Givens and Householder Reductions for Linear Least Squares on a
Cluster of Workstations *

Omer Egecioglu  and Ashok Srinivasan
Department of Computer Science
University of California at Santa Barbara
Santa Barbara, CA 93106

omer@cs.ucsb.edu

Abstract

We report on the properties of implementations
of fast-Givens rotation and Householder reflector
based parallel algorithms for the solution of linear
least squares problems on a cluster of workstations.
Givens rotations enable communication hiding and
take greater advantage of parallelism than House-
holder reflectors, provided the matrices are sufficiently
large.

1 Introduction

The linear least squares (LLS) problem is the min-
imization of the residual

min [|Az — b2 (1)

where A € R™*™ and b € R™ are given, and the sub-
script denotes the ordinary Euclidean 2 norm. Such
problems typically arise in evaluating unknown pa-
rameters xi,xsa,..., T, of a linear model to fit mea-
sured data. Each row of A represents the values of
the independent variables in an experiment, and the
corresponding row of b represents the value of the de-
pendent variable for that particular experiment. The
measured values may be imprecise because of various
sources of error, and consequently the number of ex-
periments conducted exceeds the number of unknown
parameters, i.e. m > n. The unknown z is required
to minimize the residual over a suitable norm, such
as (1). A further simplifying assumption is that the
columns of A are linearly independent: i.e. it has full
column rank.
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There are two main methods to solve (1) that
use orthogonal updates: Givens (or fast-Givens) ro-
tations, and Householder reflectors. Both use the fact
that [|[Az —b|l2 = [|QA — Qbl|2, when @ is an orthogo-
nal matrix, and through a series of premultiplications
(whose product we denote by QT) reduce A to

cfAz[ﬁ} o 2)

—n

where R is n x n upper triangular. This is the QR
factorization of A. Once the reduction to upper tri-
angular form (2) is accomplished, z can be obtained
by back substitution by solving Rz = ¢ where
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It is well known that both methods are numeri-
cally stable, and are preferred over the solution of
the normal equations for LLS problems [6, 7], [11].
While the number of additions for Givens and House-
holder methods are the same for the QR factoriza-
tion, the number of multiplications and square roots
in the Householder method is fewer than the Givens
method [7]. Furthermore, if fast-Givens transforma-
tions are used to reduce the number of multiplications
of Givens transformations, then periodic monitoring
and scaling of the row multipliers are necessary. This
makes the Householder the sequential algorithm of
choice for dense QR. However, in a parallel setting
this advantage is offset by the higher communication
requirements of the Householder reduction algorithm.

In this paper, we consider a parallel implementa-
tion of the fast-Givens reduction for LLS formulated
as in (1) with m > n on a cluster of workstations,
and compare our results with the Householder based
ScaLAPACK @R factorization run in the same envi-
ronment. In our tests, the output is QA = R and



Q7b, and the back substitution step is not performed
as it is identical for both algorithms.

First we present an overview of Givens and fast-
Givens transformations in Section 2, and Householder
transformations in Section 3. Detailed analyses of
these methods can be found in [6], [7], [9], [11], [12].
In Section 4 we present our distributed memory im-
plementation of the fast-Givens reduction algorithm
for LLS. In Section 5 we present our test results, com-
pare the performance of the two methods, and present
our conclusions.

2 Givens transformations

Consider the matrices

G B

where a; and as are two row vectors. Then

(4)

EA— [ cay + sas }
—say + cas

If the first k¥ — 1 components of a; and as are zero,

k > 1, then an additional zero can be introduced in

the k-th component of as by choosing ¢ and s as

c=—JLk Bk

v/ ai , +as, \/ ai , +aj,
With this choice ¢ + s> = 1, and ¢ = cosf and
s = sinf for some angle §. The matrix E is a plane
rotation matrix through angle # and consequently or-
thogonal. We can define a rotation in the (i, 7) plane
in IR™ similarly. Let rotate(i,j) denote the function
that makes the (i,7)-th element of a matrix A zero,
using rows a;_; and a;. Each rotation uses 4(n — j)
multiplications, and a sequence of these can be ap-
plied to reduce A € IR"™*" to upper triangular form
using a total of 2n?(m — n/3) multiplications. This
can be halved by using fast-Givens (or fast-scaled)
transformations: the current matrix is kept in a fac-
tored form as DA where D is an m x m diagonal
matrix. (In the actual implementation D is stored as
a vector.) Consider rows a; and a2 of A as in (4).
Instead of computing the entries of the new rows in
(4), we first compute 7 = s/c. Then

cai + sas | ¢ O ai + Tas
—sa;+cay | | 0 ¢ —Ta1 + as
To see how D should be updated when a new rotation
on a row is performed, it suffices to consider only the

two rows that are altered. Solving for u' and v’ in

b=l e L]

where a, a', b, and b’ are row vectors results in the
equations
p'a' = cpa + svb

V'b = —sua + cvb
For new values, it is possible to choose either

! !
u =cu, v =cv.

W =sv, v =su; or
We choose the former if |s| > |¢|, and the latter other-
wise. These two possibilities result in type 1 and type
2 fast-Givens rotations, and the appropriate choice
serves to keep the diagonal elements of D as far from

0 as possible [7].

3 Householder reflectors

Householder reflectors are orthogonal matrices of
the form
E=1-2ww’

where w € R™*! is a unit vector. They are used to
introduce zeros to more than one entry of a column
vector of A simultaneously by a single premultiplica-
tion, by a suitable choice of w. To make the entries of
a vector z € IR™*! below its k-th component 0 while
leaving the ones above it unchanged, form the vector

u= (0/ ) 07 T + Sign(mk)a7 Th41," - 7$m)T
where o = (22 4 --- 4 22,)2. The Householder trans-
formation matrix corresponding to u is formed by set-
ting

FE is an m x m orthogonal matrix which is called an el-
ementary reflection. It can be verified that the vector
Ex has the desired properties. In addition, computing
Ey for an arbitrary vector y is simple, for

2 T
Ey=1y— —uu'y,
ulu

and uTy is a scalar. If E; denotes the Householder
reflector that fills the subdiagonal entries in column j
of the current matrix with zeros, then the Householder
reduction algorithm successively introduces zeros in
subdiagonal entries of columns of A and reduces A to
upper triangular form, using a total of about mn? —
n? /3 multiplications.



4 A distributed memory fast-Givens
implementation

A Givens rotation affects only two rows of A at a
time. If successive rotations were to affect only dis-
joint pairs of rows, then they could be done simulta-
neously without affecting the final result. Otherwise,
a suitable ordering (schedule) needs to be specified
on the execution of individual Givens rotations that
avoids common rows [12]. More formally, suppose
T(j, k) is the time step at which the (4, k)-th entry
of the matrix is annihilated (becomes 0), and S(j, k)
is the index of the row that is used along with row
Jj to annihilate the (7, k)-th entry. Any such pair of
functions defined for k£ < j satisfying the following re-
quirements is an acceptable schedule for the parallel
execution of Givens rotations:

1. Concurrent operations act on different rows. In
other words, if T'(j,k) = T(j', k'), and (j,k) #
(jl7 kl)) then {j) S(.]/ k)} U {jl7 S(j’) kl)} = ¢

2. If T(j,k) = t and S(j,k) = 4, then T'(j,1) < ¢
and T'(i,1) < t for all I < k. This ensures that all
the previous columns of the two rows involved at
time step t have already been annihilated.

A particular schedule satisfying these two proper-
ties was given by Sameh and Kuck [10], in which

SGik) = j-1.

A single Givens rotation can be performed in small
constant time with n processors. Therefore the com-
putation time of the overall Givens reduction with n
processors is ideally of order of m + n. If nm/2 pro-
cessors are available, then up to m/2 rotations can be
performed simultaneously. For the limited processor
case, efficient scheduling for various architectures are
discussed in [8]. Figure 1 gives the annihilation pat-
tern T'(j, k) used in our implementation of the Givens
reduction algorithm when P = 3 processors are avail-
able for a 10 x 10 matrix.

4.1 The algorithm

For the implementation of the algorithm, we cre-
ate P processes, each represented by a distinct iden-
tifier in {1,2,..., P}. A block of adjacent rows are
assigned to a single process, with each process p keep-
ing approximately the same number of rows of A as
indicated in 1 for P = 3. Each process annihilates

entries beginning with the first column of the matrix.

9
p=1 8 11
7 10 12
6 9 12 15
p=2 5 8 11 14 17
4 7 10 13 16 18
3 6 9 12 15 18 21
p=3 2 5 8 11 14 17 20 23
1 4 7 10 13 16 19 22 24

Figure 1: Block annihilation pattern for P = 3 pro-
cessors, 10 x 10 matrix.

In each column, annihilation starts with the last row
in the block of rows assigned to the process. Annihi-
lation of the entries in row a; is performed using row
a;_1. Note that in order to annihilate an entry in the
first row of its block, process p has to access the last
row of process p — 1. In addition, process p cannot
begin to annihilate an entry in its last row until it has
received the modified version of it from process p + 1.

High level steps of the algorithm executed by each
process p € {1,2,..., P} are given in Figure 2. The
function rotate(-,-) operates in the same manner as
the one mentioned earlier, except that it also mod-
ifies the corresponding elements of the vector b. In
order not to clutter up the algorithm description, we
assume that whenever a message is to be sent to or
received from a process whose number is not in the
range {1,2,..., P}, no action is taken.

The main calculation occurs in Step 3. For each
value of j, the first row, interior rows (whose indices
are between first and last), and last row are annihi-
lated in column j. When (b) is executed, the process
already has its last row from the next process, re-
ceived in (a). When p modifies its first row in (d)(ii),
it has already received the last row of process p—1 in
step (d)(i). Step 3 (c) ensures that only, and all, sub-
diagonal elements are annihilated. Since j varies over
all the required columns, the reduced matrix is upper
triangular. In Step 3 (e), the diagonal elements of D
corresponding to the rows assigned to p are scaled.

In Step 2, each process sends its last row to the
next process. In particular, process P will have the
last row of process P — 1 and will be able to execute
Step 3. Note that it does not need to execute Step 3
(a). P returns P —1’s last row in (d)(iii). Thus, P—1
in turn can complete its execution for this value of j.
In general, a process needs the last row of p — 1 after
annihilating column j—1 and its last row after process



Input: A € R™*" and b € R™
Output: QA = R and Qb

Step 1: Process p is assigned the block of rows
m(p—1)/P+1 (first) through mp/P (last)

Step 2: Send last row to process p + 1
Step 3: for (j =1 to min(last —1,n)) do

1. Receive modified last row from p + 1

2. if p has more than a single row then
i. rotate(last, j)
ii. Send last row to process p + 1

3. rotate(i,j) for all p’s interior rows
with index i > j

4. if index of first row > j then
i. Receive last row of process p — 1
ii. rotate(first,j)
iii. Send p—1’s modified last row back
to it
iv. if p has only one row then send it
to process p+ 1

5. Scale entries of D corresponding to
the block

Step 4: Multiply partial matrix by diagonal ele-
ments and output result.

Figure 2: Distributed memory fast-Givens.

p~+1 has used it in order to annihilate column j. Step
(b)(ii) ensures the former, and step (d)(iii) the latter.
Finally, Step 4 is evident.

If T} is the fixed startup cost of sending and re-
ceiving a message relative to a multiplication, and T,
is the relative cost of sending a floating point number
across the network, then the time complexity of the
algorithm is no worse than mn?/P+2T; Pn+2T, Pn?
for m/P > n.

5 Comparison with Householder Re-
ductions

Block-partitioned QR factorization algorithm us-
ing Householder reflectors is implemented in the LA-
PACK [1, 2], which is a software library for perform-
ing dense and banded linear algebra computations on
vector machines and shared memory computers. LA-
PACK makes use of block-partitioned algorithms to
utilize fast matrix-vector and matrix-matrix opera-

tions on data that reside in higher levels in hierarchi-
cal memories. An extension of the LAPACK to dis-
tributed memory concurrent computers is the ScalLA-
PACK library [4, 5]. ScaLAPACK uses block-cyclic
data distribution as its primary data decomposition
method, and uses Householder transformations for
QR factorization. The characteristics and the perfor-
mance of various ScaLAPACK factorization routines,
including Q) R factorization on the Intel family of par-
allel computers is reported in [5].

5.1 Test platform

The parallel fast-Givens algorithm was compared
with the QR factorization routine of ScaLAPACK.
PVM [3] version 3.3.7 was used for message passing
in the fast-Givens algorithm. ScalLAPACK version
1.1 was used to test the ScaLAPACK algorithm, us-
ing the PVM version of BLACS for message passing.
The tests were conducted on a cluster of Sun SPARC-
Station LX workstations connected over an Ethernet
LAN, for matrices of three different sizes, using matri-
ces from [13] and the parallel double precision matrix
generator of ScaLAPACK.

The sizes of the matrices used for the test were
1000 x 10, 2000 x 50, and 5000 x 50. The tests were
performed on up to 20 processors. ScaLAPACK al-
lows the user to choose the processor grid structure
and the block size. Due to the high communication
cost involved in the Ethernet, it was found that hav-
ing one column of processors gave the best results for
a fixed number of processors. Therefore, results are
reported only for this situation. It was found that big-
ger block sizes are better for a PVM implementation.
In accordance with this, the block size was taken to
be as high as the number of columns.

The measure of time was taken to be the “wall
clock time” for the actual calculations, ignoring the
time taken for generating the test matrix and for the
output of the factors. At least four experiments were
performed for each value of the parameter set, and
the average of these is reported in Figures 3, 4, and
3.

In our initial implementation of the distributed
fast-Givens transformations, we performed scaling of
D using floating point arithmetic. The results are re-
ported as Givens-1 in Figures 3, 4, and 5. Since divi-
sion and multiplication by 2 are integer operations on
the exponent, in another version of the implementa-
tion we used the C library function ldexp for scaling.
The resulting faster algorithm is reported as Givens-2.



5.2 Test results

The sequential version of the ()R factorization us-
ing Householder reflections of ScaLAPACK was much
faster than the fast-Givens algorithm on a single pro-
cessor. This could be partly due to the innate na-
ture of the algorithm and also possibly to a difference
in the quality of the compilers in optimization, since
the fast-Givens algorithm was written in C' whereas
the Householder algorithm was in FORTRAN . It was
found that for the smaller 1000 x 10 matrix, the se-
quential Householder algorithm was much faster than
its parallel version for P < 20, probably due to the
high communication overhead. Similarly for the par-
allel fast-Givens algorithm, while there was a slight
speedup with increasing P, it was not significant for
the smaller matrix (Figure 3). For the medium size
2000 x 50 matrix, moderate speedup was obtained us-
ing the Householder algorithm for a small number of
processors, substantial speedup was obtained using
the Givens algorithm across the whole range of pro-
cessors tested. These results are shown in Figure 4.
For the 5000 x 50 case shown in Figure 5, the House-
holder algorithm outperformed the fast-Givens imple-
mentation for small number of processors only. After
about P = 6, fast-Givens performed better.

The performance of the algorithms can be ex-
plained if we observe that both algorithms have com-
parable number of floating point operations, and the
number of messages sent is also about the same. How-
ever, much of the communication cost can be hidden
in the fast-Givens algorithm, since computations can
be performed while communication is taking place.
In fact the observed communication cost is approxi-
mately 2n + P messages, as opposed to 2Pn. It does
not seem possible to hide the communication cost in
the Householder algorithm. This may account for its
poor speedup when the communication network used
is slow.

5.3 Conclusions and future work

Givens and Householder transformations were im-
plemented on a cluster of workstations using PVM
for the solution of LLS problems. Some of the exper-
imental results are conclusive: the parallel algorithm
for fast-Givens transformations can significantly re-
duce parallel time. It appears that the Givens trans-
formation is better suited to distributed memory ma-
chines with significant communication costs than the
Householder transformation, at least when dealing
with large matrices.

We intend to generalize the implementation of the
parallel fast-Givens algorithm so that a row of proces-
sors is used to perform updates of the rows in parallel
by using a rectangular array of processors. We can
also adapt the block-cyclic data distribution scheme
of ScaLAPACK to the Givens case. In place of a clus-
ter of workstations, we plan to conduct our next tests
on a parallel computer (Meiko CS-2) which has a fast
interconnection network. In this setup, the communi-
cation costs incurred should be much lower than for
the Ethernet delays that we have observed.
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Figure 3: Comparison of Givens and House-
holder reductions for LLS: m = 1000, n = 10.
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Figure 4: Comparison of Givens and House-
holder reductions for LLS: m = 2000, n = 50.
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Figure 5: Comparison of Givens and House-
holder reductions for LLS: m = 5000, n = 50.



