
Theoretical Computer Science 871 (2021) 134–146
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

The number of short cycles in Fibonacci cubes
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The Fibonacci cube is the subgraph of the hypercube induced by the vertices whose binary 
string representations do not contain two consecutive 1s. These cubes were presented as 
an alternative interconnection network. In this paper, we calculate the number of induced 
paths and cycles of small length in Fibonacci cubes by using the recursive structure of 
these graphs.
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1. Introduction

The n dimensional hypercube (or Boolean cube) Q n is one of the most famous interconnection model for parallel com-
puting. It consists of 2n vertices and each vertex is labeled by a unique n-bit binary string. Two vertices are adjacent if and 
only if their labels differ in exactly one position, that is, their Hamming distance is one. Fibonacci cubes [10], twisted cube 
[16,8], locally twisted cube [9,17], augmented cube [3] and many other variants were introduced as alternative interconnec-
tion networks.

The n dimensional Fibonacci cube �n is a subgraph of Q n which is obtained by removing vertices in Q n that have two 
consecutive 1s in its binary labeling [10]. In literature many interesting properties of �n are obtained. For a brief survey 
including the results on representations, hamiltonicity, degree sequence and independence number of �n we refer to [12]. 
The number of induced hypercubes in �n is considered in [13,15]. In [2,14] some domination type invariants of �n are 
obtained and the irregularity of �n is presented in [1,6].

It is known that counting cycles and paths in arbitrary graphs is a hard problem [7]. For a general bipartite graph 
with m vertices and girth g (length of a shortest cycle), a search algorithm to count the short cycles is presented in [4]. 
Time complexity of the algorithm is O(m2�) to count g-cycles and (g + 2)-cycles, and O(m2�2) to count (g + 4)-cycles, 
where � is the maximum degree of a vertex in the graph. The numbers of different triangles (cycles of length three) and 
quadrilaterals (cycles of length four) in augmented cubes are obtained in [5]. We remark that for n ≥ 7 every edge of �n

belongs to cycles of every even length [19]. But as far as we know there are no results on the number of induced cycles 
and paths in �n , which are directly related with the connectivity and fault-tolerant capability of the network. In this paper, 
we calculate the number of short induced paths and cycles of small length in �n by using the recursive structure of these 
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Fig. 1. The fundamental decomposition of �n .

graphs. We present the exact values of induced 4-cycles, 6-cycles and 8-cycles in �n and by considering these graphs as a 
poset we also count the number of specific type of induced 6-cycles and 8-cycles.

2. Preliminaries

Fibonacci numbers are defined by the recursion fn = fn−1 + fn−2 for n ≥ 2, with f0 = 0 and f1 = 1. A subgraph of a 
graph G having vertex set V and edge set E is a graph H having vertex set contained in V and edge set contained in E . If 
the edge set of a subgraph of G consists of all edges of G both of whose endpoints lie in G , then it is said to be an induced 
subgraph of G .

Let Bn denote the set of all binary strings of length n. Then for n ≥ 1

Fn = {b1b2 . . .bn ∈ Bn | bi · bi+1 = 0, 1 ≤ i ≤ n − 1}
is the set of all binary strings of length n that contain no two consecutive 1s, which are called Fibonacci strings of length n
and it is known that |Fn| = fn+2. For n ≥ 1 the Fibonacci cube �n has vertex set Fn and two vertices are adjacent if they 
differ in exactly one coordinate. Note that �1 = K2 and for convenience �0 is assumed to be K1. Using the properties of 
Fibonacci strings Fn we can decompose �n into the subgraphs induced by the vertices that start with 0 and 10 respectively. 
The vertices that start with 0 constitute a graph isomorphic to �n−1 and the vertices that start with 10 constitute a graph 
isomorphic to �n−2. This decomposition can be written symbolically as

�n = 0�n−1 + 10�n−2

and it is called the fundamental decomposition of �n [12]. Note that 0�n−1 contains a subgraph isomorphic to �n−2 which 
we denote by 00�n−2 and there is a perfect matching between 00�n−2 and 10�n−2. The edges in this perfect matching are 
called the link edges.

In the fundamental decomposition we use primes to denote the mates of the vertices v ∈ 10�n−2. So for v = 10α ∈
10�n−2, v ′ = 00α ∈ 00�n−2 ⊂ 0�n−1 as shown in Fig. 1.

3. Short induced paths in �n

Let pk(n) denote the number of induced paths of length k in �n . We will refer to such paths as induced k-paths. Clearly 
p1(n) is the number of edges of �n . It is given by

p1(n) = 1

5

(
2(n + 1) fn + nfn+1

)
(1)

with generating function∑
n≥0

p1(n)tn = t

(1 − t − t2)2
. (2)

3.1. Enumerating 2-paths

Next we calculate p2(n). Since �n is bipartite, every 2-path is induced. Evidently this is given by the expression

p2(n) =
∑
v∈�n

(
dv

2

)
, (3)

where dv is the degree (number of neighbors) of v in �n .
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Fig. 2. Possible cases for 2-paths which use link edges.

Proposition 1.

p2(n) = 1

25

(
(n − 1)(10n + 9) fn − 2nfn−1

)
. (4)

Proof. We will obtain p2(n) by making use of the fundamental decomposition of �n . A 2-path is either completely in 
0�n−1, or completely in 10�n−2, or uses one of the link edges between 00�n−2 ⊂ 0�n−1 and 10�n−2. The first two types 
are enumerated by p2(n − 1) and p2(n − 2), respectively. If one of the edges of the 2-path is a link edge, there are three 
cases to consider. These can be denoted schematically as in Fig. 2.
Case 1: Such 2-paths are enumerated by

∑
v∈�n−2

dv = 2p1(n − 2) ,

where dv is the degree of v in �n−2.
Case 2: This is similar to Case 1, and the number of such 2-paths is again 2p1(n − 2).
Case 3: Any vertex in 0�n−1 \ 00�n−2 is of the form 010α where α is a Fibonacci string of length n − 3. Therefore the 
number of 2-paths of this type is fn−1.

As a consequence we have the recurrence relation

p2(n) = p2(n − 1) + p2(n − 2) + 4p1(n − 2) + fn−1 (5)

for n ≥ 2 with p2(0) = p2(1) = 0. We multiply (5) by tn and sum for n ≥ 2. Using the expression (2) for the generating 
function of the p1(n) and the generating function of the Fibonacci numbers themselves, we obtain

∑
n≥0

p2(n)tn = t2(1 + 3t − t2)

(1 − t − t2)3
. (6)

The formula (4) can be obtained from this generating function by standard calculations. �
The sequence p2(n) for n ≥ 1 starts as

0,1,6,17,46,108,242,515,1062,2131,4188,8088, . . .

Proposition 1, in conjunction with (1) and the observation (3) yield the following expression for the second moment of 
the degrees in �n .

Corollary 1.

∑
v∈�n

d2
v = 2p2(n) + 2p1(n) = 2

25

(
(10n2 + 14n + 1) fn + 3nfn−1

)
.

The sequence of the second moments of the degrees for n ≥ 0 start as

0,2,6,22,54,132,292,626,1290,2594,5102,9864, . . .
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Fig. 3. Possible cases for induced 3-paths that use link edges.

3.2. Enumerating induced 3-paths

In the enumeration of the induced 3-paths in �n we need to keep in mind that these are induced paths, and they cannot 
form a square in �n .

By making use of the fundamental decomposition of �n , we have the contribution of the induced 3-paths in 0�n−1 and 
the ones in 10�n−2 to p3(n), which are p3(n − 1) and p3(n − 2), respectively. All other induced 3-paths must include a 
single link edge. We consider the contribution arising from this last possibility, which can be denoted graphically as shown 
in Fig. 3.
Case 1: Here we make use of the calculation we have already made for 2-paths. Since each extreme vertex of the 2-path in 
�n−2 can be connected to its mate by a link edge, the contribution from this case is 2p2(n − 2).
Case 2: In this case for any vertex v ∈ 10�n−2 and its mate v ′ ∈ 00�n−2, we can pick a neighbor of v in dv ways, and then 
a neighbor of v ′ for each such selection in dv − 1 ways, avoiding the neighbor picked for v in order not to form a square. 
Therefore the total number of induced 3-paths contributed in this case is∑

v∈�n−2

dv(dv − 1) = 2p2(n − 2) + 2p1(n − 2) − 2p1(n − 2) = 2p2(n − 2)

by Corollary 1.
Case 3: A vertex v ′ = 00α ∈ 00�n−2 has no neighbors in 0�n−1 \ 00�n−2 if α starts with a 1. If α starts with a 0, then v ′
has a unique neighbor 01α ∈ 0�n−1 \ 00�n−2. Therefore the contribution to the induced 3-paths in this case is∑

0α∈�n−2

d0α . (7)

We can write∑
v∈�n−2

dv =
∑

0α∈�n−2

d0α +
∑

1α∈�n−2

d1α

=
∑

0α∈�n−2

d0α +
∑

10β∈�n−2

d10β

=
∑

0α∈�n−2

d0α +
∑

β∈�n−4

dβ + fn−2 .

Therefore

2p1(n − 2) =
∑

0α∈�n−2

d0α + 2p1(n − 4) + fn−2

and the contribution from this case is
137
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2p1(n − 2) − 2p1(n − 4) − fn−2 .

Case 4: This is the number of 2-paths in 00�n−2 with an endpoint selected to link to its mate in 10�n−2. Therefore the 
contribution is 2p2(n − 2).
Case 5: In order for a vertex u′ ∈ 00�n−2 to have a neighbor in 0�n−1 \ 00�n−2, it must be of the form u′ = 000α, in 
which case it has exactly one such neighbor. We can then pick a neighbor v ′ on u′ in 00�n−2 and connect it to its mate 
v ∈ 10�n−2 by a link edge. Thus the contribution in this case is also∑

0α∈�n−2

d0α

which is

2p1(n − 2) − 2p1(n − 4) − fn−2

as found in Case 3.
Case 6: There are p1(n − 3) edges whose both endpoints lie in 0�n−1 \ 00�n−2. Each endpoint of such an edge is of the 
form 010α. Each endpoint has a unique neighbor 000α ∈ 00�n−2, which we can then connect by a link edge to its mate in 
10�n−2. It follows that the number of induced 3-paths contributed in this case is 2p1(n − 3).

The total contribution coming from the Cases 1-6 is then

4p1(n − 2) + 2p1(n − 3) − 4p1(n − 4) + 6p2(n − 2) − 2 fn−2 .

Now from the recursion

p3(n) = p3(n − 1) + p3(n − 2) + 4p1(n − 2) + 2p1(n − 3) − 4p1(n − 4) + 6p2(n − 2) − 2 fn−2

for n ≥ 2 we obtain the generating function of the p3(n) by algebraic manipulations using Mathematica as

2t3(1 + 4t + 5t2 − 4t3 + t4)

(1 − t − t2)4
. (8)

First few values of p3(n) for n ≥ 2 are

0,2,16,70,224,640,1648,3994,9200,20414,43920,92160, . . .

From the power series expansion of the generating function (8), it is possible to obtain a formula for the coefficient of the 
term tn in the expansion. We omit the proof of the following result obtained by using Mathematica.

Proposition 2.

p3(n) = 2

25

(
(n − 2)(2n2 + n − 4) fn + n(2n2 − 9n + 6) fn−2

)
. (9)

4. Short induced cycles in �n

We denote by ck(n) the number of induced k-cycles in �n . Since �n is bipartite, this number is zero unless k is even. As 
special cases, we let c0(n) and c2(n) denote the number of vertices and the number of edges of �n . Then c0(n) = fn+2 and 
c2(n) = p1(n) as given in (1). We can also use the alternate expression

c2(n) = 1

5

(
2(2n + 1) fn−1 + (3n + 2) fn−2

)
(10)

with generating function∑
n≥0

c2(n)tn = t

(1 − t − t2)2
. (11)

The number of induced 4-cycles in �n is a special case of counting the number of hypercubes Q k in �n for k = 2 (see, 
[11,13,15]). We have

c4(n) = 1

50

(
(n − 2)(5n + 1) fn + 6nfn−2

)
(12)

with generating function

∑
c4(n)tn = t3

(1 − t − t2)3
. (13)
n≥0
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Fig. 4. An induced 6-cycle that uses link edges.

4.1. Enumerating induced 6-cycles

Using the fundamental decomposition of �n , an induced 6-cycle is either completely contained in 0�n−1, completely 
contained in 10�n−2, or includes two link edges as shown in Fig. 4. The first two types are counted by c6(n − 1) and 
c6(n − 2), respectively. It remains to calculate the third type of induced 6-cycles to arrive at a recurrence relation for c6(n). 
In Fig. 4, let us call the rightmost vertex v , the leftmost vertex u′ , and refer to the two neighbors of v in �n−2 as a (top) 
and b (bottom). Then the neighbors of u′ are a′ and b′ , the mates of a and b, respectively. In the figure the vertical dotted 
lines indicate that the corresponding edge is not there. We make two observations:

1. u′ /∈ 0�n−1 \ 00�n−2, for the vertices in the set difference have exactly one neighbor in 00�n−2.
2. u′ is not the vertex v ′ , the mate of v , for otherwise the 6-cycle would not be induced because of the existence of the 

link edge v v ′ .

Using these observations we deduce that u, a, v, b is a 4-cycle in �n−2. Furthermore, a 4-cycle formed by four vertices 
u, a, v, b in �n−2 is responsible for a total of four induced 6-cycles in this way. This is because the pair a, b, a dotted 
diagonal, contributes two induced 6-cycles, one with using u′ and v for the two extreme points, and the other by using u
and v ′ . Similarly, the other dotted diagonal formed by u and v contribute two induced 6-cycles.

Therefore we have the recursion

c6(n) = c6(n − 1) + c6(n − 2) + 4c4(n − 2) (14)

for n ≥ 2 with c6(0) = c6(1) = 0. We already have the generating function (13). Using the recurrence relation (14) in con-
junction with this, followed by generating function manipulations and partial fractions expansion, we obtain the following.

Proposition 3. For n ≥ 0, let c6(n) denote the number of induced 6-cycles in the Fibonacci cube �n. Then

∑
n≥0

c6(n)tn = 4t5

(1 − t − t2)4
(15)

and c6(n) is explicitly given by

c6(n) = 1

75
n(n − 2)

(
(n − 7) fn+1 + 3(n + 1) fn−2

)
. (16)

First few values of the sequence of numbers c6(n) for n ≥ 4 are

0,4,16,56,160,420,1024,2376,5296,11440,24080,49608, . . .

It is easy to show by using induction on n and the fundamental decomposition of �n that the 6-cycles in �n are either 
induced, or have exactly one diagonal edge. This second type constitutes noninduced 6-cycles in �n . These are pairs of 
4-cycles in �n sharing an edge. Let us denote by s6(n) this latter type of 6-cycles in �n .

Proposition 4. The generating function of s6(n) is given by

∑
n≥0

s6(n)tn = 2t4(1 + 57 − t2)

(1 − t − t2)4
(17)

with

s6(n) = 1 (
(n − 2)(2n2 − 9n − 3) fn+1 + (n + 1)(6n2 − 17n + 6) fn−2

)
. (18)
50
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Fig. 5. Possible cases for induced 8-cycles that use link edges.

Proof. First we prove the recurrence relation

s6(n) = s6(n − 1) + s6(n − 2) + 8c4(n − 2) + p2(n − 2) + p1(n − 3) (19)

with s6(0) = s6(1) = s6(2) = 0. First of all noninduced 6-cycles that are contained completely in 0�n−1 and 10�n−2 account 
for the first two terms in (19). Next we look at those that involve link edges. Given any 4-cycle in 10�n−2, any edge uv
of the 4-cycle together with u′v ′ gives a noninduced 6-cycle which uses two link edges. This contributes 4c4(n − 2) to 
the count. The symmetric case where the 4-cycle is picked in 00�n−2 ⊂ 0�n−1 contributes another 4c4(n − 2). We can 
also pick an edge in 100�n−3, connect the endpoints uv to u′v ′ , and finally connect both u′ and v ′ to the unique edge in 
0�n−1 \ 00�n−2. This last edge is opposite uv in the noninduced 6-cycle formed. This accounts for the term p1(n − 3) in 
(19). Finally, there are p2(n − 2) noninduced 6-cycles which use three link edges, each corresponding to a 2-path in 00�n−2.

Using the generating functions (13), (6) and (2) together with (19) we derive the generating function of the proposition. 
The formula (18) can be obtained using generating function methods and partial fractions expansion. �

Adding (16) and (18), we have

Corollary 2. The number of 6-cycles (induced or noninduced) in �n is given by

1

150

(
(n − 2)(8n2 − 9n − 3) fn+1 + 3(n + 1)(8n2 − 21n + 6) fn−2

)
. (20)

The sequence of numbers in Corollary 2 is [18, A291915]. The sequence starts for n ≥ 3 as

0,2,22,82,268,742,1902,4562,10452,23068,49432, . . .

4.2. Enumeration of induced 8-cycles in �n

In the calculation of c8(n), we again make use of the fundamental decomposition of �n . There are c8(n − 1) induced 
8-cycles that are contributed by 0�n−1 and c8(n − 2) that are contributed by 10�n−2. The remaining induced 8-cycles must 
involve two of the link edges. The possible cases for this last family are shown in Fig. 5.
Case 1: Since the 8-cycle is induced, there are no additional edges than the ones shown in Fig. 5. Therefore u′

1 �= v ′
1, u′

2 �= v ′
2, 

u′
1 �= v ′

2, u′
2 �= v ′

1. This means that the vertices v1, a, u1, u2, b, v2 form an induced 6-cycle in 10�n−2. Furthermore, given 
any induced 6-cycle in �n−2, picking a polar opposite diagonal pair a, b in one of three ways, then picking which side of 
the 6-cycle is to be in 10�n−2 gives a total of six choices for each induced 6-cycle in �n−2. Therefore the contribution of 
this case is 6c6(n − 2).
Case 2: The vertices v, a, u1, u, u2, b form an induced 6-cycle in 10�n−2. Furthermore, any vertex v of an induced 6-cycle 
and its neighbors a and b on the cycle can be used as the part in 10�n−1 of an induced 8-cycle with link edges aa′ and bb′ . 
Therefore induced 6-cycles in �n−2 contribute a total of 6c6(n − 2) induced 8-cycles to the count c8(n).
Case 3: The contribution of this case is identical to the one in Case 2.
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Case 4: For any 4-cycle abcd in 010�n−3, we know that there are corresponding 4-cycles in 00�n−2 and 10�n−2 uniquely 
determined by abcd. Then for any 2-path on abcd, we obtain 2 different induced 8-cycle in �n . For instance, if we fix the 2-
path abc, then the vertices a, b, c, u′

3, u3, u2, u1, u′
1 and a, b, c, u′

3, u3, u4, u1, u′
1 form two induced 8-cycles in �n . Therefore 

the total contribution of this case is 8c4(n − 3).
Case 5: We can use 2-paths in 010�n−3 in another way. Any 2-path abc in 010�n−3 which is not a part of a 4-cycle in 
010�n−3, determines a unique 2-path u′v ′w ′ in 00�n−2 as shown in Fig. 5. The 2-path u′v ′w ′ in turn has its mate uv w in 
100�n−3 to which it is connected by link edges. The 8 vertices on the outside boundary of this subgraph form an induced 
8-cycle. Since abc is not on a 4-cycle, the contribution of this case is p2(n − 3) − 4c4(n − 3).
Case 6: Consider a noninduced 6-cycle formed by the vertices a, b, c, d, e, f in 10�n−2. Their mates a′, b′, c′, d′, e′, f ′ form 
a noninduced 6-cycle in 00�n−2. In this situation, we obtain eight induced 8-cycles, namely abcc′d′e′ f ′a′ , f edd′c′b′a′ f ′ , 
a′b′c′cdef a, f ′e′d′dcbaf , abcdd′e′ f ′a′ , a′b′c′d′def a, f edcc′b′a′ f ′ and f ′e′d′c′cbaf . Therefore the total contribution of this 
case is 8s6(n − 2).

Adding up the contributions, we find that c8(n) satisfies the recurrence relation

c8(n) = c8(n − 1) + c8(n − 2) + 18c6(n − 2) + 4c4(n − 3) + p2(n − 3) + 8s6(n − 2) (21)

for n ≥ 2 with c8(3) = c8(4) = 0. Using the generating functions (15), (13), (6) and (17) in conjunction with this recurrence 
relation, we the generating function for the number of induced 8-cycles in �n as given below.

Proposition 5. The generating function of c8(n) is given by

∑
n≥0

c8(n)tn = t5(1 + 22t + 143t2 − 22t3 + t4)

(1 − t − t2)5
. (22)

A calculation with Mathematica using (22) gives a closed form expression for the number of induced 8-cycles in �n as

c8(n) = 1

250

(
(n − 2)(100n2 − 400n − 21) fn+1 + (70n4 − 360n3 + 195n2 + 458n − 42) fn−2

)
. (23)

First few values of the sequence of numbers c8(n) for n ≥ 4 are

0,1,27,273,1198,4371,13551,38297,100578,250278,596316, . . .

5. Poset approach to enumerating short induced cycles

�n is a ranked poset in which the covering relation is flipping a 0 to a 1 inherited from the Boolean algebra of all binary 
strings of length n. The unique minimal element is the all zero string, which has rank 0. The maximal rank is 	n/2
. There 
is a unique maximal element for n odd, and n

2 + 1 maximal elements for n even. For �n the rank of an element is simply 
its Hamming weight. The number of elements of �n having rank r is denoted by Wr for 0 ≤ r ≤ 	n/2
. These are called the 
rank numbers (or Whitney numbers). For �n , it is known that

Wr =
(

n − r + 1

r

)
. (24)

Making use of the poset interpretation of �n provides an alternate approach to the calculation of the number of induced 
k-cycles. In this approach cycles are classified according to the pattern of the cardinality of their intersection with the ranks. 
This has the effect of localizing the study of the induced cycles, since the top vertices and the bottom vertices of a cycle 
in the Hasse diagram cannot be too far apart in terms of the ranks the cycle spans. More precisely, any induced k-cycle C
in �n determines an ordered partition of k. Parts of this partition are given by the number of vertices ki that C contains 
from each rank i of the Hasse diagram of �n . Let r and r′ denote the maximum and minimum rank of the vertices of C . 
If we disregard the parts that are zeros, we can define the type of C by a string krkr−1 · · ·kr′ corresponding to the ordered 
partition k = kr + kr−1 + · · · + kr′ . Since C is an induced cycle and �n is bipartite, the following lemma is immediate.

Lemma 1. For k ≥ 4, the type krkr−1 · · ·kr′ of any induced k-cycle satisfies

1. ki > 1 for r′ < i < r,
2. kr = kr−1 = 2 or kr′+1 = kr′ = 2 is not possible,
3. kr + kr−2 + kr−4 · · · = kr−1 + kr−3 + kr−5 + · · · .

For the two 4-cycles shown by dark lines in Fig. 6, we have k3 = 1, k2 = 2, k1 = 1 and k2 = 1, k1 = 2, k0 = 1. In fact for 
k = 4, it is easy to show that 121 is the only possible type. In this case the reason is not because of the formation of a 
4-cycle as implied by part 2 above, but it follows from a simple calculation.
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Fig. 6. The Hasse diagram of �n for n = 5. The rank numbers Wr = (n−r+1
r

)
are W0 = 1, W1 = 5, W2 = 6, W3 = 1.

Table 1
Induced 6-cycles by type in the Fibonacci cube �n , computed by a Mathe-
matica program.

Type �4 �5 �6 �7 �8 �9

33 0 1 4 14 40 105
132 0 0 0 0 0 0
231 0 0 0 0 0 0
1221 0 3 12 42 120 315

Total 0 4 16 56 160 420

Table 2
Induced 8-cycles by type in the Fibonacci cube �n , computed by a Mathe-
matica program.

Type �4 �5 �6 �7 �8 �9

44 0 1 6 27 94 291
143 0 0 6 36 144 480
242 0 0 3 42 192 720
341 0 0 0 12 60 240
1232 0 0 0 24 120 480
1331 0 0 0 0 0 0
2222 0 0 0 0 0 0
2321 0 0 12 72 288 960
12221 0 0 0 60 300 1200

Total 0 1 27 273 1198 4371

For k = 6 the possible types are 33, 132, 231, 1221; and for k = 8, the possible types are 44, 143, 242, 341, 1232, 1331, 
2321, 12221.

If we denote by c33
6 (n) the number of induced 6-cycles in �n of type 33, and use a similar notation for the other possible 

types of induced 6-cycles, we have the decomposition

c6(n) = c33
6 (n) + c132

6 (n) + c231
6 (n) + c1221

6 (n)

and similarly

c8(n) = c44
8 (n) + c143

8 (n) + c242
8 (n) + c341

8 (n) + c1232
8 (n) + c1331

8 (n) + c2321
8 (n) + c12221

8 (n) .

These numbers are shown in Table 1 and 2 for 4 ≤ n ≤ 9.
If we use this approach to count induced 6-cycles in �n this way, we note that any 33 type induced 6-cycle must 

have three vertices of the form w01w11w20w3, w01w10w21w3, w00w11w21w3 of some rank r − 1, together with 
w01w10w20w3, w00w11w20w3, w00w10w21w3 of rank r − 2. These induced 6-cycles are in one to one correspondence 
with a selection of three 1s from a Fibonacci word of rank r. Therefore by (24), the number of induced 6-cycles of type 33 
in �n is then

n∑(
n − r + 1

r

)(
r

3

)
. (25)
r=3
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Fig. 7. The three induced 6-cycles of type 1221.

Similarly, induced 6-cycles of type 1221 arise from the selection of three 1s from a Fibonacci word of rank r. For each such 
selection, the replacement of these 1s by 0s all possible ways is isomorphic to a 3-dimensional hypercube, and each of these 
contribute three induced 6-cycles as shown in Fig. 7.

Therefore the number of induced 6-cycles of type 1221 in �n is three times the sum in (25). It can be shown that �n

does not have induced 6-cycles of types 132 or 231. Therefore it remains to evaluate (25) to find c6(n).
Let

an(x) =
n∑

r=0

(
n − r + 1

r

)
xr .

Then

A(x, t) =
∑
n≥0

an(x)tn = 1 + xt

1 − t − xt2
. (26)

This means that the generating function of the sequence

n∑
r=3

(
n − r + 1

r

)(
r

3

)

can be obtained by evaluating at x = 1 the expression

1

6

∂3 A(x, t)

∂x3
(27)

where A(x, t) is as in (26). The expression in (27) is found to be

t5

(1 − t − xt2)4
.

Therefore with this approach, we find the generating function of the number of induced 6-cycles in �n as

4t5

(1 − t − t2)4
.

The generating functions for the number of 1-cycles (vertices), 2-cycles (edges), 4-cycles, induced 6-cycles and induced 
8-cycles in �n are respectively

1 + t

1 − t − t2
,

t

(1 − t − t2)2
,

t3

(1 − t − t2)3
, (28)

4t5

(1 − t − t2)4
,

t5(1 + 22t + 143t2 − 22t3 + t4)

(1 − t − t2)5
.

Here the denominators give a discernable pattern as the denominators of the generating functions of multiple convolutions 
of Fibonacci numbers.
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Fig. 8. An induced 8-cycle of type 44 in �n .

Fig. 9. Induced 8-cycle of type 44 in �n having small ranked vertices.

Fig. 10. Four Fibonacci words of rank r + 1 obtained by replacing the 0 in the positions i, j,k, l to a 1 in a specific Fibonacci word of rank r.

5.1. The calculation of a specific type of induced 8-cycles in �n

Consider a Fibonacci string w of length n and weight r ≥ 4. Then we necessarily have n ≥ 7. Pick four 1s in w and 
assume that these are in positions i1, i2, i3, i4 in w . Let w j be Fibonacci word of rank r − 1 obtained by setting the 1 in 
position i j of w to 0 for 1 ≤ j ≤ 4. Then two words ws and wt meet in rank r − 2 at the word obtained from w by setting 
the bits in is and it to 0. Let us denote this word by wst . The words in Fig. 8 then form an induced 8-cycle of type 44 in 
�n in ranks r − 1 and r − 2. We easily calculate that there are 3 different induced 8-cycles arising from a fixed selection 
i1, i2, i3, i4. Therefore the total number of induced 8-cycles of this type is obtained by summing the contributions from each 
rank, giving

∑
r≥0

3

(
n − r + 1

r

)(
r

4

)
.

The generating function of this sequence is easily found (by Mathematica) as

3t7

(1 − t − t2)5
. (29)

However not all induced 8-cycles are obtained this way. For example the induced 8-cycle in Fig. 9 does not come from the 
positions of four 1s of a Fibonacci word of rank 3.

This cycle is constructed from the all 0 Fibonacci word in �5 by using the positions 1, 2, 4, 5 for 1s. In this case the 
induced 8-cycle of type 44 in ranks r + 1 and r + 2 is constructed from a Fibonacci word of rank r (for this example r = 0) 
by making use of the positions that are 0s in rank r, rather than 1s. To be more precise, this category of induced 8-cycles of 
type 44 is constructed from a Fibonacci word of rank r and four 0s in positions say i, j, k, l, such that each 0 can be flipped 
to a 1 and still remain a Fibonacci string over all possible r.

The situation can be succinctly represented by the Fig. 10 which represents the four Fibonacci words of rank r + 1
obtained by replacing the 0 in each position by 1.

The actual induced 8-cycle of type 44 in the ranks r + 1 and r + 2 is then represented by Fig. 11.
There are a number of conditions that the four indices of 0s need to satisfy: none of the pairs il, jl, jk, ik be a pair 

of consecutive numbers. Since we are looking at undirected cycles, we can also assume that i is the smallest of the four 
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Fig. 11. Completion of four Fibonacci words of rank r + 1 to an induced 8-cycle of type 44.

indices, and k < l. The relative orders of these four indices can then be represented in 3 distinct cases the letter x indicating 
that position cannot be one of the indices picked.

1. i . . . jx . . .k . . . l
2. ix . . .k . . . l . . . xj
3. ix . . .k . . . xjx . . . l.

Consider the generating function F (t) of Fibonacci strings by length, including the empty word of length 0. Then

F = F (t) = 1 + t

1 − t − t2
.

The generating function of the first case above is the product of 1 + t F , 1 + t + t2 F , t + t2 F , 1 + t + t2 F and 1 + t F ; 
corresponding to the parts of the word before i, between i and j, between j and k, between k and l, and following l, 
respectively. The generating function of this case is then

t5(1 + t F )3(1 + t + t2 F )2 . (30)

By a similar argument, the generating functions of the cases 2. and 3. are found to be

t6(1 + t F )4(1 + t + t2 F ) and t7(1 + t F )5 , (31)

respectively. Adding (29), (30), (31), we obtain the generating function of the number of induced 8-cycles of type 44 in �n

as

t5(1 + t + 2t2 − t3 + t4)

(1 − t − t2)5
= t5 + 6t6 + 27t7 + 94t8 + 291t9 + 816t10 + 2141t11 + · · · (32)

From the expansion of the generating function (32), the explicit formula for the number of induced 8-cycles of type 44 
in �n is found to be

1

500

(
6(2 − n) fn+1 + (12 − 88n + 105n2 − 40n3 + 5n4) fn−2

)
. (33)

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

References

[1] Y. Alizadeh, E. Deutsch, S. Klavžar, On the irregularity of π -permutation graphs, Fibonacci cubes, and trees, Bull. Malays. Math. Sci. Soc. 43 (2020) 
4443–4456.

[2] J. Azarija, S. Klavžar, Y. Rho, S. Sim, On domination-type invariants of Fibonacci cubes and hypercubes, Ars Math. Contemp. 14 (2018) 387–395.
[3] S.A. Choudum, V. Sunitha, Augmented cubes, Networks 40 (2) (2002) 71–84.
[4] A. Dehghan, A.H. Banihashemi, Counting short cycles in bipartite graphs: a fast technique/algorithm and a hardness result, IEEE Trans. Commun. 68 (3) 

(2020) 1378–1390.
[5] Q. Dong, X. Wang, How many triangles and quadrilaterals are there in an n-dimensional augmented cube?, Theor. Comput. Sci. 771 (2019) 93–98.
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