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Abstract - Zusammenfassung

Parallel Hermite Interpolation: An Algebraic Approach : Given n+1 distinct points and arbitrary
order dewative information at these points, a parallel algorithm to compute the coefficients of the corre-
sponding Hermite interpolating polynomial i® (logn) parallel arithmetic operations usin@ ( n?)
processors is presented. The algorithm relies onval mtosed formula that yields the expansion of the
generalized divided differences in terms of theegifunction and devitive values. V& show that each one

of the coefficients in this expansion and the required linear combinations cesiuagez efficiently.

The particular cases where up to first and second ordesatiei information is &ailable are treated
in detail. The proof of the general case, where arbitrarily high ordevatlee information is mailable,
involves algebraic arguments that reake of the theory of symmetric functions.
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Parallele Her mitesche Interpolation: Ein algebraischer Zugang : Gegeben seienn + 1 verschiedene
Punkte sowie die Werte von Ableitungen beliebiger Ordnung in diesen Purtkierdie Berechnung der
Koeffizienten des zugehorigen Hermiteschen Interpolationspolynoms wird ein paralleler Algorithmus
vorgestellt, der O (logn) parallele arithmetische Operationen a0 n?>) Prozessoren benotigtDer
Algorithmus basiert auf einer neuartigen geschlossenen Darstellungeddigemeinerten Diérenzen-
guotienten durch die gegebenen Funktions- und Ableitungswélfitezeigen, d@ sowohl die Koeffizien-

ten in dieser Darstellung als auch die benotigten Linearkombinationen effizient berechnet werden konnen.

Detailliert behandelt werden die Spezidié, dg3 die Ableitungen bis zur ersten bzeweiten Ord-
nung bekannt sindFur den Beweis des allgemeinen Falles, Ableitungswerte beliebiger hoherer Ord-
nung verfugbar sind, wird ein algebraischer dng gevahlt, bei dem die Theorie symmetrischer Funktio-
nen herangezogen wird.
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1. Introduction

Given a ollectionof n+1 pairs ¢, ;) OFxF (i=0,1,...,n; X 's distinct), theinterpola-
tion problem over F is to construct a polynomial p,(x) OF[x] of degee n such that
pn(x)="f (i=0,1,..,n). If fi=1f(x) ae the alues of a functionf at the pointsx; , then the
polynomial p,(X) is said to interpolatef at the nodesxg, Xq, ..., X, -

If pn(X) is expressed in the Newton form

Pn(X) = fo + for(X = Xo) + fora(X = Xo)(X = Xq) +
foroa(X = Xo)(X = X)(X = Xp) + -+ - +

for2.n(X = X0)(X = X)) (X = Xp) =+ - (X = Xp1)

then the codicients fy10, ;(Pp=0,1,...,n) are called thedivided diferencegDD’s) of f , which
can be computed using Nke’s or Aitken’s recursion formulae [12] , [5]. As an example the Neville pro-
cedure uses the recursion

f _ fi,i+l,..,i+q—1 - fi+1,i+2,..,i+q
i,i+l,..,i+q —
Xi ~ Xi+g

to calculate the terms in the following triangular table:

fo
fl fOl
1:2 f12 1:012

f3 f23 1:123 1:0123

The terms on the diagonal are the B@1d hence the coefficients of theten polynomial. The Nalle

and the Aitken procedures requi@(n?) arithmetic operations. Note that the entries in &gicolumn
can be calculated independently of one angtimel they depend only on the entries in the previous column
and the x; ’s. This gives a graightforward parallel algorithm for the DD’s, particularly suitable for systolic
implementation (see [4] and [10]), where each column is comput&l(ih) time using as manproces-
sors as there are entries in that particular column. Since the maximum length of a colinamdsthere
are n columns to calculated, this approach requif@én) parallel arithmetic operations to calculate all
the DD’ wsing O(n) processors.

A parallel algorithm to calculate the Din O (logn) time using O (n?) processors is reported in
[3]. Here we will sketch this parallel Mgon interpolation algorithm as it is relnt to our treatment of
Hermite interpolation.

Setting

= 1.1
Yi _— (1.1)
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for i # j ,the p" divided difference off can be epressed as a linear combination of thesgifunction

vaues fy, f;, -, f, with coefficients that are products of thg 's. This expansion is of the form
fo12.p = (Yo1 Yoz- - Yop) fo+ (YioYi2--Y1p) fo+ -+ (Ypo Yp1--Ypp-1) fp » (1.2)

where p ranges fromO to n [1]. It will be useful to denote the coefficient df in the linear gpansion

of forop (i< P)bYy fo12p |f_ . Then the coefficients in theqgansion (1.2) cahe written concisely as
fo12.p |f_ = VYioViz*Viji-1 Yij+1* " Vip - 1.3)

If the coeficients fy5 |f are known for 0<i < p<n, then all of the divided diérences

(fo, fors for2, -+, foron ) Of f that are required for the interpolating polynomigl(x) can be calcu-
lated in O (logn) time using O(n?) processors. Thiss because for eaclp, the right hand side of
(1.2) can be calculated usin@ (logn) parallel arithmetic operations witfD (n) processors, anch

independent instances of this computation is requiredofaanging from 1 ton . The coefficients in (1.3)

themselves can also be calculateddrflogn) time using O (n?) processors. & see this note that

for | =Yo1
fo
fo12 | . Yo1 Yoz
0

fo123 | . Yo1 Yo2 Yo3
0

for2.n ; = Yo1Yo2Yo3" - Yon
0

and therefore the computation of this sequence oficmefts amounts to the calculation of the prefixes of
the quantities( Yo1, Yo2 , ** *» Yon ) - This can be done by using the parallel prefix algorithntogpn time
using n processors [6]8]. Since n+1 concurrent instances of a parallel prefix algorithm are needed to
compute the prefixes of the ternisyio , Vi1, =+ Vii-1 Yij+1, -+ Yin ) fOr i ranging from0 to n, the

total number of processors required beconegn?) . A detailed analysis of this approach for the compu-
tation of DD for the construction of the Newton interpolating polynomial can be found in [3].

The parallel Newton interpolation algorithm is numerically better conditioned than the interpolation
algorithms that rely on FFT (such asai in [2] and [7] ) rgardless of the parallelismvolved [3]. Rartic-
ularly the parallel Newton interpolation algorithm is numerically superior to the parallel algorithm pro-
posed in [11], which constructs the Lagrange interpolating polynomi#d fogn) time with O (n?)
processors by extensly using the FFT.

In this paper we construct a parallel algorithm for Hermite interpolation. The algorithm computes

the coefficients of the Hermite interpolating polynomial @(logn) parallel arithmetic steps using
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O(n?) processors for a fed number of devitives by making extensie wse of parallel prefix algorithms.

The error analysis of the algorithm we present is similar to the analysis of the paraltehNieter
polation algorithm gien in [3] and will not be addressed here.

2. Hermite Interpolation

In the most general case of Hermite interpolation, we aemn d¢fie dervative information
f(x), f(l)(xi) - f(mi_l)(xi)

at n+1 distinct points Xg , X1 , ..., Xp -

FED(x)

Denote f(x) by f; and (K-1)!

by fi« . Then the Hermite interpolating polynomial can be

expressed in the form

P(X) = fo + fe(X = Xg) + foa(X = X0)? + - - -+ fgmo(X = Xg)™ 7t +
fomoa (X = Xo)™ + Fomogz(X = X0) (X = Xg) + -+ - + fomogm (X = X)™(X = x)™ 7 +
fomoama(X = X0)™O(X = X)™ + fomogmz2(X = X0) (X = Xq) (X = Xp) + -+t et
fomoamiams ... pmn (X = X0)TO(X = X2) ™ (X = X)™ - - (X = X)) ™

The coeficients fgapqa1..0an  fOr various a; < m; are called thggeneralized divided dferences(
GDD's ) d f . The GDD5s aan be calculated in the samaywas the DI¥ by wsing the Neville or the
Aitken recursion formulaeFor instance, the Neville recursion in this case takes the form

fial jajfl - fia"l jaj

fia, R =
X — Xj

= le (fiai ---jaj—l - fiai—l...jaj ) ’ (21)

. . 1 -
where the terms of the forfi with k < m; are to be interpreted am f &D(x,) . The correctness

of this process can be verified by noting that
k-1

d i}
v P(xi)=(k=1)fu=f&D(x) 1<ksm

holds. As an xample, gven two points X, and x; with my=3 and m; =2, the Neville procedure
computes the entries in the following triangle
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fo fe fe
fi for fer  fom

f1 f12 f012 f0212 f0312

using the recursion in(2.1) . As in the case for calculating the DD’s, the Neville procedure requires

O(n?) sequential time to calculate all GD®for fixed values of m, 0<i<n.

Since we are interested invedoping a parallel algorithm to calculate all GDD's, we will seek a lin-
ear expansion formula of the forn1.2) for fowiar.nen in terms of f; with 0< j<n and 1<i<a for
various g < m; . It turns out that the coéfient fgapqar...nan . can be gpressed in a closed form, which

i
reduces to the expressions for the coefficients that appear in the Newton polyr(@rdjal when
ag=-a=--r=a,=1.

In most practical instances where Hermite interpolating polynomials are required for the data

I  f(x) and f'(x;) fori=0,1,---,n are gven, or

(an  f(x), f'(x) and f"(x) fori=0,1,---,n are gven,
the algorithm turns out to ke an especially simple structure. In Section 4, we describe parallel Hermite

interpolation algorithms for these specific cases in detalil.

3. Linear Expansion of GDD’s

In this section, for braty of notation we will denoteyy by y; and represent the GDOy s Sim-
ply by the string0" 1° wheneer necessary The repeated application @.1) withtwo given points X,
and x; can be represented as a signed and weighted binary tree, where the weight associated with each
node at leel p is y} . The leftson of each node is obtained by droppinty @end the rightson by drop-
ping a 0. The leaes mrrespond to strings consisting 6fs a 1's only. All the right branches carry age
ative sgn and the left branches a pogitisgn, in accordance with the signs produced by repeated applica-
tion of (2.1) . The sign of a gén node is defined to be the product of all the signs on the path from the
node to the root. As an example, when=3 and s=2, we havethe following representation of the

expansion of fypp11

file figurel

Figurel

From this representation, we see thighg., |f is equal to the signed sum of all the weights of the
0

leaves labeled 0. Snce eachO omitted on the path from the root to avggi node introduces a getive

sign, the sign of each leaf label@ds positive. This gives
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f00011|f = +3y; .
0

In general, the sign of each leaf label@din the expansion offy ;s will be (1) . Note that all
these lewes ae at level r +s—1 . Furthermore, in the expansion

fOT 13

. LGyt

the coefficientC, is the number of las labeled 0.

Next, we count the number of lezs labeled O irsuch a tree in the general case. It is ndtadift to
see thatC, is the number of ays of parenthesizing the strir®j 1° starting from 0" (01) ! in such a
way that each ne pair of parentheses introduced contains one more symbol than the previousarRer e
ple, with this coding, the leftmost leaf iRigure 1 corresponds to the parenthesizat{g® (0(@01))) 1),
and the rightmost one t00(0((01)1))).

Let a s denote the number of such parenthesizations of the s@iig . Using this interpretation,
(or proceeding directly from the recursigructure of a binary tree) we obtain the recursion

{s=Aast s (3.1)
with a, ; =a;¢=1.By a simple induction, this gés

_O+s-2Q0
&s 0 -1 O

Thus

1 X +8=20 146

0s-1 0Ot (3.2)

fof 1s

=6

Note that by treating the strin@0 asa sngle symbol the devetion of (3.2) alsoyields that the sign of

+s-3
each leaf labeled0 is (-1)"2 and that there ar%r -1 gof these. Thus

X +S=30 r4s2

frs :_1r_2
o | (-1) 0 s—1 DYl
and in general we ka for i <r
Sts-i-10 .o
frs :_1r| P 33
o | (-1) 0 s-1 [t 3.3)

o

The computation of the coefficients df, and f,; can be carried out exactly as abdy a ymmetry
argument, giving

f00011|f = -3y], f00011|f =-y;
1 11

Combining all these observation$ygg,1 has the expansion
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fooo11= 3)/11 fo - 2)’? foo + Y% fooo = 3)"1I f1 - y? LEE (3.4)
Equivaently, using the notation introduced in (1.1) , the expansio(3id) tales the form
fooo11= (3Y61) fo + (= 2¥31) foo + (¥51) fooo + (=3 ¥io) f1 + (¥3o) f1a

Now we turn to the general case of computing the ficiehts fy in the expansion 0ffgaqas.. nan -
Even though the combinatorial treatment of thedtion of (3.3) can be extended to this case, we will
proceed by induction. First, wevgi a ¢tosed formula for the coefficient off; in the expansion of
foro1..man - Recall that acompositionor anordered partitionof a nonngative integer m into n parts is
a representation of the form

M=A;+ A, +---+ Ay

in which each; is a nonngdive integer and the order of the summands is import&at.example, there
are exactly four ordered partitions 8f into 2 parts: +3, 1+2, 2+1,and 3+0.

Theorem |
~ Mitap—-10Nz2+ax-10 Ant+an—10 a+a;  apva
fororar.pan | = (-1)%72 1+ay Aotd | Aptan
ororttentn | 1 Mtdgtin=ag-t0 A1 D A O 0O A, ot Y2 Yo
wheee the summation is over all ordered partitions of -al into n parts.
Pr oof
Note first of all thatay =r and a; = s gives
_ M1+s-10 44 4 O+s-20 _
frs :_1T1 1 :_ll’l r+s-1 ,
T s, =) /llzzr—llj A1 ot = 0s-1 O
in agreement with (3.2) . Furthermore, in the special case whgrea; =---=a, =1, we dbtain the
coefficient of the Newton interpolating polynomial
forn | =Y1VY2 " 'Yn
fo
asgvenin (1.3).
For corvenience, set
C - D/]1+al_l|:|]/12+az_1ul”[V]n"'an_lEly/\1+aly/lz+azu_y/1n+an
a,m dtdgaa=md A O A O O 2, o't 2 n
for a=(a;,a,...,a,) and m=0, where the summation isver al ordered partitions ofm into n

parts. Thusve claim that

1:Of‘Olf"l---nan ; = (_1)%_1 Ca,ao—l

0

First, we construct the generating functién of the sequence of numbefs, ., . Note that by Neton’s
theorem we hae for every i the formal power series expansion
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1 Ni+a-10
— v, (3.5)
Ty %0 4 O
so that multiplying these expansions for 1, 2, ..., n gives
it YRR YR _ 5 Di+ar-10We+8-10 DAn+an~10 away dptar  anean
R TN A RPN G S SN = B PR == B PR« R = B P =
It follows that
ap |, a,
_ _ yl y2 n“
Fa= Comt™s= 3.6
2= 2, G S oty e (- ty)e A=ty 30)
From the recursie formula for the GDDs gvenin (2.1) , we hae
0 0
anOlal---na" =VYn Dfoa{)lal,,,nanfl - anO’llal---nan O-
Therefore,
foroga1...nan = Yn foroga...pans = Yn foror1201...pan : (3.7)
fo fo fo

n
By induction on > a; , we may assume that the oweoeficients on the right hand side ¢8.7) aregiven
i=0

by

Yn (_1)a0—1 I:(al , 89, .., 8p—1) |tao-1 and Yn (_1)%_2 I:(al Ay, .., 8p)

ta02

respectiely. Thus, to pree the theorem, it suffices to shidhat

F(al ,8, .., an) =Yn F(al ,a, .., ap~1) |t30‘1 T Yn F(al , 8, e, )

too-t ta02

=Yn I:(al , 8, .., ay-1) |160‘1 + ynt F(al , 8, .., an)

(S
But by (3.6), this reduces to the verification of the functional identity
yil ygz YR - (38)

(I-typ)a (1-tyz)®2---(1-typ)2n

a & an—1 a & __yan
n

= yo Y1 Yo" Yn + oyt Y1 Yo
(1-ty)d (1-typ)2 - (1-ty,)at (1-ty)d (1-typ)2 - (1-tyg)an

which is immediated

© 1987: Egecioglu, Gallopoulos & Koc



The general formula for the coefficierfagqa;..nan | can be stated as follows:
foi
Theorem |1

foro121...nan = (-1 y?]n+an

foi A+ g+t Ag = ag—i

DAl"'al_ll:D/]z"'az_lD”.[Mn"'an_1|:|yAl+a1y/12+a2“.
o A mM A, OO i 0OT 72

for every i< ay, where the summation is over all ordered partitions of-a into n parts.
Pr oof

The proof is similar to the proof of Theorem | and will be omit@&d.

Note that by using the notation for thg 's given in (1.1) theformula for fgea..0m . in the
ji

general case takes the form

N le"o"'ao_1D'_.DAj—l+aj—1_1|:D"j+1+aj+1_1D.”DAn+an_lDyﬂ_o+ao”.y/_\JT:ﬁ'aj—l y/_‘jf1+al+1'”yaln+an
O 2% 0O 0 Ay M A oo a O i1 I+l I

where the summation is carriedeoall ordered partitionsiq +---+ Aj1 + Ay +---+ A, of a;-i.

4. Special Hermite I nter polating Polynomials

In this section we will gie dgorithms for the parallel computation of the GRDor the follaving

important cases:

CASE (I) f(x)and f'(x;) given for 0<i < n, and
CASE (I)  f(xi), f'(x;)) and f"(x;) given for 0<i < n.

As we remarked in SectioR , if the coefficients off;; are known for all0< j <n and i <m;
then all the necessary GDD'’s, namely the terms of the fé§1, p» Where k>ay22a;>..2a, and
1< p<n, can be calculated irD (logn) time using O (n?) processors for a fixed value df . Hence
the problem reduces to calculating the coefficients

anolal .. p?r |
j\

for 1<i<k and O<j < p<n. Now we will show that, for k=2 and k =3 corresponding to the
cases (1) and (2) abe these coefficients can also be calculatedifilogn) time with O (n?) pro-

cessors.
CASE (1) (k=2)

From Theorem | we ha

Mita - 10Nt -10 Mptap—10 +a  ata Ag+a
foz1a1 ... p2 =(-1 E 1tay | Aotap o Aptdp
021 - pe |fo ( )h+)l2+"-+/lp=1|] Aq [ B R DY o 0O Ap Dyl Y2 Yo

for 1< p < n. This equation simplifies to
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— a |82 ap :
oo oo | =YL Y2" oo Ve _Zl &y,
0 1=

Similarly, for the coefficient offy. , we dotain from Theorem Il that

f021a1 pap = yil ygz e ygp

fo2

Since 22 a;2a,2---2a,=21, & p ranges froml to n we obtain the following table for the cdief
cients of fp :

foer |f =V
02

_2
foer2 | =Vy1
fo

_ 2.2
fopr2023 | o= Y1Y2 Y3
02

222
fe1202z | o= Y1 Y2 Y3
2

— 222
foe120232 ... |f =Y1Y2Y3 - Yn
2

— 21242 2
foe120232 ... 2 |f =Y1Y2Y3 - VYn
02

Clearly these are the prefixes of the quantitias ¥1, V-, V¥2,¥3,VY3: " ¥n: ¥Yn), @and hence tlyecan be
calculated inlog 2n time using 2 processors. Due to symmetry of the GDD's, all of the terms

foe1202 ... (p-12p |f.2 v foerze o (prappe |f.2 O0<j<p, 1<psn
i i

can be calculated using + 1 instances of the parallel prefix algorithidence O (n?) processors sfite

to calculate all of them irD (logn) time.

For the terms fpi20 ... (p-12p |f and fgeq202 ... (p-1y2 2 |f we obtain the following formulae :
0 0

foer |f =-vy1 (Y1)
0

foer |f =-y1?(2y1)

0

© 1987: Egecioglu, Gallopoulos & Koc



-11-

foe12o |f ==vi? Y2 (2y1 + Y2)
0

foe1202 |f =-vi?Yo? (2y; +2Y,)

0

fopq2023 |f =-y1® Yo" Y3 (2y1 + 2y, + ¥3)
0

12z |f =—yi2 Y2 Y3 (2y1 + 2y, + 2y3)

0

forzae n | ==Y2"Y2" Yo" -+ Yn (2Y2+ 22 +2Ys + -+ ¥p)

0

fmm@mqf:—WW¥W”~WH2w+2w+2m+~+2w)-

0

The terms outside the parentheses are obtaineddatimgethe coefficients offe. , and hence theneed not

be calculated againoFthe terms in the parentheses notice that by applying the parallel prefix algorithm to
the quantities(2y,,2y>,--+,2Y, ), where the operation is tak to be addition, we get the terrdy/, ,

2y, +2y, , 2y, +2y, + 2y, , ec. The other half of the terms can be calculated from these by doing
only one parallel addition. Henceag O (n) processors suffice to calculate all the coefficientsfgfin

the linear expansion of e ... o for2=a; 2--->a, 21 and 1< p<n. The coefficients off; for j

ranging from 0 to n are found by n+1 concurrent applications of the procedure explainedvabo
Hence the coefficients of allf; and f;> in the expansion of fejape..p2 for 1< p<n and

22a;2a,>---2a,21 canbe found inO(logn) time usingO (n?) processors.

CASE (2) (k=3)

In this case we are interested in the fioeits of f,, fpe and fg in the linear expansion of
fosra0m .. oo fOr 32 a; 2---2a, 2 1. We will start with the simplest one

— a a; a
L N D /i R T
03

which yields the following set of coefficients :

fos1 | . =Vy1

_ 2
fosr |f =Vy1
03

_ .3
fo313| =y
fo3

_ 3
fos132 |f =Yt Y
03
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fos1a22 | . Y1
03

foe1a0 | LT Y1
03

f031323 n | =Y
fos

fo31323 e n? | =Y
f3

fos1sos .. 3 |f =V
03

3,2
Y2

3, 3
Y2

3)/23"')/3n—1yn

S SRERE o A

2y Y]

It is clear that these quantities can be calculatetb@3n time using 3n processors. By applying

n+1 concurrent instances of the parallel prefix algorithm we findfgla; ... g

using O (n?) processors for 2 a; =22 a, > -

in O(logn) time

2ap21and 1<spsn.

For the coefficient offy in the expansion offgsa; ... 2o , from Theorem Il we obtain the folldng

formula,
f021a1 pap

which can be gien explicitly as

p

=-VEYE Ve 2 Ay

foz i=1

foe1 |f =-vy1(y1)
@

foer |f =-yi?(2y;)
@

foeps |f =-y.®(3y1)

02

_ 3
[ | =-Y1U Yo
fo2

(3y1+Y2)

fospa2 |f =-y.2y2* (3y1 +2y,)
@

fows | =-y2®y,* (3y1 +3y»)
02

fos138 .. ; =‘Y1BY23"'Yr31—1Yn(3Y1+3Y2+"'+yn)

02
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fos1a0s .. 2 :_y13Y23"'Y?1—1Yn2(3Y1 +3y, +- -+ 2Y,)

s

foorss o | == Vi3 Y22 Vaa¥nS (31 +3ya + - +3y,)

s

The terms outside the parentheses are simply obtaineddatingethe coefficients offg as it is
similar to the k=2 case. Using n processors we can calculat8y; , 3y; +3y, , .. ,
3y; +3y,+---+3y, in logn time because tye ae the prefixes of the terms
(3y1,3Y,,3y3,--+,3Y,). The rest of the terms in parentheses are calculated from the®¢lin
time by doing parallel additions using processors. It follows thaO (n?) processors are sufficient to
calculate all of the cofifients fgpjaipe .. pee f for 32a;2a,2---2a,21 , 1l<ps<n and

j2

O0<j<nin O(logn) time.

To compute the coéitients of fy in the expansion ofgsya ... 2 for all 1< p < nwe again use the
theorem I.

Mi+ap-10We+ax-10 |:|/1p+ap_1Dyal+al y/12+a2 y)lp’fap
e Yp

f031a1... ap =
P |f0 /\1+A2+---+/\p=2|:| A M o, OO0 oa, O° 2
The sumi; + A, +-- -+ A, can be equal to 2 only in baways :
(i) Ay =2forl<ic<p,
(i) Aj=Aj=1lforl<i,j<pandi#j.
By separating these twcases in the sum operation we obtain
O O
O & +10 0 O0aj O u
fozqay . pa zy By, ®2 .y i 2 4 i v v. O
o1 pe | Yi™ Y2 Yp 02,0 2 oY 1si,zjsp515515y'y' 0
0 i£] O
O O
_ g a (g +1) a
=yt y,® ey o SV Y aayy) O
[l<isp 1<i,j<p O
0 i# O
O O
_ ai (g +1) 10 0o, 10 O
=y Ye® Yo 3OS P50 8y 0° =5 0 a’y’0 o
i<isp [l=<i<p O [l=<i<p Oog
_1 a .\, a Dz D
=17 Y2 YpPO 2 ay+0 2 ayid O
Oisisp OLs<is<p 0O O

1
f0312| = Zyi?[2y? + (2y1)°]
f, 2
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yi2[3y:® + (3y1)?]

NI -

o |, =

0

y2y2[3yi? +y2% + (By +y2)?]

NI =

foe1e2 | =
fo

1
foea32 |f =5 v y22 [3y12 +2y,2 + (By1 +2Y,)?]
0

1
fossan | =5 vi°y2" 132" +3y2° + (3y1+3%2)°]
0

1
fos132...(n-1)n |f = 5Y13y23"'Yﬁ—1Yn[3Y12+3Y22+'""'3Yr21—1+yg1 +(3yp+3yo+- - +3yn1+Yn)?]
0

1
foaazs. (n-1on2 |f = VY Yaa Y [B8Ya® 48y 4 +8YR 1 +2yn” + (BY1+3Ya+ - +3Yn g +2¥n )]
0

1
fosazs. (n-1om3 | = SV Y2 Vi Y [8yr® #3y,7 + +3YR 1 +3yn® + (Y1 +3Ya+ - +3Yn1+3yn )] -
0

It is not difficult to see that all of these coefficients can be calculat€(ingn) time using onlyO(n)
processors. W mnclude that the coefficients of, , fz and fp can be computed irD(logn) time
using O(n?) processors. Hence all GD®bf the form fgqa ... p» Can be calculated iO(logn) time

using O(n?) processors for Zaza,2--2a,21 and 1sp<n.

Explicit processor and arithmetic operation counts for the@ldgorithms, as well as the serial and
parallel complexities of the classical algorithms (Neville and Aitken) for tloespwcial cases | and Il ¢o

ered in this section appear in Table 1.

Paallel Hermite Interpolation || Paallel Neville/Aitken | Neville/Aitken
Processors ime Processors| Time Time
?ASfE ;iven 2n(n+1) 3logn+5 4n 3n gn(n+1)
?ASfE”f given 3n(n+1) | 4logn+3+4log3 9n 3n 1—29n(n+1)
Table1
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5. TheGeneral Case

Next, we will shav that in the most general case, where ugktd order denatives ae given (i.e.
each a; < k), the computation of the cdigfents of the Hermite interpolating polynomial can still be-per

formed in O (logn) parallel time usingO (n?) processors.
Theorem |11

The coefficients of an arbitrary order Hermite interpolating polynomial can be computed in

O(logn) parallel time using @n?) processors.
Pr oof

The idea of the proof rests on the theory of symmetric functions, andveva gietch of the basic
ideas iwolved.

Given a sitive integer N and a set ofariablesy; , ¥, , ..., Yy, with n> N, denote by/\ the
space of symmetric polynomials in theswiables homogeneous of totalgdee N with rational coefi-
cients. Them™ homogeneous symmetric functiom, (y; , ¥, ..., Y,) and the m" power symmetric
function ¢, (Y1, Y2, ..., Yn) are defined by setting

P (Y1, Y2, Yn) = > Yi, Vi, Vi, (5.1)

1<i;<ip,<-<ip<n

‘//m()’myzy---v)’n):.z ylm ’ (52)

i1
with h, =g, =1. Furthermore, for ap partition A of N (.e A=(A;21,2---21y=20) with

N
> A, =N), put
i=1

h/lzh/\lh/\z"'hAN , Wy =W, W,

It is well known [9] that the collectiong h, } and {¢, }, where A runs through all partitions oN ,

form rational bases for\y . Homogeneous and per symmetric functions are related by the determinan-

tal formula
W, -1 o . . 0
Y ¥ 2 . . 0
m! h,, = det | ' R ' , (5.3)
e L
Vo Y1 - - - U

which holds independent of the number afigbles. Thusye haie an expansion of the form

ha(yr, Y2, s ¥n) =2 CutWu(Y1, Y2, +u Yn)
H
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for some rational numbers,, where u runs through all partitions ol . Note that by (5.3) , the cdef
cients ¢, are independent of .

From (5.1), it easily follows that the generating function of ting, ’s is gven by

1

méo h( Y1 s Yo s ey Yo) ™= T e i (5.4)

From the generating function in (5.4) , wesbdat, for aly positive integer a ,

1 = P m
(1-ty;)2(A-tyy)2---(1-tyy)? —méoca,m(llfl,l,llz, W) L (5.5)

where C, , is a homogeneous form of degree.

Now we oonsider the expansion of the generating functieg in terms of the power symmetric
functions. Note that by the symmetry of the computation of the GDEé may assume that
Qp=a 2a,=---2a,, and all of these numbers are boundedvably k. The expansion we need for
the function F, is best communicated by an example. Suppose4 and a=(4,4,3,2) Then

_ Y1YsYaYa

P oty A=ty (L-tys B (L= tya )2

can be written in the form

1 1 1
-ty )2 (A=t P(A-Tys 2 (A-ty,)?  (A-ty)(A-ty,)(A-1ys)  (A-ty))(@A-ty,) "

(Y1Y2Y3Ya)

Clearly, in such an expansion, the number of products of the form

1
(I-ty)a(l-tyy)2---(1-ty,)?

depends only ork .
From the expansion in (5.5), it follows that in general

Fa
yil ygz e yﬁ” |tm
is a linear combination of peer symmetric functionsy,(y1, Yo, -+, Y;) for various i <n, where A

is a partition ofm.

Now in the expansion (5.5) the number of terms of the forr, that appear as summands of the
functions C, , is independent ofn. This means in return that the number of terms of the fgrmthat
appear in

__Fa

yil ygz - yﬁn tm
is independent oin . Note further that for each power symmetric functign that is such a summand,
is a partition of m. Snce we are interested in the coefficients of in F, for the \alues
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m=0,1,---,8 -1 and g < k for every i, the number of individual power symmetric functiogs
that enters as a product in, only depends ork and not onn .

It follows that the coefficients of the Hermite interpolating polynomial can be calculated in
O(logn) parallel time usingO (n?) processors, provided that eagh(yy, Y2, -+, Y;) and each fied
product of the formy‘i11 ygz ...y2 can be computed itD (logn) time using O (n?) processors. But for
each such computation, the analogue of the parallel prefix algorithmabkatemonstrated in the computa-
tion of the casek =2 and k =3 is gplicable. Our claim follows from this obsetion.]

We remark that een though the number of parallel arithmetic steps required to compute tHe coef
cients of the Hermite interpolating polynomial is guaranteed to kitbguic in n with O(n?) proces-
sors in the general case, the constants hidden in th® bigtation are necessarily exponentialknif no
other shortcuts are tek into account. This is not surprising inwief the formula for the coefficient of

fo given in Theorem I, since the summatiowvatved is wer all ordered partitions, and there angenen-
tially mary ordered partitions ofk into n parts in general. As an example, the expansion of

f031323 -+ (n=1)3n2

in terms of the power symmetric functions is obtained by taking the coefficieft iof

ViV Yo Vi

Tty )P (I-ty,)3 - (A-typ1)3(A-ty, )2

3.,3 3 ZD m|:|2|:| m|:|
YiYo  YaaYn O 2 hm(yr, Yo, o¥)t" 070 2 WY1, Y2, -0 Yn) 10 00
DmZO |:| DmZO |:|

and then gpressing each homogeneous symmetric function in terms of the power symmetric functions by
the determinantal expansion (5.3ror this particular case, we obtain the expression

fo3133 ... (n-1)3n2

_ 3.3 3 2
- Yi¥2  Yn-1Yn X
0

O g
Y2030 0 )+ W0 Yot ) Y0 ) * WR O 90) #2400 I s)

as opposed to the much simpler expansion obtained in Section 4.

Thus, for particular casesviolving small \alues of k , it seems possible to cut down the constants in
guestion by considering speciaipansions with smaller number of terms than thevali@atment wuld
produce. Therefore, the algorithm implied by theabgoof for arbitrary k has more of anxistential
flavor, and special instances ( e.dt=4,5 )can be made morefifient by judicious grouping of the

terms irvolved in the expansion of the formula in Theorem Il.
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