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Abstract - Zusammenfassung

Parallel Hermite Interpolation: An Algebraic Approach : Giv en n + 1 distinct points and arbitrary
order derivative information at these points, a parallel algorithm to compute the coefficients of the corre-
sponding Hermite interpolating polynomial inO ( logn ) parallel arithmetic operations usingO ( n2 )
processors is presented. The algorithm relies on a novel closed formula that yields the expansion of the
generalized divided differences in terms of the given function and derivative values. We show that each one
of the coefficients in this expansion and the required linear combinations can be evaluated efficiently.

The particular cases where up to first and second order derivative information is available are treated
in detail. The proof of the general case, where arbitrarily high order derivative information is available,
involves algebraic arguments that make use of the theory of symmetric functions.
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Parallele Hermitesche Interpolation: Ein algebraischer Zugang : Gegeben seienn + 1 verschiedene
Punkte sowie die Werte von Ableitungen beliebiger Ordnung in diesen Punkten.Fur die Berechnung der
Koeffizienten des zugehorigen Hermiteschen Interpolationspolynoms wird ein paralleler Algorithmus
vorgestellt, der O ( logn ) parallele arithmetische Operationen aufO( n2 ) Prozessoren benotigt.Der
Algorithmus basiert auf einer neuartigen geschlossenen Darstellung der verallgemeinerten Differenzen-
quotienten durch die gegebenen Funktions- und Ableitungswerte.Wir zeigen, daβ sowohl die Koeffizien-
ten in dieser Darstellung als auch die benotigten Linearkombinationen effizient berechnet werden konnen.

Detailliert behandelt werden die Spezialfalle, daβ die Ableitungen bis zur ersten bzw. zweiten Ord-
nung bekannt sind.Fur den Beweis des allgemeinen Falles, wo Ableitungswerte beliebiger hoherer Ord-
nung verfugbar sind, wird ein algebraischer Zugang gewahlt, bei dem die Theorie symmetrischer Funktio-
nen herangezogen wird.
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1. Introduction

Given a collection of n + 1 pairs (xi , fi ) ∈ F × F ( i = 0 , 1 , .. .  , n ; xi ’s distinct), theinterpola-

tion problem over F is to construct a polynomial pn(x) ∈ F [x] of degree n such that

pn(xi ) = fi (i = 0 , 1 , .. .  , n) .  If fi = f ( xi ) are the values of a functionf at the pointsxi , then the

polynomial pn(x) is said to interpolate f at the nodesx0 , x1 , . . .  , xn .

If pn(x) is expressed in the Newton form

pn(x) = f0 + f01(x − x0) + f012(x − x0)(x − x1) +

f0123(x − x0)(x − x1)(x − x2) + . . . +

f012..n(x − x0)(x − x1)(x − x2) . . . (x − xn−1 ) ,

then the coefficients f012..p ; ( p = 0 , 1 , .. .  , n ) are called thedivided differences(DD’s) of f , which

can be computed using Neville’s or Aitken’s recursion formulae [12] , [5]. As an example the Neville pro-

cedure uses the recursion

fi , i+1 , .. ,i+q =
fi , i+1 , .. ,i+q−1 − fi+1 , i+2 , .. ,i+q

xi − xi+q

to calculate the terms in the following triangular table:

f0

f1 f01

f2 f12 f012

f3 f23 f123 f0123

The terms on the diagonal are the DD’s and hence the coefficients of the Newton polynomial. The Neville

and the Aitken procedures requireO ( n2 ) arithmetic operations. Note that the entries in a given column

can be calculated independently of one another, and they depend only on the entries in the previous column

and the xi ’s. This gives a  straightforward parallel algorithm for the DD’s, particularly suitable for systolic

implementation (see [4] and [10]), where each column is computed inO ( 1 )  time using as many proces-

sors as there are entries in that particular column. Since the maximum length of a column isn and there

are n columns to calculated, this approach requiresO ( n ) parallel arithmetic operations to calculate all

the DD’s using O ( n ) processors.

A parallel algorithm to calculate the DD’s in O ( logn ) time using O ( n2 ) processors is reported in

[3]. Here we will sketch this parallel Newton interpolation algorithm as it is relevant to our treatment of

Hermite interpolation.

Setting

yij =
1

xi − x j
(1.1)
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for i ≠ j , the pth divided difference of f can be expressed as a linear combination of the given function

values f0 , f1 , . . . , fn with coefficients that are products of theyij ’s. This expansion is of the form

f012..p = ( y01 y02. . y0p ) f0 + ( y10 y12. . y1p ) f1 + . . . + ( yp0 yp1. . yp,p−1 ) f p , (1.2)

where p ranges from0 to n [1]. It will be useful to denote the coefficient offi in the linear expansion

of f012..p (i ≤ p) by f012..p
fi

. Then the coefficients in the expansion (1.2) canbe written concisely as

f012..p
fi

= yi0 yi1
. . . yi ,i−1 yi ,i+1

. . . yip . (1.3)

If the coefficients f012..p
fi

are known for 0 ≤ i ≤ p ≤ n , then all of the divided differences

( f0 , f01 , f012 , . . . , f012..n ) of f that are required for the interpolating polynomialpn(x) can be calcu-

lated in O ( logn ) time using O ( n2 ) processors. Thisis because for eachp , the right hand side of

(1.2) can be calculated usingO ( logn ) parallel arithmetic operations withO ( n ) processors, andn

independent instances of this computation is required forp ranging from 1 ton . The coefficients in (1.3)

themselves can also be calculated inO ( logn ) time using O ( n2 ) processors. To see this note that

f01
f0

= y01

f012
f0

= y01 y02

f0123
f0

= y01 y02 y03

. . .

f012..n
f0

= y01 y02 y03
. . . y0n

and therefore the computation of this sequence of coefficients amounts to the calculation of the prefixes of

the quantities( y01 , y02 , . . . , y0n ) . This can be done by using the parallel prefix algorithm inlog n time

using n processors [6],[8]. Since n + 1 concurrent instances of a parallel prefix algorithm are needed to

compute the prefixes of the terms( yi0 , yi1 , . . . , yi ,i−1 , yi ,i+1, . . . , yin ) for i ranging from 0 to n , the

total number of processors required becomesO ( n2 ) .  A  detailed analysis of this approach for the compu-

tation of DD’s for the construction of the Newton interpolating polynomial can be found in [3].

The parallel Newton interpolation algorithm is numerically better conditioned than the interpolation

algorithms that rely on FFT (such as given in [2] and [7] ) regardless of the parallelism involved [3]. Partic-

ularly the parallel Newton interpolation algorithm is numerically superior to the parallel algorithm pro-

posed in [11], which constructs the Lagrange interpolating polynomial inO ( logn ) time with O ( n2 )

processors by extensively using the FFT.

In this paper we construct a parallel algorithm for Hermite interpolation. The algorithm computes

the coefficients of the Hermite interpolating polynomial inO ( logn ) parallel arithmetic steps using
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O ( n2 ) processors for a fixed number of derivatives by making extensive use of parallel prefix algorithms.

The error analysis of the algorithm we present is similar to the analysis of the parallel Newton inter-

polation algorithm given in [3] and will not be addressed here.

2. Hermite Interpolation

In the most general case of Hermite interpolation, we are given the derivative information

f (xi ) , f (1)(xi ) , . . . , f (mi −1)(xi )

at n + 1 distinct points x0 , x1 , . . .  , xn .

Denote f (xi ) by fi and
f (k−1)(xi )

(k − 1)!
by fi k . Then the Hermite interpolating polynomial can be

expressed in the form

P(x) = f0 + f02(x − x0) + f03(x − x0)2 + . . . + f0m0(x − x0)m0−1 +

f0m01(x − x0)m0 + f0m012(x − x0)m0(x − x1) + . . . + f0m01m1(x − x0)m0(x − x1)m1−1 +

f0m01m12(x − x0)m0(x − x1)m1 + f0m01m122(x − x0)m0(x − x1)m1(x − x2) + . . . + . . . +

f0m01m12m2 ... nmn(x − x0)m0(x − x1)m1(x − x2)m2 . . .(x − xn)mn−1 .

The coefficients f0a01a1...nan for various ai ≤ mi are called thegeneralized divided differences(

GDD’s ) of f . The GDD’s can be calculated in the same way as the DD’s by using the Neville or the

Aitken recursion formulae.For instance, the Neville recursion in this case takes the form

fiai ... j a j =
fiai ... j a j −1 − fiai −1 ... j a j

xi − x j

= yij ( fiai ... j a j −1 − fiai −1 ... j a j ) ,  (2.1)

where the terms of the formfi k with k ≤ mi are to be interpreted as
1

(k − 1)!
f (k−1)(xi ) .  The correctness

of this process can be verified by noting that

dk−1

dxk−1
P(xi ) = (k − 1)! fi k = f (k−1)(xi ) 1 ≤ k ≤ mi

holds. As an example, given two points x0 and x1 with m0 = 3 and m1 = 2 ,  the Neville procedure

computes the entries in the following triangle
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f0

f0 f02

f0 f02 f03

f1 f01 f021 f031

f1 f12 f012 f0212 f0312

using the recursion in(2.1) . As in the case for calculating the DD’s, the Neville procedure requires

O ( n2 ) sequential time to calculate all GDD’s for fixed values of mi , 0 ≤ i ≤ n .

Since we are interested in developing a parallel algorithm to calculate all GDD’s, we will seek a lin-

ear expansion formula of the form(1.2) for f0a01a1...nan in terms of f j i with 0 ≤ j ≤ n and 1≤ i ≤ ai for

various ai ≤ mi . It turns out that the coefficient f0a01a1...nan
f j i

can be expressed in a closed form, which

reduces to the expressions for the coefficients that appear in the Newton polynomial(1.2) when

a0 = a1 = . . . = an = 1 .

In most practical instances where Hermite interpolating polynomials are required for the data

(I) f (xi ) and f ′(xi ) for i = 0 , 1 , . . . , n are given, or

(II) f (xi ) , f ′(xi ) and f ′′(xi ) for i = 0 , 1 , . . . , n are given,

the algorithm turns out to have an especially simple structure. In Section 4, we describe parallel Hermite

interpolation algorithms for these specific cases in detail.

3. Linear Expansion of GDD’s

In this section, for brevity of notation we will denotey0i by yi and represent the GDDf0r 1s sim-

ply by the string0r 1s whenever necessary. The repeated application of(2.1) with two giv en points x0

and x1 can be represented as a signed and weighted binary tree, where the weight associated with each

node at level p is yp
1 . The leftson of each node is obtained by dropping a1 , and the rightson by drop-

ping a 0. The leaves correspond to strings consisting of0’s or 1’s only. All the right branches carry a neg-

ative sign and the left branches a positive sign, in accordance with the signs produced by repeated applica-

tion of (2.1) . The sign of a given node is defined to be the product of all the signs on the path from the

node to the root. As an example, whenr = 3 and s = 2 ,  we hav e the following representation of the

expansion of f00011

file figure1

Figure 1

From this representation, we see thatf00011
f0

is equal to the signed sum of all the weights of the

leaves labeled 0. Since each0 omitted on the path from the root to a given node introduces a negative

sign, the sign of each leaf labeled0 is positive. This gives
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f00011
f0

= + 3 y4
1 .

In general, the sign of each leaf labeled0 in the expansion off0r 1s will be (−1)r−1 . Note that all

these leaves are at level r + s − 1 . Furthermore, in the expansion

f0r 1s

f0

= (−1)r−1 Co yr+s−1
1 ,

the coefficientCo is the number of leaves labeled 0.

Next, we count the number of leaves labeled 0 insuch a tree in the general case. It is not difficult to

see thatCo is the number of ways of parenthesizing the string0r 1s starting from 0r−1 (01) 1s−1 in such a

way that each new pair of parentheses introduced contains one more symbol than the previous. For exam-

ple, with this coding, the leftmost leaf inFigure 1 corresponds to the parenthesization( ( 0 ( 0 (01) ) ) 1 ),

and the rightmost one to( 0 ( 0 ( (01) 1 ) ) ).

Let ar ,s denote the number of such parenthesizations of the string0r 1s . Using this interpretation,

(or proceeding directly from the recursive structure of a binary tree) we obtain the recursion

ar ,s = ar−1,s + ar ,s−1 (3.1)

with ar ,1 = a1,s = 1 . By a simple induction, this gives

ar ,s = 


r + s − 2

s − 1



.

Thus

f0r 1s

f0

= (−1)r−1 


r + s − 2

s − 1



yr+s−1
1 . (3.2)

Note that by treating the string00 asa single symbol the derivation of (3.2) alsoyields that the sign of

each leaf labeled00 is (−1)r−2 and that there are


r + s − 3

s − 1



of these. Thus

f0r 1s

f00

= (−1)r−2 


r + s − 3

s − 1



yr+s−2
1

and in general we have for i ≤ r

f0r 1s

f0i

= (−1)r−i 


r + s − i − 1

s − 1



yr+s−i
1 . (3.3)

The computation of the coefficients off1 and f11 can be carried out exactly as above by a symmetry

argument, giving

f00011
f1

= − 3 y4
1 , f00011

f11

= − y3
1 .

Combining all these observations,f00011 has the expansion

© 1987: Egecioglu, Gallopoulos & Koc



-7-

f00011 = 3 y4
1 f0 − 2 y3

1 f00 + y2
1 f000 − 3 y4

1 f1 − y3
1 f11 . (3.4)

Equivalently, using the notation introduced in (1.1) , the expansion in(3.4) takes the form

f00011 = ( 3 y4
01 ) f0 + ( − 2 y3

01 ) f00 + ( y2
01 ) f000 + ( − 3 y4

10 ) f1 + ( y3
10 ) f11 .

Now we turn to the general case of computing the coefficients f0i in the expansion off0a01a1...nan .

Even though the combinatorial treatment of the derivation of (3.3) can be extended to this case, we will

proceed by induction. First, we give a closed formula for the coefficient off0 in the expansion of

f0a01a1...nan . Recall that acompositionor anordered partitionof a nonnegative integer m into n parts is

a representation of the form

m = λ1 + λ2 + . . . + λ n

in which eachλ i is a nonnegative integer and the order of the summands is important.For example, there

are exactly four ordered partitions of3 into 2 parts: 0+ 3 ,  1+ 2 ,  2+ 1 , and 3+ 0 .

Theorem I

f0a01a1...nan
f0

= (−1)a0−1

λ1+ λ2+...+ λ n = a0−1
Σ 


λ1 + a1 − 1

λ1







λ2 + a2 − 1

λ2




. . .


λ n + an − 1

λ n




yλ1+a1
1 yλ2+a2

2
. . . yλ n+an

n

where the summation is over all ordered partitions of a0 − 1 into n parts.

Proof

Note first of all thata0 = r and a1 = s gives

f0r 1s

f0

= (−1)r−1

λ1 = r−1
Σ 


λ1 + s − 1

λ1




yλ1+s
1 = (−1)r−1 


r + s − 2

s − 1



yr+s−1
1 ,

in agreement with (3.2) . Furthermore, in the special case wherea0 = a1 = . . . = an = 1 ,  we obtain the

coefficient of the Newton interpolating polynomial

f01...n
f0

= y1 y2
. . . yn ,

as given in (1.3) .

For convenience, set

Ca , m =
λ1+ λ2+...+ λ n = m

Σ 


λ1 + a1 − 1

λ1







λ2 + a2 − 1

λ2




. . .


λ n + an − 1

λ n




yλ1+a1
1 yλ2+a2

2
. . . yλ n+an

n

for a = (a1 , a2 , . . .  , an) and m ≥ 0 ,  where the summation is over all ordered partitions ofm into n

parts. Thuswe claim that

f0a01a1...nan
f0

= (−1)a0−1 Ca , a0−1 .

First, we construct the generating functionFa of the sequence of numbersCa , m . Note that by Newton’s

theorem we have for every i the formal power series expansion
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1

(1 − yi )ai
=

λ i ≥ 0
Σ 


λ i + ai − 1

λ i




yλ i
i , (3.5)

so that multiplying these expansions fori = 1 , 2 , .. .  , n gives

ya1
1 ya2

2
. . . yan

n

(1 − y1)a1 (1 − y2)a2 . . .(1 − yn)an
=

λ1 , λ2 , ... , λ n ≥ 0
Σ 


λ1 + a1 − 1

λ1







λ2 + a2 − 1

λ2




. . .


λ n + an − 1

λ n




yλ1+a1
1 yλ2+a2

2
. . . yλ n+an

n .

It follows that

Fa =
m ≥ 0
Σ Ca , m tm =

ya1
1 ya2

2
. . . yan

n

(1 − t y1)a1 (1 − t y2)a2 . . .(1 − t yn)an
. (3.6)

From the recursive formula for the GDD’s giv en in (2.1) , we have

f0a01a1...nan = yn



f0a01a1...nan−1 − f0a0−11a1...nan



.

Therefore,

f0a01a1...nan
f0

= yn f0a01a1...nan−1

f0

− yn f0a0−11a1...nan
f0

. (3.7)

By induction on
n

i = 0
Σ ai , we may assume that the two coefficients on the right hand side of(3.7) aregiven

by

yn (−1)a0−1 F(a1 , a2 , ... , an−1)
ta0−1

and yn (−1)a0−2 F(a1 , a2 , ... , an)
ta0−2

,

respectively. Thus, to prove the theorem, it suffices to show that

F(a1 , a2 , ... , an)
ta0−1

= yn F(a1 , a2 , ... , an−1)
ta0−1

+ yn F(a1 , a2 , ... , an)
ta0−2

= yn F(a1 , a2 , ... , an−1)
ta0−1

+ yn t F(a1 , a2 , ... , an)
ta0−1

.

But by (3.6) , this reduces to the verification of the functional identity

ya1
1 ya2

2
. . . yan

n

(1 − t y1)a1 (1 − t y2)a2 . . .(1 − t yn)an
= (3.8)

= yn
ya1

1 ya2
2

. . . yan−1
n

(1 − t y1)a1 (1 − t y2)a2 . . .(1 − t yn)an−1
+ yn t

ya1
1 ya2

2
. . . yan

n

(1 − t y1)a1 (1 − t y2)a2 . . .(1 − t yn)an
,

which is immediate.
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The general formula for the coefficientf0a01a1...nan
f0i

can be stated as follows:

Theorem II

f0a01a1...nan
f0i

= (−1)a0− i

λ1+ λ2+...+ λ n = a0− i
Σ 


λ1 + a1 − 1

λ1







λ2 + a2 − 1

λ2




. . .


λ n + an − 1

λ n




yλ1+a1
1 yλ2+a2

2
. . . yλ n+an

n

for every i ≤ a0 , where the summation is over all ordered partitions of a0 − i into n parts.

Proof

The proof is similar to the proof of Theorem I and will be omitted.

Note that by using the notation for theyij ’s giv en in (1.1) theformula for f0ao1a1...nan
f j i

in the

general case takes the form

(−1)a j − i Σ 


λ o + ao − 1

λ o




. . .


λ j−1 + a j−1 − 1

λ j−1







λ j+1 + a j+1 − 1

λ j+1




. . .


λ n + an − 1

λ n




yλo+ao
j0

. . . y
λ j−1+ a j−1
j , j−1 y

λ j+1+ a j+1
j , j+1

. . . yλ n+ an
jn ,

where the summation is carried over all ordered partitionsλ o + . . . + λ j−1 + λ j+1 + . . . + λ n of a j − i .

4. Special Hermite Interpolating Polynomials

In this section we will give algorithms for the parallel computation of the GDD’s for the following

important cases:

CASE (I) f (xi ) and f ′(xi ) giv en for 0 ≤ i ≤ n, and

CASE (II) f (xi ) , f ′(xi ) and f ′′(xi ) giv en for 0 ≤ i ≤ n.

As we remarked in Section2 , if the coefficients of f j i are known for all 0 ≤ j ≤ n and i ≤ mj

then all the necessary GDD’s, namely the terms of the formf0a01a1 .. pap where k ≥ a0 ≥ a1 ≥ . . ≥ ap and

1 ≤ p ≤ n , can be calculated inO ( logn ) time using O ( n2 ) processors for a fixed value ofk . Hence

the problem reduces to calculating the coefficients

f0a01a1 .. pap

f j i

for 1 ≤ i ≤ k and 0≤ j ≤ p ≤ n . Now we will show that, for k = 2 and k = 3 corresponding to the

cases (1) and (2) above, these coefficients can also be calculated inO ( logn ) time with O ( n2 ) pro-

cessors.

CASE (1) ( k = 2 )

From Theorem I we have

f021a1 ... pap

f0

= (−1)
λ1+ λ2+...+ λ p = 1

Σ 


λ1 + a1 − 1

λ1







λ2 + a2 − 1

λ2




. . .


λ p + ap − 1

λ p




yλ1+a1
1 yλ2+a2

2
. . . y

λ p+ap
p

for 1 ≤ p ≤ n . This equation simplifies to
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f021a1 ... pap

f0

= − ya1
1 ya2

2
. . . y

ap
p

p

i = 1
Σ ai yi .

Similarly, for the coefficient of f02 , we obtain from Theorem II that

f021a1 ... pap

f02

= ya1
1 ya2

2
. . . y

ap
p .

Since 2≥ a1 ≥ a2 ≥ . . . ≥ an ≥ 1 ,  as p ranges from1 to n we obtain the following table for the coeffi-

cients of f02 :

f021
f02

= y1

f0212

f02

= y2
1

f02122
f02

= y2
1 y2

f021222

f02

= y2
1 y2

2

f0212223
f02

= y2
1 y2

2 y3

f02122232

f02

= y2
1 y2

2 y2
3

. . .

f02122232 ... n
f02

= y2
1 y2

2 y2
3

. . . yn

f02122232 ... n2

f02

= y2
1 y2

2 y2
3

. . . y2
n .

Clearly these are the prefixes of the quantities (y1 , y1 , y2 , y2 , y3 , y3 , . . . , yn , yn ), and hence they can be

calculated inlog 2n time using 2n processors. Due to symmetry of the GDD’s, all of the terms

f021222 ... (p−1)2 p
f j2

, f021222 ... (p−1)2 p2

f j2

0 ≤ j ≤ p , 1 ≤ p ≤ n

can be calculated usingn + 1 instances of the parallel prefix algorithm.Hence O ( n2 ) processors suffice

to calculate all of them inO ( logn ) time.

For the terms f021222 ... (p−1)2 p
f0

and f021222 ... (p−1)2 p2

f0

we obtain the following formulae :

f021
f0

= − y1 ( y1 )

f0212

f0

= − y1
2 ( 2 y1 )
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f02122
f0

= − y1
2 y2 ( 2 y1 + y2 )

f021222

f0

= − y1
2 y2

2 ( 2 y1 + 2 y2 )

f0212223
f0

= − y1
2 y2

2 y3 ( 2 y1 + 2 y2 + y3 )

f02122232

f0

= − y1
2 y2

2 y3
2 ( 2 y1 + 2 y2 + 2 y3 )

. . .

f02122232 ... n
f0

= − y1
2 y2

2 y3
2 . . . yn ( 2 y1 + 2 y2 + 2 y3 + . . . + yn )

f02122232 ... n2

f0

= − y1
2 y2

2 y3
2 . . . yn

2 ( 2 y1 + 2 y2 + 2 y3 + . . . + 2 yn ) .

The terms outside the parentheses are obtained by negating the coefficients off02 , and hence they need not

be calculated again. For the terms in the parentheses notice that by applying the parallel prefix algorithm to

the quantities( 2 y1 , 2 y2 , . . . , 2 yn ) ,  where the operation is taken to be addition, we get the terms2 y1 ,

2 y1 + 2 y2 , 2 y1 + 2 y2 + 2 y3 , etc. The other half of the terms can be calculated from these by doing

only one parallel addition. Hence again O ( n ) processors suffice to calculate all the coefficients off0 in

the linear expansion off021a1 ... pap for 2 ≥ a1 ≥ . . . ≥ ap ≥ 1 and 1≤ p ≤ n. The coefficients of f j for j

ranging from 0 to n are found by n + 1 concurrent applications of the procedure explained above.

Hence the coefficients of allf j and f j2 in the expansion of f021a12a2 ... pap for 1 ≤ p ≤ n and

2 ≥ a1 ≥ a2 ≥ . . . ≥ an ≥ 1 can be found inO ( logn ) time using O ( n2 ) processors.

CASE (2) ( k = 3 )

In this case we are interested in the coefficients of f0 , f02 and f03 in the linear expansion of

f031a12a2 ... pap for 3 ≥ a1 ≥ . . . ≥ ap ≥ 1 . We will start with the simplest one

f031a12a2 ... pap

f03

= y1
a1 y2

a2 . . . yp
ap ,

which yields the following set of coefficients :

f031
f03

= y1

f0312

f03

= y1
2

f0313

f03

= y1
3

f03132
f03

= y1
3 y2
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f031322

f03

= y1
3 y2

2

f031323

f03

= y1
3 y2

3

. . .

f031323 ... n
f03

= y1
3 y2

3 . . . y3
n−1 yn

f031323 ... n2

f03

= y1
3 y2

3 . . . y3
n−1 yn

2

f031323 ... n3

f03

= y1
3 y2

3 . . . y3
n−1 yn

3 .

It is clear that these quantities can be calculated inlog 3n time using 3n processors. By applying

n + 1 concurrent instances of the parallel prefix algorithm we find allf031a1 ... pap

f j3

in O ( logn ) time

using O ( n2 ) processors for 3≥ a1 ≥ ≥ a2 ≥ . . . ≥ ap ≥ 1 and 1≤ p ≤ n .

For the coefficient off02 in the expansion off031a1 ... pap , from Theorem II we obtain the following

formula,

f021a1 ... pap

f02

= − ya1
1 ya2

2
. . . y

ap
p

p

i = 1
Σ ai yi ,

which can be given explicitly as

f031
f02

= − y1 ( y1 )

f0312

f02

= − y1
2 ( 2 y1 )

f0313

f02

= − y1
3 ( 3 y1 )

f03132
f02

= − y1
3 y2 ( 3 y1 + y2 )

f031322

f02

= − y1
3 y2

2 ( 3 y1 + 2 y2 )

f031323

f02

= − y1
3 y2

3 ( 3 y1 + 3 y2 )

. . .

f031323 ... n
f02

= − y1
3 y2

3 . . . y3
n−1 yn ( 3 y1 + 3 y2 + . . . + yn )
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f031323 ... n2

f02

= − y1
3 y2

3 . . . y3
n−1 yn

2 ( 3 y1 + 3 y2 + . . . + 2 yn )

f031323 ... n3

f02

= − y1
3 y2

3 . . . y3
n−1 yn

3 ( 3 y1 + 3 y2 + . . . + 3 yn ) .

The terms outside the parentheses are simply obtained by negating the coefficients of f03 as it is

similar to the k = 2 case. Using n processors we can calculate3 y1 , 3 y1 + 3 y2 , ... ,

3 y1 + 3 y2 + . . . + 3 yn in logn time because they are the prefixes of the terms

( 3 y1 , 3 y2 , 3 y3 , . . . , 3 yn ) .  The rest of the terms in parentheses are calculated from these inO(1)

time by doing parallel additions usingn processors. It follows thatO ( n2 ) processors are sufficient to

calculate all of the coefficients f031a12a2 ... pap

f j2

for 3 ≥ a1 ≥ a2 ≥ . . . ≥ ap ≥ 1 , 1 ≤ p ≤ n and

0 ≤ j ≤ n in O ( logn ) time.

To compute the coefficients of f0 in the expansion off031a1 ... pap for all 1 ≤ p ≤ n we again use the

theorem I.

f031a1 ... pap

f0

=
λ1+ λ2+...+ λ p = 2

Σ 


λ1 + a1 − 1

λ1







λ2 + a2 − 1

λ2




. . .


λ p + ap − 1

λ p




yλ1+a1
1 yλ2+a2

2
. . . y

λ p+ap
p

The sumλ1 + λ2 + . . . + λ p can be equal to 2 only in two ways :

(i) λ i = 2 for 1 ≤ i ≤ p ,

(ii) λ i = λ j = 1 for 1 ≤ i , j ≤ p andi ≠ j .

By separating these two cases in the sum operation we obtain

f031a1 ... pap

f0

= y1
a1 y2

a2 . . . yp
ap







1 ≤ i ≤ p
Σ 


ai + 1

2



y2
i +

1 ≤ i , j ≤ p

i ≠ j

Σ 


ai

1






a j

1



yi y j







= y1
a1 y2

a2 . . . yp
ap







1 ≤ i ≤ p
Σ ai ( ai + 1)

2
y2

i +
1 ≤ i , j ≤ p

i ≠ j

Σ ai a j yi y j







= y1
a1 y2

a2 . . . yp
ap



 1 ≤ i ≤ p

Σ ai ( ai + 1)

2
y2

i +
1

2



 1 ≤ i ≤ p

Σ ai yi





2 −
1

2



 1 ≤ i ≤ p

Σ ai
2 y2

i









= 1

2
y1

a1 y2
a2 . . . yp

ap


 1 ≤ i ≤ p

Σ ai y2
i +



 1 ≤ i ≤ p

Σ ai yi





2




.

These quantities can be arranged in a table as in the previous cases :

f031
f0

= 1

2
y1 [ y1

2 + ( y1 )2 ]

f0312

f0

= 1

2
y1

2 [ 2 y1
2 + ( 2 y1 )2 ]
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f0313

f0

= 1

2
y1

3 [ 3 y1
2 + ( 3 y1 )2 ]

f03132
f0

= 1

2
y1

3 y2 [ 3 y1
2 + y2

2 + ( 3 y1 + y2 )2 ]

f031322

f0

= 1

2
y1

3 y2
2 [ 3 y1

2 + 2 y2
2 + ( 3 y1 + 2 y2 )2 ]

f031323

f0

= 1

2
y1

3 y2
3 [ 3 y1

2 + 3 y2
2 + ( 3 y1 + 3 y2 )2 ]

. . .

f031323...(n−1)3n
f0

= 1

2
y1

3 y2
3 . . . y3

n−1 yn [ 3 y1
2 + 3 y2

2 + . . . + 3 y2
n−1 + y2

n + ( 3 y1 + 3 y2 + . . .+ 3 yn−1 + yn )2 ]

f031323...(n−1)3n2

f0

= 1

2
y1

3 y2
3 . . . y3

n−1 yn
2 [ 3 y1

2 + 3 y2
2 + . . . + 3 y2

n−1 + 2 yn
2 + ( 3 y1 + 3 y2 + . . . + 3 yn−1 + 2 yn )2 ]

f031323...(n−1)3n3

f0

= 1

2
y1

3 y2
3 . . . y3

n−1 yn
3 [ 3 y1

2 + 3 y2
2 + . . . + 3 y2

n−1 + 3 yn
2 + ( 3 y1 + 3 y2 + . . . + 3 yn−1 + 3 yn )2 ] .

It is not difficult to see that all of these coefficients can be calculated inO( logn ) time using onlyO( n )

processors. We conclude that the coefficients off0 , f02 and f03 can be computed inO( logn ) time

using O( n2 ) processors. Hence all GDD’s of the form f031a1 ... pap can be calculated inO( logn ) time

using O( n2 ) processors for 3≥ a1 ≥ a2 ≥ . . . ≥ ap ≥ 1 and 1≤ p ≤ n .

Explicit processor and arithmetic operation counts for the above algorithms, as well as the serial and

parallel complexities of the classical algorithms (Neville and Aitken) for the two special cases I and II cov-

ered in this section appear in Table 1.

Parallel Hermite Interpolation Parallel Neville/Aitken Neville/Aitken

Processors Time Processors Time Time

CASE I

f , f ′ given
2 n(n + 1) 3log n + 5 4n 3 n

9

2
n(n + 1)

CASE II

f , f ′ , f ′′ given
3 n(n + 1) 4log n + 3+ 4 log 3 9 n 3 n

19

2
n(n + 1)

Table 1
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5. The General Case

Next, we will show that in the most general case, where up tokth order derivatives are given ( i.e.

each ai ≤ k ), the computation of the coefficients of the Hermite interpolating polynomial can still be per-

formed in O ( logn ) parallel time usingO ( n2 ) processors.

Theorem III

The coefficients of an arbitrary order Hermite interpolating polynomial can be computed in

O ( logn ) parallel time using O( n2 ) processors.

Proof

The idea of the proof rests on the theory of symmetric functions, and we give a sketch of the basic

ideas involved.

Given a positive integer N and a set of variables y1 , y2 , . . .  , yn with n ≥ N , denote byΛN the

space of symmetric polynomials in these variables homogeneous of total degree N with rational coeffi-

cients. Themth homogeneous symmetric functionhm (y1 , y2 , . . .  , yn ) and the mth power symmetric

function ψ m (y1 , y2 , . . .  , yn ) are defined by setting

hm (y1 , y2 , . . .  , yn ) =
1 ≤ i1 ≤ i2 ≤...≤ im ≤ n

Σ yi1 yi2
. . . yim

(5.1)

ψ m (y1 , y2 , . . .  , yn ) =
i ≥ 1
Σ ym

i , (5.2)

with ho = ψ o = 1 .  Furthermore, for any partition λ of N (i.e λ = ( λ1 ≥ λ2 ≥ . . . ≥ λ N ≥ 0 )  with

N

i=1
Σ λ i = N ), put

hλ = hλ1
hλ2

. . .hλ N
, ψ λ = ψ λ1

ψ λ2
. . .ψ λ N

.

It is well known [9] that the collections{ hλ } and { ψ λ } ,  where λ runs through all partitions ofN ,

form rational bases forΛN . Homogeneous and power symmetric functions are related by the determinan-

tal formula

m! hm = det

ψ1

ψ2

.

.

ψ m−1

ψ m

−1

ψ1

.

.

ψ m−2

ψ m−1

0

−2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0

0

.

.

−m + 1

ψ1

, (5.3)

which holds independent of the number of variables. Thus,we have an expansion of the form

hλ ( y1 , y2 , . . . , yn ) =
µ
Σ cµ ψ µ( y1 , y2 , . . . , yn ) ,
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for some rational numberscµ where µ runs through all partitions ofN . Note that by (5.3) , the coeffi-

cients cµ are independent ofn .

From (5.1), it easily follows that the generating function of thehm ’s is giv en by

m ≥ 0
Σ hm( y1 , y2 , . . . , yn) tm =

1

(1 − t y1 )(1 − t y2 ) . . .(1 − t yn )
. (5.4)

From the generating function in (5.4) , we have that, for any positive integer a ,

1

(1 − t y1 )a (1 − t y2 )a . . .(1 − t yn )a
=

m ≥ 0
Σ Ca , m (ψ1 , ψ2 , . . . , ψ m ) tm (5.5)

where Ca , m is a homogeneous form of degreem .

Now we consider the expansion of the generating functionFa in terms of the power symmetric

functions. Note that by the symmetry of the computation of the GDD’s we may assume that

a0 ≥ a1 ≥ a2 ≥ . . . ≥ an , and all of these numbers are bounded above by k . The expansion we need for

the function Fa is best communicated by an example. Supposen = 4 and a = ( 4  ,  4  ,  3  ,  2 )  .Then

Fa =
y4

1 y4
2 y3

3 y2
4

(1 − t y1 )4 (1 − t y2 )4 (1 − t y3 )3 (1 − t y4 )2

can be written in the form

( y4
1 y4

2 y3
3 y2

4 ) ×
1

(1 − t y1 )2 (1 − t y2 )2 (1 − t y3 )2 (1 − t y4 )2
×

1

(1 − t y1 ) (1 − t y2 ) (1 − t y3 )
×

1

(1 − t y1 ) (1 − t y2 )
.

Clearly, in such an expansion, the number of products of the form

1

(1 − t y1 )a (1 − t y2 )a . . .(1 − t yn )a

depends only onk .

From the expansion in (5.5) , it follows that in general

Fa

ya1
1 ya2

2
. . . yan

n tm

is a linear combination of power symmetric functionsψ λ ( y1 , y2 , . . . , yi ) for various i ≤ n , where λ

is a partition of m .

Now in the expansion (5.5), the number of terms of the formψ λ that appear as summands of the

functions Ca , m is independent ofn . This means in return that the number of terms of the formψ λ that

appear in

Fa

ya1
1 ya2

2
. . . yan

n tm

is independent ofn . Note further that for each power symmetric functionψ λ that is such a summand,λ

is a partition of m . Since we are interested in the coefficients oftm in Fa for the values
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m = 0 , 1 , . . . , ai − 1 and ai ≤ k for every i , the number of individual power symmetric functionsψ r

that enters as a product inψ λ only depends onk and not onn .

It follows that the coefficients of the Hermite interpolating polynomial can be calculated in

O (log n ) parallel time usingO ( n2 ) processors, provided that eachψ r ( y1 , y2 , . . . , yi ) and each fixed

product of the formya1
1 ya2

2
. . . yan

n can be computed inO ( logn ) time using O ( n2 ) processors. But for

each such computation, the analogue of the parallel prefix algorithm that was demonstrated in the computa-

tion of the casesk = 2 and k = 3 is applicable. Our claim follows from this observation.

We remark that even though the number of parallel arithmetic steps required to compute the coeffi-

cients of the Hermite interpolating polynomial is guaranteed to be logarithmic in n with O ( n2 ) proces-

sors in the general case, the constants hidden in the bigO notation are necessarily exponential ink if no

other shortcuts are taken into account. This is not surprising in view of the formula for the coefficient of

f0 given in Theorem I, since the summation involved is over all ordered partitions, and there are exponen-

tially many ordered partitions ofk into n parts in general. As an example, the expansion of

f031323 ... (n−1)3n2

f0

in terms of the power symmetric functions is obtained by taking the coefficient oft2 in

y3
1 y3

2
. . . y3

n−1 y2
n

(1 − t y1 )3 (1 − t y2 )3 . . .(1 − t yn−1 )3 (1 − t yn )2
=

y3
1 y3

2
. . . y3

n−1 y2
n



 m≥ 0

Σ hm(y1 , y2 , . . ,yn ) tm




2


 m≥ 0

Σ hm(y1 , y2 , . . ,yn−1 ) tm




and then expressing each homogeneous symmetric function in terms of the power symmetric functions by

the determinantal expansion (5.3) .For this particular case, we obtain the expression

f031323 ... (n−1)3n2
f0

= y3
1 y3

2
. . . y3

n−1 y2
n ×




ψ 2

1 (y1 , . . ,yn ) + ψ 2(y1 , . . ,yn ) +
1

2
ψ 2(y1 , . . ,yn−1 ) +

1

2
ψ 2(y1 , . . ,yn−1 ) + ψ 2

1 (y1 , . . ,yn ) + 2ψ 1(y1 , . . ,yn )ψ 1(y1 , . . ,yn−1 )




as opposed to the much simpler expansion obtained in Section 4.

Thus, for particular cases involving small values of k , it seems possible to cut down the constants in

question by considering special expansions with smaller number of terms than the above treatment would

produce. Therefore, the algorithm implied by the above proof for arbitrary k has more of an existential

flavor, and special instances ( e.g.k = 4 , 5  ) can be made more efficient by judicious grouping of the

terms involved in the expansion of the formula in Theorem II.
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.

Parallel Hermite Interpolation Parallel Neville/Aitken Neville/Aitken

Processors Time Processors Time Time

CASE I

f , f ′ given
2 n(n + 1) 3log n + 5 4n 3 n

9

2
n(n + 1)

CASE II

f , f ′ , f ′′ given
3 n(n + 1) 4log n + 3+ 4 log 3 9 n 3 n

19

2
n(n + 1)

Table 1
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