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A related quantity to i(G) is the bisection width . The bisection widthbw(G) of a graphG is the minimum number of edges which must be removedfrom G in order to split it into two parts with equal (within one, when thenumber of vertices of G is odd) number of vertices. The isoperimetricnumber of a graph establishes a lower bound for its bisection width.The Cartesian product G�H of two graphs G and H is the graph withvertex set V (G) � V (H), in which vertices (u; v) and (u0; v0) are adjacentif and only if u is adjacent to u0 in G and v = v0, or v is adjacent to v0in H and u = u0. Product graphs are important since many interestinggraphs are products of simpler graphs, and sometimes methods of analysiscan be lifted from the constituent graphs to their products [2, 5]. Amongfamilies of graphs that are products are the d-dimensional hypercube Qd,which is the d-fold product of K2, d-dimensional k-torus T dk , which is thed-fold product of Ck, and the d-dimensional k-array Adk, which is the d-foldproduct of Pk. In generali(G�H) � minfi(G); i(H)g (1)(see [9]), and thus product graphs do not always behave nicely with respectto isoperimetric numbers of their factors. There are exceptions however:Mohar [9] showed that i(K2n�G) = minfn; i(G)g whenever G has an evennumber of vertices.Our basic result is that i(Pk �G) = i(Pk) for a connected graph G onk vertices, whereas equality fails if G has more than k vertices, even if G isa tree.1.1 Multidimensional arraysEdge-isoperimetric properties of multidimensional arrays and its varietieshave been studied by many authors. This problem is related to the maxi-mum induced edge problem where, for a given m, a subset of vertices withthe largest number of induced edges is sought among all m-element sub-sets [4]. The two problems are equivalent for regular graphs, but not formultidimensional arrays.The maximum induced edge problem under Hamming metric (hence theisoperimetric number problem, because of the regularity of the Hammingmetric) was solved by Harper [6] on the discrete cube and extended byLindsey [8] to Pk1 �� � ��Pkd . In both instances, there is a nested structureof solutions, and the �rst m vertices in lexicographical order constitute asolution. The analogue for the even discrete torus appears in Riordan[11]. The maximum induced edge problem for multidimensional arrays wassolved by Bollob�as and Leader [4]. This work also contains bounds forthe isoperimetric number problem. Ahlswede and Bezrukov [1] solved the2



isoperimetric number problem for P1 � � � � � P1 where the minimum istaken over all non-empty �nite subsets, and gave a solution for Pk1 � Pk2for arbitrary k1; k2 as well.1.2 MotivationOur initial motivation in this work was to give an alternate proof of thelower bound bw(Adk) � kd � 1k � 1 (2)for odd k. This was proved by Nakano [10] by an embedding of a d-dimensional k-clique intoAdk. Prior to this Leighton [7] showed that bw(Adk) �kd�1 when k is even. The proof involves embedding of a complete graphinto Adk. However, this embedding does not give a tight bound when k isodd. One could attack the problem by �rst showing that i(Adk) = 2=(k� 1)for odd k, then the bisection width bound would follow frombw(Adk)kd�12 � 2k � 1 ) bw(Adk) � kd � 1k � 1 : (3)Mohar [9] showed that i(Pk � Pn) = minfi(Pk); i(Pn)g, and thereforei(A2k) = 2=(k � 1). Since Adk = Pk � Ad�1k , the computation of i(Adk)naturally leads to the study of isoperimetric numbers of product graphsof the form i(Pk �G) where G is an arbitrary graph (in the most generalcase), and i(Pk � T ) where T is a tree (in a weaker case). General resultson graph products based on the second smallest eigenvalue of the Laplacian[9], or the bound 12m � i(G1 �G2 � � � � �Gm) � mwhere m = minfi(G1); i(G2); � � � ; i(Gm)g reported by Chung and Tetali [5]do not give the tight enough lower bound for i(Adk).The outline of this paper is as follows. In section 2, we prove i(Pk �Gk) = i(Pk) where Gk is any connected graph with k vertices. In section 3,we consider the isoperimetric number of the product graph Pk�G where Gis an arbitrary connected graph and show that equality does not carry overto general graphs. First we construct a simple counterexample and thenextend it to an in�nite family of graphs. Section 4 concludes with remarks.2 The Product Graph Pk �GkLet us �rst consider the Cartesian product of the path Pk with Gk, whereGk is a connected graph on k vertices.3



Theorem 1 i(Pk �Gk) = 1=bk=2c for any connected graph Gk on k ver-tices.Proof We prove the theorem for odd k, i.e. i(Pk�Gk) = 2=(k�1), as thisis the interesting case. First note that among all connected graphs with kvertices, the isoperimetric number of Pk is the smallest. Thus by (1)i(Pk �Gk) � minfi(Pk); i(Gk)g = i(Pk) = 2k � 1 ;and to prove the theorem we only need to show i(Pk�Gk) � 2=(k�1). LetV (Pk) = f1; 2; : : : ; kg and X � V (Pk�Gk) with 1 � jX j � (k2� 1)=2. Fori = 1; 2; : : : ; k let Xi = X \ (V (Gk) � fig). Thus X is the disjoint unionof X1; X2; : : : ; Xk. We partition the set of edges in the boundary as @X =@PX [ @GX where @PX is the set of interlevel boundary edges, i.e. edgeslying in copies of Pk in the product graph, and @GX is the set of intralevelboundary edges, i.e. edges internal to each copy of Gk. This is illustratedin Figure 1. De�ne N0 and Nk by N0 = jfXi j jXij = 0; 1 � i � kgj and
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Figure 1: The Cartesian product Pk �G.Nk = jfXi j jXij = k; 1 � i � kgj. Consider the intralevel edges @GXi inthe boundary of Xi. If jXij = 0 or jXij = k then j@GXij = 0, otherwisej@GXij � 1. Similarly, the contribution of the interlevel edges between Xiand Xi+1 to @X is the symmetric di�erence of these two sets Xi�Xi+1.Thus j@X j = j@GX j+ j@PX j � k �N0 �Nk + k�1Xi=1 jXi�Xi+1j:By the triangle inequality, the sum of symmetric di�erences is minimumwhen jXij's are in sorted (increasing or decreasing) order. Thus j@X j �k � N0 � Nk + jX1j � jXkj, and to prove the theorem it su�ces to prove4



the inequality k �N0 �Nk + jX1j � jXkj � 2k � 1 jX j; (4)subject to1. k � jX1j � jX2j � � � � � jXkj � 0,2. jX j = jX1j+ jX2j+ � � �+ jXkj,3. 1 � jX j � (k2 � 1)=2.Proof of (4) is broken down into 4 cases according to possible values of N0and Nk.Case (1) N0 = 0; Nk = 0 : In this case, (4) reduces tok + jX1j � jXkj � 2k � 1 jX j:First suppose that not all jXij are equal. Then the inequality holds sincek + jX1j � jXkj � k + 1 = 2k � 1 k2 � 12 � 2k � 1 jX j:If all jXij are equal then jX j � k (k � 1)=2 andk + jX1j � jXkj = k = 2k � 1k k � 12 � 2k � 1 jX j:Case (2) N0 > 0; Nk = 0 : In this case the �rst condition becomesk > jX1j � jX2j � � � � � jXlj > 0 = jXl+1j = � � � = jXkjAnd (4) becomesl + jX1j � 2k � 1(jX1j+ jX2j+ � � �+ jXlj)Thus, it is su�cient to provel + jX1j � 2k � 1 l jX1j (5)or equivalently, (k � 1)l + (k � 1)jX1j � 2 l jX1j. Since l � k � 1 andjX1j � k � 1, we have(k � 1)l + (k � 1)jX1j � l2 + jX1j2:5



But l2 + jX1j2 � 2 l jX1j since (l � jX1j)2 � 0, and (5) follows.Case (3) N0 = 0; Nk > 0 : Now the jXij satisfyk = jX1j � jX2j � � � � � jXkj > 0;while the inequality we want to prove becomesk �Nk + k � jXkj � 2k � 1 jX j:It su�ces to prove 2k �Nk � jXkj � k + 1 (6)since jX j � (k2 � 1)=2. This condition on jX j also forces Nk � (k � 1)=2and jXkj � (k � 1)=2, and (6) follows.Case (4) N0 > 0; Nk > 0 : As in the previous case, it is su�cient to provek �N0 �Nk + k � k + 1which obviously holds for N0 + Nk � k � 1. For N0 + Nk = k, jX j �k (k � 1)=2. Thus, we have2k �N0 �Nk = k = 2k � 1 k k � 12 � 2k � 1 jX j:Therefore inequality (4) holds in all cases, and the theorem follows. 2At this point, consider i(Pk � Gn) for a connected graph Gn with ar-bitrary number of vertices n. It is tempting to conjecture that Theorem 1extends to this general case as well, i.e. i(Pk �G) = 2=(k � 1). Of course,in view of (1), this can only hold for G with i(G) � 2=(k� 1). We show inthe next section that even for such graphs the equality does not hold.3 The Product Graph Pk �GWe start with an example for k = 5. Consider the graph G = G11 on11 vertices shown in Figure 2. By inspection, an isoperimetric set for G
Figure 2: The graph G = G11.6



Figure 3: P5 �G11, subset X and the boundary edges @X .consists of the two leftmost vertices in Figure 2, and therefore i(G) = 1=2.If k = 5 then i(G) = 1=2 � i(P5) = 2=(5 � 1) = 1=2, and i(G) satis�esthe necessary condition mentioned above. The product graph P5 �G11 isshown in Figure 3. Assume X is the subset indicated by the dark vertices.Then jX j = 27 � (5 � 11 � 1)=2 as required. The dotted edges comprisethe boundary @X and j@X j = 13. Thusi(P5 �G11) � j@X j=jX j = 13=27 < 2=(k � 1) = 1=2:The following proposition provides an in�nite family of graphs, gener-alizing this counterexample.Proposition 1 For any odd number k, there exists an in�nite family ofgraphs Gg with i(Gg) � 2=(k � 1) and i(Pk �Gg) < 2=(k � 1).Proof Suppose k = 2m+ 1. Consider the graph Gg on g = m +m0 + 1vertices for m0 � m obtained by joining the path Pm and the star graphK1;m0 as shown in Figure 4. We pick m0 so that g is odd. Since m0 � m, anisoperimetric set for Gg is the �rst m vertices on the left in Figure 4. Thusi(Gg) = 1=m. The graph Pk �Gg is shown in Figure 5. It has (2m+ 1)g
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m m>m’ _Figure 4: The base graph for the general case.vertices. Consider the subset X represented by dark vertices in Figure 5. X7



is de�ned by taking X1; X2; � � � ; Xm to be G, Xm+1; Xm+2; � � � ; X2m to bethe vertices on Pm in the corresponding copy of G in Pk�Gg , and X2m+1 tobe the singleton as indicated in Figure 5. The dotted edges are the edges in
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Figure 5: The structure of the product graph for the general case.the boundary @X . Then jX j = mg+m2+1 and j@X j = g�1+m+1 = m+g.Furthermore whenever m0 is chosen so that g � 2m2 + 3, the inequalityjX j = mg +m2 + 1 � (2m+ 1)g � 12holds. Therefore j@X jjX j = m+ gmg +m2 + 1 < 1m = 2(k � 1) ;and i(Pk �Gg) < 2=(k � 1). 2Note that the graphs Gg are trees. Hence even for trees T with i(T ) =2=(k � 1), it is possible to have i(Pk � T ) 6= i(Pk), unless T has k vertices,as guaranteed by Theorem 1.4 Conclusion and RemarksWe considered the isoperimetric number of graphs of the form Pk�G. If Gis a connected graph on k nodes, then i(Pk �G) = i(Pk), whereas equalityfails in general if i(G) = i(Pk) but G has more than k vertices. For everyodd k, we constructed an in�nite family of graphs (actually trees) Gg forwhich i(Pk �Gg) < i(Pk). 8
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