
Givens and Householder Reductions for Linear Least Squares on aCluster of Workstations ��Omer E�gecio�glu and Ashok SrinivasanDepartment of Computer ScienceUniversity of California at Santa BarbaraSanta Barbara, CA 93106omer@cs.ucsb.edu ashok@cs.ucsb.eduAbstractWe report on the properties of implementationsof fast-Givens rotation and Householder re
ectorbased parallel algorithms for the solution of linearleast squares problems on a cluster of workstations.Givens rotations enable communication hiding andtake greater advantage of parallelism than House-holder re
ectors, provided the matrices are su�cientlylarge.1 IntroductionThe linear least squares (LLS) problem is the min-imization of the residualminx2IRn kAx� bk2 (1)where A 2 IRm�n and b 2 IRm are given, and the sub-script denotes the ordinary Euclidean 2{norm. Suchproblems typically arise in evaluating unknown pa-rameters x1; x2; : : : ; xn of a linear model to �t mea-sured data. Each row of A represents the values ofthe independent variables in an experiment, and thecorresponding row of b represents the value of the de-pendent variable for that particular experiment. Themeasured values may be imprecise because of varioussources of error, and consequently the number of ex-periments conducted exceeds the number of unknownparameters, i.e. m � n. The unknown x is requiredto minimize the residual over a suitable norm, suchas (1). A further simplifying assumption is that thecolumns of A are linearly independent: i.e. it has fullcolumn rank.�Supported in part by the NASA grant NAGW-3888, andUCSB Committee on Research grant 8-562503-19900-7.

There are two main methods to solve (1) thatuse orthogonal updates: Givens (or fast-Givens) ro-tations, and Householder re
ectors. Both use the factthat kAx� bk2 = kQA�Qbk2, when Q is an orthogo-nal matrix, and through a series of premultiplications(whose product we denote by QT) reduce A toQTA = � R0 � nm� n (2)where R is n � n upper triangular. This is the QRfactorization of A. Once the reduction to upper tri-angular form (2) is accomplished, x can be obtainedby back substitution by solving Rx = c whereQT b = � cd � nm� n (3)It is well known that both methods are numeri-cally stable, and are preferred over the solution ofthe normal equations for LLS problems [6, 7], [11].While the number of additions for Givens and House-holder methods are the same for the QR factoriza-tion, the number of multiplications and square rootsin the Householder method is fewer than the Givensmethod [7]. Furthermore, if fast-Givens transforma-tions are used to reduce the number of multiplicationsof Givens transformations, then periodic monitoringand scaling of the row multipliers are necessary. Thismakes the Householder the sequential algorithm ofchoice for dense QR. However, in a parallel settingthis advantage is o�set by the higher communicationrequirements of the Householder reduction algorithm.In this paper, we consider a parallel implementa-tion of the fast-Givens reduction for LLS formulatedas in (1) with m � n on a cluster of workstations,and compare our results with the Householder basedScaLAPACK QR factorization run in the same envi-ronment. In our tests, the output is QTA = R and

QT b, and the back substitution step is not performedas it is identical for both algorithms.First we present an overview of Givens and fast-Givens transformations in Section 2, and Householdertransformations in Section 3. Detailed analyses ofthese methods can be found in [6], [7], [9], [11], [12].In Section 4 we present our distributed memory im-plementation of the fast-Givens reduction algorithmfor LLS. In Section 5 we present our test results, com-pare the performance of the two methods, and presentour conclusions.2 Givens transformationsConsider the matricesE = � c s�s c � A = � a1a2 �where a1 and a2 are two row vectors. ThenEA = � ca1 + sa2�sa1 + ca2 � : (4)If the �rst k � 1 components of a1 and a2 are zero,k � 1, then an additional zero can be introduced inthe k-th component of a2 by choosing c and s asc = a1;kqa21;k + a22;k ; s = a2;kqa21;k + a22;k :With this choice c2 + s2 = 1, and c = cos � ands = sin � for some angle �. The matrix E is a planerotation matrix through angle � and consequently or-thogonal. We can de�ne a rotation in the (i; j) planein IRn similarly. Let rotate(i; j) denote the functionthat makes the (i; j)-th element of a matrix A zero,using rows ai�1 and ai. Each rotation uses 4(n � j)multiplications, and a sequence of these can be ap-plied to reduce A 2 IRm�n to upper triangular formusing a total of 2n2(m � n=3) multiplications. Thiscan be halved by using fast-Givens (or fast-scaled)transformations: the current matrix is kept in a fac-tored form as DA where D is an m � m diagonalmatrix. (In the actual implementation D is stored asa vector.) Consider rows a1 and a2 of A as in (4).Instead of computing the entries of the new rows in(4), we �rst compute � = s=c. Then� ca1 + sa2�sa1 + ca2 � = � c 00 c � � a1 + �a2��a1 + a2 �To see how D should be updated when a new rotationon a row is performed, it su�ces to consider only the

two rows that are altered. Solving for �0 and �0 in� �0 00 �0 � � a0b0 � = � c s�s c � � � 00 � �� ab �where a, a0, b, and b0 are row vectors results in theequations �0a0 = c�a+ s�b�0b0 = �s�a+ c�bFor new values, it is possible to choose either�0 = s�; �0 = s� ; or �0 = c�; �0 = c�:We choose the former if jsj � jcj, and the latter other-wise. These two possibilities result in type 1 and type2 fast-Givens rotations, and the appropriate choiceserves to keep the diagonal elements of D as far from0 as possible [7].3 Householder re
ectorsHouseholder re
ectors are orthogonal matrices ofthe form E = I � 2wwTwhere w 2 IRm�1 is a unit vector. They are used tointroduce zeros to more than one entry of a columnvector of A simultaneously by a single premultiplica-tion, by a suitable choice of w. To make the entries ofa vector x 2 IRm�1 below its k-th component 0 whileleaving the ones above it unchanged, form the vectoru = (0; � � � ; 0; xk + sign(xk)�; xk+1; � � � ; xm)Twhere � = (x2k + � � �+x2m) 12 : The Householder trans-formation matrix corresponding to u is formed by set-ting E = I � 2uTuuuT :E is anm�m orthogonal matrix which is called an el-ementary re
ection. It can be veri�ed that the vectorEx has the desired properties. In addition, computingEy for an arbitrary vector y is simple, forEy = Iy � 2uTuuuT y ;and uT y is a scalar. If Ej denotes the Householderre
ector that �lls the subdiagonal entries in column jof the current matrix with zeros, then the Householderreduction algorithm successively introduces zeros insubdiagonal entries of columns of A and reduces A toupper triangular form, using a total of about mn2 �n3=3 multiplications.

4 A distributed memory fast-GivensimplementationA Givens rotation a�ects only two rows of A at atime. If successive rotations were to a�ect only dis-joint pairs of rows, then they could be done simulta-neously without a�ecting the �nal result. Otherwise,a suitable ordering (schedule) needs to be speci�edon the execution of individual Givens rotations thatavoids common rows [12]. More formally, supposeT (j; k) is the time step at which the (j; k)-th entryof the matrix is annihilated (becomes 0), and S(j; k)is the index of the row that is used along with rowj to annihilate the (j; k)-th entry. Any such pair offunctions de�ned for k < j satisfying the following re-quirements is an acceptable schedule for the parallelexecution of Givens rotations:1. Concurrent operations act on di�erent rows. Inother words, if T (j; k) = T (j0; k0), and (j; k) 6=(j0; k0), then fj; S(j; k)g [fj0; S(j0; k0)g = �.2. If T (j; k) = t and S(j; k) = i, then T (j; l) < tand T (i; l) < t for all l < k. This ensures that allthe previous columns of the two rows involved attime step t have already been annihilated.A particular schedule satisfying these two proper-ties was given by Sameh and Kuck [10], in whichT (j; k) = m� j + 2k � 1 ;S(j; k) = j � 1 :A single Givens rotation can be performed in smallconstant time with n processors. Therefore the com-putation time of the overall Givens reduction with nprocessors is ideally of order of m+ n. If nm=2 pro-cessors are available, then up to m=2 rotations can beperformed simultaneously. For the limited processorcase, e�cient scheduling for various architectures arediscussed in [8]. Figure 1 gives the annihilation pat-tern T (j; k) used in our implementation of the Givensreduction algorithm when P = 3 processors are avail-able for a 10� 10 matrix.4.1 The algorithmFor the implementation of the algorithm, we cre-ate P processes, each represented by a distinct iden-ti�er in f1; 2; : : : ; Pg. A block of adjacent rows areassigned to a single process, with each process p keep-ing approximately the same number of rows of A asindicated in 1 for P = 3. Each process annihilatesentries beginning with the �rst column of the matrix.

p = 1p = 2p = 3
98 117 10 126 9 12 155 8 11 14 174 7 10 13 16 183 6 9 12 15 18 212 5 8 11 14 17 20 231 4 7 10 13 16 19 22 24Figure 1: Block annihilation pattern for P = 3 pro-cessors, 10� 10 matrix.In each column, annihilation starts with the last rowin the block of rows assigned to the process. Annihi-lation of the entries in row ai is performed using rowai�1. Note that in order to annihilate an entry in the�rst row of its block, process p has to access the lastrow of process p � 1. In addition, process p cannotbegin to annihilate an entry in its last row until it hasreceived the modi�ed version of it from process p+1.High level steps of the algorithm executed by eachprocess p 2 f1; 2; : : : ; Pg are given in Figure 2. Thefunction rotate(�; �) operates in the same manner asthe one mentioned earlier, except that it also mod-i�es the corresponding elements of the vector b. Inorder not to clutter up the algorithm description, weassume that whenever a message is to be sent to orreceived from a process whose number is not in therange f1; 2; : : : ; Pg, no action is taken.The main calculation occurs in Step 3. For eachvalue of j, the �rst row, interior rows (whose indicesare between �rst and last), and last row are annihi-lated in column j. When (b) is executed, the processalready has its last row from the next process, re-ceived in (a). When p modi�es its �rst row in (d)(ii),it has already received the last row of process p�1 instep (d)(i). Step 3 (c) ensures that only, and all, sub-diagonal elements are annihilated. Since j varies overall the required columns, the reduced matrix is uppertriangular. In Step 3 (e), the diagonal elements of Dcorresponding to the rows assigned to p are scaled.In Step 2, each process sends its last row to thenext process. In particular, process P will have thelast row of process P � 1 and will be able to executeStep 3. Note that it does not need to execute Step 3(a). P returns P �1's last row in (d)(iii). Thus, P �1in turn can complete its execution for this value of j.In general, a process needs the last row of p� 1 afterannihilating column j�1 and its last row after process

Input: A 2 IRm�n and b 2 IRmOutput: QTA = R and QT bStep 1: Process p is assigned the block of rowsm(p�1)=P +1 (�rst) through mp=P (last)Step 2: Send last row to process p+ 1Step 3: for (j = 1 to min(last �1; n)) do1. Receive modi�ed last row from p+ 12. if p has more than a single row theni. rotate(last; j)ii. Send last row to process p+ 13. rotate(i; j) for all p's interior rowswith index i > j4. if index of �rst row > j theni. Receive last row of process p� 1ii. rotate(first; j)iii. Send p�1's modi�ed last row backto itiv. if p has only one row then send itto process p+ 15. Scale entries of D corresponding tothe blockStep 4: Multiply partial matrix by diagonal ele-ments and output result.Figure 2: Distributed memory fast-Givens.p+1 has used it in order to annihilate column j. Step(b)(ii) ensures the former, and step (d)(iii) the latter.Finally, Step 4 is evident.If T1 is the �xed startup cost of sending and re-ceiving a message relative to a multiplication, and T2is the relative cost of sending a
oating point numberacross the network, then the time complexity of thealgorithm is no worse than mn2=P+2T1Pn+2T2Pn2for m=P � n.5 Comparison with Householder Re-ductionsBlock-partitioned QR factorization algorithm us-ing Householder re
ectors is implemented in the LA-PACK [1, 2], which is a software library for perform-ing dense and banded linear algebra computations onvector machines and shared memory computers. LA-PACK makes use of block-partitioned algorithms toutilize fast matrix-vector and matrix-matrix opera-

tions on data that reside in higher levels in hierarchi-cal memories. An extension of the LAPACK to dis-tributed memory concurrent computers is the ScaLA-PACK library [4, 5]. ScaLAPACK uses block-cyclicdata distribution as its primary data decompositionmethod, and uses Householder transformations forQR factorization. The characteristics and the perfor-mance of various ScaLAPACK factorization routines,including QR factorization on the Intel family of par-allel computers is reported in [5].5.1 Test platformThe parallel fast-Givens algorithm was comparedwith the QR factorization routine of ScaLAPACK.PVM [3] version 3.3.7 was used for message passingin the fast-Givens algorithm. ScaLAPACK version1.1 was used to test the ScaLAPACK algorithm, us-ing the PVM version of BLACS for message passing.The tests were conducted on a cluster of Sun SPARC-Station LX workstations connected over an EthernetLAN, for matrices of three di�erent sizes, using matri-ces from [13] and the parallel double precision matrixgenerator of ScaLAPACK.The sizes of the matrices used for the test were1000� 10, 2000� 50, and 5000� 50. The tests wereperformed on up to 20 processors. ScaLAPACK al-lows the user to choose the processor grid structureand the block size. Due to the high communicationcost involved in the Ethernet, it was found that hav-ing one column of processors gave the best results fora �xed number of processors. Therefore, results arereported only for this situation. It was found that big-ger block sizes are better for a PVM implementation.In accordance with this, the block size was taken tobe as high as the number of columns.The measure of time was taken to be the \wallclock time" for the actual calculations, ignoring thetime taken for generating the test matrix and for theoutput of the factors. At least four experiments wereperformed for each value of the parameter set, andthe average of these is reported in Figures 3, 4, and5. In our initial implementation of the distributedfast-Givens transformations, we performed scaling ofD using
oating point arithmetic. The results are re-ported as Givens-1 in Figures 3, 4, and 5. Since divi-sion and multiplication by 2 are integer operations onthe exponent, in another version of the implementa-tion we used the C library function ldexp for scaling.The resulting faster algorithm is reported as Givens-2.

5.2 Test resultsThe sequential version of the QR factorization us-ing Householder re
ections of ScaLAPACK was muchfaster than the fast-Givens algorithm on a single pro-cessor. This could be partly due to the innate na-ture of the algorithm and also possibly to a di�erencein the quality of the compilers in optimization, sincethe fast-Givens algorithm was written in C whereasthe Householder algorithm was in FORTRAN . It wasfound that for the smaller 1000� 10 matrix, the se-quential Householder algorithm was much faster thanits parallel version for P � 20, probably due to thehigh communication overhead. Similarly for the par-allel fast-Givens algorithm, while there was a slightspeedup with increasing P , it was not signi�cant forthe smaller matrix (Figure 3). For the medium size2000�50 matrix, moderate speedup was obtained us-ing the Householder algorithm for a small number ofprocessors, substantial speedup was obtained usingthe Givens algorithm across the whole range of pro-cessors tested. These results are shown in Figure 4.For the 5000� 50 case shown in Figure 5, the House-holder algorithm outperformed the fast-Givens imple-mentation for small number of processors only. Afterabout P = 6, fast-Givens performed better.The performance of the algorithms can be ex-plained if we observe that both algorithms have com-parable number of
oating point operations, and thenumber of messages sent is also about the same. How-ever, much of the communication cost can be hiddenin the fast-Givens algorithm, since computations canbe performed while communication is taking place.In fact the observed communication cost is approxi-mately 2n+ P messages, as opposed to 2Pn. It doesnot seem possible to hide the communication cost inthe Householder algorithm. This may account for itspoor speedup when the communication network usedis slow.5.3 Conclusions and future workGivens and Householder transformations were im-plemented on a cluster of workstations using PVMfor the solution of LLS problems. Some of the exper-imental results are conclusive: the parallel algorithmfor fast-Givens transformations can signi�cantly re-duce parallel time. It appears that the Givens trans-formation is better suited to distributed memory ma-chines with signi�cant communication costs than theHouseholder transformation, at least when dealingwith large matrices.

We intend to generalize the implementation of theparallel fast-Givens algorithm so that a row of proces-sors is used to perform updates of the rows in parallelby using a rectangular array of processors. We canalso adapt the block-cyclic data distribution schemeof ScaLAPACK to the Givens case. In place of a clus-ter of workstations, we plan to conduct our next testson a parallel computer (Meiko CS-2) which has a fastinterconnection network. In this setup, the communi-cation costs incurred should be much lower than forthe Ethernet delays that we have observed.References[1] Anderson, E., Z. Bai, C. Bischof, J. Demmel, J.J.Dongarra, J. DuCroz, A. Greenbaum, S. Ham-marling, A. McKenney, and D. Sorensen, \LA-PACK: A Portable Linear Algebra Library forHigh-Performance Computers," in Proc. Super-computing '90 , pp.1{10, IEEE Press, 1990.[2] Anderson, E., Z. Bai, J. Demmel, J.J. Dongarra,J. DuCroz, A. Greenbaum, S. Hammarling, A.McKenney, S. Ostrouchov, and D. Sorensen, LA-PACK Users Guide, SIAM Press, Philadelphia,PA, 1992.[3] Beguelin, A, J.J. Dongarra, G.A. Geist, R.Manchek, and V.S. Sunderam, A users' guide toPVM parallel virtual machine, ORNL/TM11826,1991.[4] Choi, J., J.J. Dongarra, R. Pozo, and D.W.Walker, \A Scalable Linear Algebra Library forDistributed Memory Concurrent Computers," InProceedings of Fourth Symposium on the Frontiersof Massively Parallel Computation (McLean, Vir-ginia). IEEE Computer Society Press, Los Alami-tos, CA , 1992.[5] Choi, J., J.J. Dongarra, S. Ostrouchov, A.P. Pe-titet, D.W. Walker, R.C. Whaley, \The Designand Implementation of the ScaLAPACK LU, QR,and Cholesky Factorization Routines," Oak RidgeNational Laboratory, TM-12470, September 1994.[6] Golub, H. G., and J.M. Ortega, Scienti�c Com-puting an Introduction with Parallel Computing ,Academic Press, Inc., San Diego, 1993.[7] Golub, H. G., and C. F. Van Loan, Matrix Com-putations , 2nd Edition, The Johns Hopkins Uni-versity Press, Baltimore, 1990.

[8] Lord, R., J. Kowalik, and S. Kumar, \Solving Lin-ear Algebraic Equations on a MIMD Computer,"Proc. 1980 Int. Conf. Par. Proc., pp. 205{210.[9] Parlett, B. N., The symmetric eigenvalue problem,Prentice-Hall, Englewood Cli�s, NJ, 1980.[10] Sameh, A., and D. Kuck, \On Stable ParallelLinear System Solvers," J. ACM 1978, 25, pp.81{91.[11] Wilkinson, J. H, The Algebraic Eigenvalue Prob-lem, Oxford University Press, Oxford, 1965.[12] Ortega, J.M., and R.G. Voigt, Solution of Par-tial Di�erential Equations on Vector and ParallelComputers , SIAM, Philadelphia, 1985.[13] Gregory, T., and D.L. Karney, A collectionof matrices for testing computational algorithms ,Wiley-Interscience, New York, 1969.
Householder

Givens-1

Givens-2

Figure 3: Comparison of Givens and House-holder reductions for LLS: m = 1000; n = 10.

Householder

Givens-1

Givens-2

Figure 4: Comparison of Givens and House-holder reductions for LLS: m = 2000; n = 50.

Householder

Givens-1

Givens-2Figure 5: Comparison of Givens and House-holder reductions for LLS: m = 5000; n = 50.

