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Abstract. We introduce a spectrum of algorithms for measuring the
similarity of high-dimensional vectors in Euclidean space. The algorithms
proposed consist of a convex combination of two measures: one which
contains summary data about the shape of a vector, and the other about
the relative magnitudes of the coordinates. The former is based on a
concept called bin-score permutations and a metric to quantify simi-
larity of permutations, the latter on another novel approximation for
inner-product computations based on power symmetric functions, which
generalizes the Cauchy-Schwarz inequality. We present experiments on
time-series data on labor statistics unemployment figures that show the
effectiveness of the algorithm as a function of the parameter that com-
bines the two parts.

1 Introduction

Modern databases and applications use multiple types of digital data, such
as documents, images, audio, video, etc. Some examples of such applications
are document databases [6], medical imaging [16], and multimedia information
systems [18]. The general approach is to represent the data objects as multi-
dimensional points in Euclidean space, and to measure the similarity between
objects by the distance between the corresponding multi-dimensional points [13,
6]. It is assumed that the closer the points, the more similar the data objects.
Since the dimensionality and the amount of data that need to be processed in-
creases very rapidly, it becomes important to support efficient high-dimensional
similarity searching in large-scale systems. This support depends on the devel-
opment, of efficient techniques to support approximate searching. To this end,
a number of index structures for retrieval of multi-dimensional data along with
associated algorithms for similarity search have been developed [11,19,4]. For
time-series data, there are a number of proposed ways to measure similarity.
These range from the Euclidean distance to non-Euclidean metrics and the rep-
resentation of the sequence by appropriate selection of local extremal points [17].
Agrawal, Lin, Sawhney, and Shim [1] considered fast similarity search in the pres-
ence of noise, scaling, and translation by making use of the L., norm. Bollobas,
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Das, Gunopulos, and Mannila [2] considered similarity definitions based on the
concept of well-separated geometric sets. It has been noted in the literature how-
ever, that as dimensionality increases, query performance degrades significantly,
an anomaly known as the dimensionality curse [5,10]. Common approaches for
overcoming the dimensionality curse by dimension reduction are linear-algebraic
methods such as the Singular Value Decomposition (SVD), or applications of
mathematical transforms such as the Discrete Fourier Transform (DFT), Dis-
crete Cosine Transform (DCT), or Discrete Wavelet Transform (DWT). In these
methods, lower dimensional vectors are created by taking the first few leading

coefficients of the transformed vectors [3].

This paper introduces a spectrum of similarity algorithms which consist of
a convex combination of two different measures. A shape measure on high-
dimensional vectors based on the similarity of permutations through inversion
pairs, followed by an associated dimension reduction by bin-score permutations;
and a symmetric magnitude measure based on the computation of the inner-
product and consequently the cosine of the angle between two vectors by a low
dimensional representation.

2 The Main Decomposition

An n-dimensional real vector z = (z1, 2, ...,%,) € IR" can be decomposed as a
pair (s(z),o(z)) where s(z) is the sorted version of z into weakly increasing co-
ordinates, and o(z) is the permutation of the indices {1,2,...,n} that achieves
this ordering. We impose the additional condition that the elements of the per-
mutation o(z) are put in increasing order on any set of indices for which the
value of the coordinate is constant. For example when z = (3,3,1,5,2,0,1,6, 1),
s(x) =(0,1,1,1,2,3,3,5,6), and in one line notation, o(z) =6 3795124 8.
Note that in 2 the smallest coordinate value is xg = 0, the next smallest is
T3 = 17 = 19 = 1, etc. Given z,y € R", we aim to approximate the Euclidean

distance ||z — y|| as a convex combination
where

e s(z,y) is a measure of distance between s(x) and s(y) which is a symmetric
function of the coordinates separately in x and y (we refer to this as the
magnitude or the symmetric part),

e w(z,y) is a measure of the distance between the permutations o(z) and o(y)
(we refer to this as the shape part),

e 0 < X < 1isa parameter that controls the bias of the algorithm towards
magnitude/symmetry versus shape.



In order for such a scheme to be useful, the individual functions s(z,y) and
7(x,y) must be amenable to computation using data with reduced dimensional-
ity <« n. In the technique proposed here, this reduced dimension can be selected
separately and independently for the two parts. First we discuss the construction
of the parts themselves and then present the results of the experiments.

The outline of this paper is as follows. In section 3 we consider the fast
approximate calculation of s(x,y) which is based on a novel low-dimensional
representation to compute the inner product introduced in [7] and developed in
[8]. Section 4 describes how to measure the distance 7(z,y) on permutations with
a low-dimensional representation. This is based on a metric on permutations that
we introduce, and the approximation of the metric by bin-score permutations.
Experiments on labor statistics time-series data are presented in section 5, and
conclusions in section 6.

3 The magnitude part: power symmetric functions

Our representation of data in IR" with reduced number of dimensions m with
m <& n for the computation of the magnitude part s(x,y) in (1) is based on
a novel approximation for the inner product introduced in [7] and further de-
veloped in [8]. For integers n,p > 0 and z € IR", the p-th power symmetric
function is defined by ,(z) = 2z + 25 + -+ + z2. Note that the ordinary Eu-
clidean distance between z and y and the power symmetric functions are related
by

Iz~ yll = V2 (2) + 2(y) —2<z,y > | (2)

where < z,y >= x1y1 +Z2y2 + ...+ Tpy, is the standard inner-product. Using
the 4, (z) precomputed for each vector z in the dataset, we look for an estimate
for < z,y > by approximating its m-th power in the form

<zy >" o~ b () (y) + batha(2)Y2(y) + - + b (2)m (y) (3)

for large n, where the b; are universal constants chosen independently of z and
y. For each high-dimensional vector x, we calculate ¢ (z), 2 (z), ..., ¥m(x), and
keep these m real numbers as a representative of the original vector z. For a given
query vector y, we compute ¥1(y),%2(y),. .., %m(y) and approximate < z,y >
via (3), and the Euclidean distance via (2).

Our assumption on the structure of the dataset for the computation of s(z, y)
by this method is as follows: it consists of n-dimensional vectors whose compo-
nents are independently drawn from a common (but possibly unknown) distri-
bution with density [12]. In [7] the best set of constants by, b,. .., by for the
approximation (3) in the sense of least-squares was computed. In particular for
the uniform distribution and m = 2 the optimal values are shown to be
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b= oo (4)



This means that for m = 2, < z,y > is approximated by the expression

\/‘1_16¢1 ()1 (y) + ;‘—iw(m)w ()

In fact in the general case of a density with i-th moment u; (about the origin), it
can be proved [7] that the constants by, by are functions of the first four moments
of the density f(z). They are given by the formulas

o 203 + pipa — 3 po s
Y 4 s — 2papaps
2
Hq M3 — 3
by = M1 : (5)
fra 15+ pipa — 2 pops

b]:ﬂ

The moments of the uniform distribution are u; = 1/(i + 1), for which the
formulas in (5) reduce to the values in (4) above.

A secondary problem of interest in the context of the determination of the
best set of constants is dynamic in nature. When the contents of the database
changes by adding new data vectors, for example, the parameters used for the
approximation problem to the inner-product calculation can be adjusted effi-
ciently. In particular, one need not know the density of the distribution of the
coordinates in the dataset parametrically. The moments u; can be estimated as
the limit of the N-th estimate fi;(N) as the dataset is accumulated via

TN +1) = o (NTR(V) + ). )

where tx is the N-th sample coordinate observed.

4 The shape part: bin-score permutations

For a permutation p = p1ps - - p,, of the integers {1,2,...,n} in one-line nota-
tion, an inversion is a pair p; > p; corresponding to a pair of indices ¢ < j. Let
Inv(p) denote the total number of inversions of p. For example for p=43521
the set of inversions is {(5,2),(5,1),(4,3),(4,2),(4,1),(3,2),(3,1),(2,1)} and
thus Inv(p) = 8. For any permutation p,

0 < Inv(p) < £n(n—1)

with Inv(p) = 0 iff p = 12---n is the identity permutation and Inv(p) =
Ln(n — 1) iff p=n---21 is the reverse of the identity permutation. For the
details of the underlying partially ordered set see [14]. Inversions arise naturally
in the context of sorting as a measure of presortedness [15] when the number
of comparisons is the basic measure. The idea of counting inversions is one of
many ways of putting a measure of similarity on permutations [9]. Given two

permutations p and 7, we count the number of inversions p would have if we



were to use 7Ty - - T, as the index set. In other words we compute Inv(pr~1).
Put

7(p,7) = ———Inv(pr ! 7
(7) = gy o) 7)
to normalize this measure to the unit interval. Some relevant properties of = are

as follows

1. 0<m(p,7) <1,

2. wp,7)=0iff p=71

3. w(p,r)=1if p+ri=n+1lfori=12...n,

L wlpr) =n(rp),

5. 7(p,7) < 7(p,d) + n(d, ) for any permutation J.

In particular 7 is a metric on permutations. However, we cannot realistically
use the permutations p = o(z) and 7 = o(y) introduced in section 2 to compute
this distance, since then there is no reduction in the dimension. The question is
then whether or not approximations to the permutations p and 7 by some lower
dimensional representation can be made, that would allow us to compute this
measure without much deviation from the actual value.

To this end, we consider bin-score permutations. For simplicity, assume n =
2" and p is a permutation on {1,2,...,n}. For any integer s = 0,1, ..., r, we may
divide the index set into b = 2° consecutive subsets (bins) of length b’ = 3 = 2"7*
each. The i-th bin is described by the b' consecutive indices

= (=D +1, iy = (=1 +2, ..., iy =(—1 4.

The score of this bin is the sum p;; + ps, + -+ p;,, . In this way we construct a
myopic version of p on {1,2,...,b} obtained by placing 1 for the smallest entry
among the bin-scores computed, 2 for the next smallest, etc. In case of ties, we
make the indices increase from left to right, as in the case of the construction
of o(x) described in section 2 (in fact, this permutation is simply o(z') where
x' is the b-dimensional vector of bin-scores of z). The bin-score permutation
corresponding to b = n is p itself, and for b = 1 it is the singleton 1. As an
example, for n = 8, the bin-score permutationsof p=58264317forb=4,2
are obtained from the scores 13,8,7,8, and 21, 15 as the permutations 4 21 3
and 2 1, respectively. Note that any bin-score permutation can be obtained by

repeated application of the b’ = 2 case.

5 Experiments

For the experiments, we have used time series data of the seasonally adjusted
local area unemployment rate figures (Local Area Unemployment Statistics)
for the 51 states supplied online by the U.S. Department of Labor’s Bureau
of Labor Statistics. The monthly rates were extracted for 256 months, covering



the period between January 1979 through April 2000 for each state!. The dataset
we used for the experiments conducted consisted of 51 vectors in IR**% of the
states, alphabetically ordered as Alabama through Wyoming, and indexed as
z[1],z[2],...,z[51]. Thus each z[i] is a vector in n = 256 dimensional space.
For the query vector y, we used the unemployment rate figures for the same
period for the seasonally adjusted national average figures. The purpose of the
experiments can be thought of as determining which state in the union has had
an unemployment rate history that is closest to the national average for the
period of time in question, where closest can be given different meanings by
altering the bias parameter A of the algorithm.

5.1 Estimation of the parameters: the magnitude part

The maximum coordinate over all the vectors in the dataset was found to be
19.5 and the minimum entry as 2.1. Since we have no reason to expect the data
to be uniform in this interval, we computed b; and by using (5) after a linear
normalization to the unit interval.

o *******’k*******************-******y*********
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Fig. 1. The estimate to b1 and ba computed for 50 vectors, each of dimension 16 with
entries from the uniform distribution on [0,1]. The theoretically obtained asymptotic
values are by = —0.0625, b, = 0.703125.

To compute the number of sample vectors of dimension 256 required to obtain
a meaningful estimate using (5) and the estimates of the first four moments of the
density obtained through (6), we first experimented with uniform distribution
for which we know the asymptotic values b; = 711—6, by = g—i. Two to three
256-dimensional vectors were enough for convergence. We generated 50 vectors
of dimension 16 each. The corresponding values of b; and by calculated from the
estimates of the moments are shown in Figure 1. We see that the convergence
requires about 20 vectors or about 300 samples. This means that the lower
bound on the number of 256 dimensional vectors we need to obtain a reasonable
estimates to b; and by in the general case is very small.

! In California unemployment rates, the 1979 year data supplied were 0.0. These were
all replaced with the January 1980 value of 5.9.



Computing with 51 x 256 = 13056 normalized sample coordinates in the
dataset, the approximate moments were calculated by Mathematica to be p; =
0.236, po = 0.072, uz = 0.026, s = 0.012. Using the formulas (5) gives

b =0.017, by =0.415 (8)

With these values, we computed the the summary data ¢ (z[1]),. .., ¢ (z[51])
and Yo (z[1]), ..., ¥2(x[51]) required.

The following vector of length 51 gives the (approximate) ; values of the
normalized vectors computed in this fashion:

85.3,95.5,58.4, 74.1,74.1,47.9, 43.7, 48.5, 86.0, 58.3, 52.1, 43.3, 66.6, 73.2, 63.1, 43.3, 36.7,
75.2,92.3,58.7,48.2,47.1,90.9, 41.2, 87.8, 56.9, 65.0, 22.7, 60.1, 34.2, 58.6, 78.2, 66.2, 45.0,
34.4,72.0,52.1,74.6,69.1, 60.4, 60.6, 27.2, 66.7, 62.9, 44.4, 40.5, 40.3, 75.7, 117.7, 51.6, 53.1

and the following the 1, values computed
34.6,37.6,15.3, 23.8, 23.5,10.6, 9.0, 11.8, 31.1, 14.7, 11.5, 8.8, 19.4, 24.6, 21.0, 10.1, 5.8,

25.7,38.0,15.6,10.4, 11.4, 41.6, 8.4, 34.3,15.0, 17.6, 3.1, 16.5, 6.9, 15.3, 25.3, 18.5, 10.2,
5.5,25.1,12.9,24.9,22.1,17.5,17.2, 3.5,21.3,16.9,9.9, 7.8, 7.5, 25.8, 62.0, 14.4, 13.2

For example for the state of Alabama, the summary magnitude information is

¢y (2[1]) = 85.3 and 1y (x[1]) = 34.6.

We also calculated that for the query vector y of normalized national average
rates, the two ¢ values are

Yi(y) =63.9 and s (y) = 17.8.

Now for every vector z in the dataset, we calculate the approximation to
<xz,y > as

Vb1 (@)1 (y) + batha (2)1ha (y)

where by and by are as given in (8). Therefore as a measure of distance of the
symmetric part, we set

s(z,y) = V|2 (x) + ¥ (y) — 0.0350342¢; (x)1h1 (y) — 0.82938s(x)1h2 (1)

by using (2).

To see how the approximations to the magnitude part and the actual Eu-
clidean distance values compare, we plotted the normalized actual values and
the normalized approximations for the 51 states in Figure 2. Considering that
we are only using the m = 2 algorithm for the computation of s(z,y), i.e. the
dimension is vastly reduced, the results are satisfactory.
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Fig. 2. The magnitude part: normalized actual distances (left), normalized approxi-
mations (right).

5.2 Estimation of the parameters: the shape part

To get an idea on the number of bins b to use for the computation of the ap-
proximate values 7 (z,y), we calculated vectors of distances 7(z,y) through the
expression (7) with bin-score permutations instead of the actual permutations.
Bin-score permutations for each vector z[1],...,z[51] and the query vector y
was computed for b ranging from 4 to 256. The resulting distances are plotted
in Figure 3. From the figure, it is clear that even b = 8 is a reasonable approx-
imation to the actual curve (i.e. b = 256). In the experiments we used the case
of b = 16 bins.

Fig. 3. The shape part: plot of bin—score permutation distances for 4-256 bins.

6 Parametric Experiments and Conclusions

In Figures 5-8, the data plotted is the seasonally adjusted monthly unemploy-
ment rates for 256 months spanning January 1979 through April 2000. In each
figure, the plot on the left is the actual rates through this time period, and the



one on the right is the plot of the rates sorted in increasing order. Consider the
function (1) for A changing from 0 to 1 in increments of 0.01, where for each A
value, s(z,y) makes use of the approximate distance computation described for
m = 2, and m(z,y) is the distance between the bin-score permutations o(z) and
o(y) for b = 16 bins. For each value of A in this range we computed the state
(i.e. the vector z[i]) where the minimum approximate distance is obtained.

e For 0.0 < A < 0.5, the minimum is obtained at z[15], which corresponds to
the state of Indiana,

e For 0.5 < A < 0.9, the minimum is obtained at x[46], which corresponds to
the state of Vermont,

e For 0.9 < A < 1.0, the minimum is obtained at z[11], which corresponds to
the state of Georgia.

The observed “continuity” of these results as a function of X is a desirable
aspect of any such family of algorithms.

Figures 5 8 indicate the behavior of the algorithm on the dataset. For small
values of A, the bias is towards the shapes of the curves. In these cases the
algorithm finds the time-series data of the national rates (Figure 8, left), resemble
most that of Indiana (Figure 5, left) out of the 51 states in the dataset. On the
other extreme, for values of A close to 1, the bias is towards the magnitudes,
and the algorithm finds the sorted data of the national rates (Figure 8, right),
resemble most that of the state of Georgia (Figure 7, right). The intermediate
values pick the state of Vermont (Figure 6) as the closest to the national average
rates.

In conclusion, we proposed a spectrum of dynamic dimensionality reduc-
tion algorithms based on the approximation of the standard inner-product, and
bin-score permutations based on an inversion measure on permutations. The
experiments on time-series data show that with this technique, the similarity
between two objects in high-dimensional space can be well approximated by a
significantly lower dimensional representation.

We remark that even though we used a convex combination of the two mea-
sures controlled by a parameter A, it is possible to combine s(z,y) and 7 (z,y)
for the final similarity measure in many other ways,

s(a,y) m(z,y)' 7,
for example. In any such formulation, the determination of the best value of A
for a given application will most likely require the experimental evaluation of the
behavior of the approximate distance function by sampling from the dataset.
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Fig. 4. z[15] = State of Indiana unemployment rate data: actual (left), sorted (right).
For parameter A in the range 0.0 < A < 0.5, the algorithm picks the state of Indiana’s
data as the one closest to the national average data in Figure 7.
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Fig. 5. £[46] = State of Vermont unemployment rate data: actual (left), sorted (right).
For parameter A in the range 0.5 < A < 0.9, the algorithm picks the state of Vermont’s
data as the one closest to the national average data in Figure 7.
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Fig. 6. z[11] = State of Georgia unemployment rate data: actual (left), sorted (right).
For parameter A in the range 0.9 < A < 1.0, the algorithm picks the state of Georgia’s
data as the one closest to the national average data in Figure 7.
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Fig. 7. Query data y = National average unemployment rates: actual (left), sorted

(right). The dataset is the seasonally adjusted monthly unemployment rates for 256
months spanning January 1979 through April 2000.
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