Figure 3. From the �gure, it is lear that even b = 8 is a reasonable approx-imation to the atual urve (i.e. b = 256). In the experiments we used the aseof b = 16 bins.
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Fig. 3. The shape part: plot of bin{sore permutation distanes for 4{256 bins.6 Parametri Experiments and ConlusionsIn Figures 5{8, the data plotted is the seasonally adjusted monthly unemploy-ment rates for 256 months spanning January 1979 through April 2000. In eah�gure, the plot on the left is the atual rates through this time period, and the



one on the right is the plot of the rates sorted in inreasing order. Consider thefuntion (1) for � hanging from 0 to 1 in inrements of 0:01, where for eah �value, s(x; y) makes use of the approximate distane omputation desribed form = 2, and �(x; y) is the distane between the bin-sore permutations �(x) and�(y) for b = 16 bins. For eah value of � in this range we omputed the state(i.e. the vetor x[i℄) where the minimum approximate distane is obtained.� For 0:0 � � < 0:5, the minimum is obtained at x[15℄, whih orresponds tothe state of Indiana,� For 0:5 � � � 0:9, the minimum is obtained at x[46℄, whih orresponds tothe state of Vermont,� For 0:9 < � � 1:0, the minimum is obtained at x[11℄, whih orresponds tothe state of Georgia.The observed \ontinuity" of these results as a funtion of � is a desirableaspet of any suh family of algorithms.Figures 5{8 indiate the behavior of the algorithm on the dataset. For smallvalues of �, the bias is towards the shapes of the urves. In these ases thealgorithm �nds the time-series data of the national rates (Figure 8, left), resemblemost that of Indiana (Figure 5, left) out of the 51 states in the dataset. On theother extreme, for values of � lose to 1, the bias is towards the magnitudes,and the algorithm �nds the sorted data of the national rates (Figure 8, right),resemble most that of the state of Georgia (Figure 7, right). The intermediatevalues pik the state of Vermont (Figure 6) as the losest to the national averagerates.In onlusion, we proposed a spetrum of dynami dimensionality redu-tion algorithms based on the approximation of the standard inner-produt, andbin-sore permutations based on an inversion measure on permutations. Theexperiments on time-series data show that with this tehnique, the similaritybetween two objets in high-dimensional spae an be well approximated by asigni�antly lower dimensional representation.We remark that even though we used a onvex ombination of the two mea-sures ontrolled by a parameter �, it is possible to ombine s(x; y) and �(x; y)for the �nal similarity measure in many other ways,s(x; y)��(x; y)1��;for example. In any suh formulation, the determination of the best value of �for a given appliation will most likely require the experimental evaluation of thebehavior of the approximate distane funtion by sampling from the dataset.
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Fig. 4. x[15℄ = State of Indiana unemployment rate data: atual (left), sorted (right).For parameter � in the range 0:0 � � < 0:5, the algorithm piks the state of Indiana'sdata as the one losest to the national average data in Figure 7.
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Fig. 5. x[46℄ = State of Vermont unemployment rate data: atual (left), sorted (right).For parameter � in the range 0:5 � � � 0:9, the algorithm piks the state of Vermont'sdata as the one losest to the national average data in Figure 7.
50 100 150 200 250

2

4

6

8

10

12

14

50 100 150 200 250

2

4

6

8

10

12

14

Fig. 6. x[11℄ = State of Georgia unemployment rate data: atual (left), sorted (right).For parameter � in the range 0:9 < � � 1:0, the algorithm piks the state of Georgia'sdata as the one losest to the national average data in Figure 7.
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