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Abstract
Irregularity of a graph is an invariant measuring how much the graph differs from a
regular graph. Albertson index is one measure of irregularity, defined as the sum of
|deg(u) − deg(v)| over all edges uv of the graph. Motivated by a recent result on the
irregularity of Fibonacci cubes, we consider irregularity polynomials and determine
them for Fibonacci and Lucas cubes. These are graph families that have been studied
as alternatives for the classical hypercube topology for interconnection networks. The
irregularity polynomials specialize to the Albertson index and also provide additional
information about the highermoments of |deg(u)−deg(v)| in these families of graphs.

Keywords Irregularity of graph · Fibonacci cube · Lucas cube

Mathematics Subject Classification 05C31 · 05C35 · 05A15 · 11B39

1 Introduction

Let G = (V (G), E(G)) be a simple, undirected graph with vertex set V (G) and edge
set E(G). For any v ∈ V (G), the degree of v is denoted by degG(v) and defined as
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the number of edges incident with v. A graph G is regular if all its vertices have the
same degree. Otherwise, it is called irregular. In the latter case, a problem of interest is
the measure of how much the graph G differs from a regular graph (see, for example,
[2,5]). For this purpose, several measures of graph irregularity have been proposed.
These can be found in the recent papers [1,9]. A local measure of irregularity called
imbalance imbG(e) of an edge e = uv ∈ E(G) is defined as

imbG(e) = |degG(u) − degG(v)|.

This quantity was transferred to a global irregularity measure by Albertson [3], who
considered

irr(G) =
∑

uv∈E(G)

| degG(u) − degG(v)|.

Using this definition, the irregularity of π -permutation graphs, Fibonacci cubes and
trees are considered in [4]. Inspired by the results in [4], in this paper we consider a
refinement of the irregularity of Fibonacci and Lucas cubes. We define the irregularity
polynomial IG(x) of G by

IG(x) =
∑

uv∈E(G)

x | degG (u)−degG (v)|.

With this definition |E(G)| = IG(1), irr(G) = I ′
G(1), and the coefficient of xr in

IG(x) is the number of edges e ∈ G with imbG(e) = r . Using this polynomial, we
extend the results for Fibonacci cubes given in [4] to Lucas cubes and additionally
refine the enumeration results for both families of graphs.

The rest of the paper is organized as follows: In Sect. 2, we present preliminaries and
the definition of Fibonacci cubes and Lucas cubes. In Sect. 3 and Sect. 4, we present
the irregularity polynomials for Fibonacci cubes and Lucas cubes, respectively.

2 Preliminaries

Fibonacci numbers are defined by the recursion fn = fn−1 + fn−2 for all n ≥ 2, with
f0 = 0 and f1 = 1. Similarly, theLucas numbers Ln are defined by Ln = Ln−1+Ln−2
for all n ≥ 2, with L0 = 2 and L1 = 1.

It is known that the n-dimensional hypercube Qn is a regular graph in which each
vertex has degree n. Vertices of Qn can be represented using binary strings of length n.
In [6], the n-dimensional Fibonacci cube �n is defined as the subgraph of Qn induced
by the vertices that contain no consecutive 1s in their binary string representation. Let
B = {0, 1} and for all n ≥ 1, Bn denote the set of all binary sequences of length n,
that is,

Bn = {b1b2 . . . bn | bi ∈ B, 1 ≤ i ≤ n}.
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Then, we can write �n = (V (�n), E(�n)) with

V (�n) = {b1b2 . . . bn ∈ Bn | bi · bi+1 = 0, 1 ≤ i ≤ n − 1},
E(�n) = {e = uv | u, v ∈ V (�n) and dH (u, v) = 1},

where dH is the Hamming distance, that is, the number of different coordinates. In
[8], the n-dimensional Lucas cube �n is defined as the subgraph of �n induced by the
vertices that do not start and end with 1. Here, we can write,

V (�n) = {b1b2 . . . bn ∈ Bn | bi · bi+1 = 0, 1 ≤ i ≤ n − 1 and b1 · bn = 0}
E(�n) = {e = uv | u, v ∈ V (�n) and dH (u, v) = 1}.

Note that |V (�n)| = fn+2 and |V (�n)| = Ln .
For any n ≥ 2, �n can be decomposed into two subgraphs induced by the vertices

that start with 0 and 10, respectively. This is called the fundamental decomposition
of �n [7]. The vertices that start with 0 constitute a graph isomorphic to �n−1 and
the vertices that start with 10 constitute a graph isomorphic to �n−2. Additionally,
there is a matching of cardinality |V (�n−2)| between the subgraphs. We denote this
decomposition symbolically as

�n = 0�n−1 + 10�n−2 . (1)

Here, the perfect matching is the set of edges between the vertices in 10�n−2 and the
corresponding ones in 00�n−2 ⊂ 0�n−1. These are also referred to as the link edges.
Using (1), we can write

�n = 0�n−1 + 10�n−2 (2)

= (00�n−2 + 010�n−3) + 10�n−2 (3)

= ((000�n−3 + 0010�n−4) + 010�n−3) + (100�n−3 + 1010�n−4), (4)

where there are perfect matchings (see Fig. 1) between

– 10�n−2 and 00�n−2 ⊂ 0�n−1 in (2),
– 10�n−2 and 00�n−2; 010�n−3 and 000�n−3 ⊂ 00�n−2 in (3),
– 010�n−3 and 000�n−3; 100�n−3 and 000�n−3; 1010�n−4 and 0010�n−4;
0010�n−4 and 0000�n−4 ⊂ 000�n−3; 1010�n−4 and 1000�n−4 ⊂ 100�n−3
in (4).

Similar to the fundamental decomposition of �n , �n can be decomposed into two
subgraphs induced by its vertices that start with 0 and 10, respectively.Wewill call this
the fundamental decomposition of�n even though the subgraphs in the decomposition
are not Lucas cubes themselves. This decomposition in terms of Fibonacci cubes
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Fig. 1 Fundamental decomposition and the matchings of cardinality |V (�n−i )|, i ∈ {2, 3, 4}, between the
subgraphs of Fibonacci cube �n (n ≥ 4)

togetherwith the perfectmatchings between the induced subgraphs of�n is as follows:

�n = 0�n−1 + 10�n−30 (5)

= (00�n−2 + 010�n−3) + 10�n−30 (6)

= (00�n−30 + 00�n−401) + (010�n−40 + 010�n−501) + 10�n−30 . (7)

We can describe the perfect matchings shown in Fig. 2 depending on the decomposi-
tions of �n as follows:

– In (5), there is a perfect matching between 10�n−30 and 00�n−30 ⊂ 0�n−1.
– In (6), there are perfect matchings between 010�n−3 and 000�n−3 ⊂ 00�n−2 and
also 10�n−30 and 00�n−30 ⊂ 00�n−2.

– In (7), in addition to the perfect matching between 10�n−30 and 00�n−30, there
are perfect matchings between 00�n−401 and 00�n−400 ⊂ 00�n−30; 010�n−501
and 010�n−500 ⊂ 010�n−40; 010�n−40 and 000�n−40 ⊂ 00�n−30; and also
010�n−501 and 000�n−501 ⊂ 00�n−401.

3 Irregularity Polynomial of Fibonacci Cubes

In this section, we obtain the irregularity polynomial of �n . The idea is similar to the
one used for the boundary enumerator polynomial of �n obtained in [10].

Let In(x) = I�n (x) denote the irregularity polynomial of�n .We have the following
result.

Theorem 1 For any n ≥ 4, the irregularity polynomial In(x) of �n is given by

In(x) = 2In−1(x) + In−2(x) − 2In−3(x) − In−4(x) (8)
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Fig. 2 Fundamental decomposition and the matchings of cardinality |V (�n−i )|, i ∈ {3, 4, 5}, between the
subgraphs of the Lucas cube �n (n ≥ 5)

with I0(x) = 0, I1(x) = 1, I2(x) = 2x and I3(x) = x2 + 2x + 2.

Proof The values of In(x) for n < 4 can be directly obtained from the definition of
�n . Now, assume that n ≥ 4. Using the fundamental decomposition of �n , we need
to consider the following three cases:

1. Assume that e ∈ 10�n−2. The irregularity polynomial of �n−2 is In−2(x), and the
degrees of vertices of all e ∈ 10�n−2 increase by one in �n . Consequently, there
will be no change in the imbalance of such edges. Therefore, these edges contribute
In−2(x) to In(x).

2. Assume that e = uv ∈ �n such that u ∈ 10�n−2 and v ∈ 0�n−1. (In particular,
v ∈ 00�n−2.) We know that there is a perfect matching between 00�n−2 and
10�n−2, which means that the number of neighbors of u and v in 00�n−2 and
10�n−2 is the same. The only difference for the degrees of such vertices happens
if there exists a neighbor of v in 010�n−3 due to the perfect matching between
010�n−3 and 000�n−3 ⊂ 00�n−2. In total, we have fn−1 edges each of which
contributes x to In(x) for a total of fn−1x , and there are fn − fn−1 = fn−2 edges
each of which contributes x0 to In(x), for a total contribution of fn−2x0. Therefore,
these edges together contribute fn−1x + fn−2 to In(x).

3. Assume that e ∈ 0�n−1. Since 0�n−1 = 00�n−2 + 010�n−3, we have three
subcases to consider here.

(a) Assume that e ∈ 010�n−3. The degrees of vertices of all these edges increase
by one in �n , and therefore, they contribute In−3(x) to In(x).

(b) Assume that e = uv ∈ 0�n−1 such that u ∈ 010�n−3 and v ∈ 00�n−2. As
in case 2 above, the contribution of these edges to In−1(x) is fn−2x + fn−3.
Since there is a perfect matching between 00�n−2 and 10�n−2, the degrees of
all such vertices v must increase by 1 in �n . Therefore, the total contribution
of these edges to In(x) is x · ( fn−2x + fn−3) = fn−2x2 + fn−3x .
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(c) Assume that e ∈ 00�n−2. These edges are the ones of 0�n−1 that are not
in 010�n−3 and that are not created during the connection of 00�n−2 and
010�n−3. Furthermore, the degree of the vertices of each of these edges
increases by 1 due to the perfect matching between 00�n−2 and 10�n−2, which
does not change the contribution of these edges to In(x). Therefore, their con-
tribution to In(x) is In−1(x) − In−3(x) − ( fn−2x + fn−3).

For any n ≥ 4 summing up all the above contributions, we obtain that

In(x) = In−1(x) + In−2(x) + fn−2x
2 + 2 fn−3x + fn−4 . (9)

To eliminate the terms which involve Fibonacci numbers in (9), we can write

In+1(x) = In(x) + In−1(x) + fn−1x
2 + 2 fn−2x + fn−3 (10)

and

In+2(x) = In+1(x) + In(x) + fnx
2 + 2 fn−1x + fn−2 . (11)

Then, by adding (9) and (10) and using the recursion of Fibonacci numbers, we have

In+1(x) = 2In−1(x) + In−2(x) + fnx
2 + 2 fn−1x + fn−2 . (12)

Then, using (11) and (12), we can write

fnx
2 + 2 fn−1x + fn−2 = In+2(x) − In+1(x) − In(x)

= In+1(x) − 2In−1(x) − In−2(x)

which gives the desired result. ��
Let En denote the number of edges in E(�n). We know that E0 = 0, E1 = 1 and

for any n ≥ 2, it is shown in [8] that

En = 1
5

(
n fn+1 + 2(n + 1) fn

)
(13)

with generating function

∑

n≥0

En y
n = y

(
1 − y − y2

)2 . (14)

Define the generating function of the sequence {In(x)}n≥0 of irregularity polyno-
mials In(x) of �n by setting

I (x, y) =
∑

n≥0

In(x)y
n = y + 2xy2 + (x2 + 2x + 2)y3 + · · ·
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Using Theorem 1, we obtain a closed form for I (x, y) and consequently for the
polynomials In(x) themselves. We then use the relationship between this generating
function and the generating function of the number of edges of �n to obtain further
results.

Corollary 1 The generating function of the sequence {In(x)}n≥0 of the irregularity
polynomials In(x) of �n is given by

I (x, y) =
∑

n≥0

In(x)y
n = y

(
1 + (x − 1)y

)2
(
1 − y − y2

)2 . (15)

Proof We multiply identity (8) of Theorem 1 by yn and sum for all n ≥ 4, that is,

∑

n≥4

In(x)y
n =

∑

n≥4

(
2In−1(x) + In−2(x) − 2In−3(x) − In−4(x)

)
yn (16)

Using (16) and the definition of I (x, y), we can write

I (x, y) −
3∑

n=0

In(x)y
n = 2y

(
I (x, y) −

3∑

n=1

In−1(x)y
n−1

)

+y2
(
I (x, y) −

3∑

n=2

In−2(x)y
n−2

)

−2y3
(
I (x, y) − I0(x)

)
− y4 I (x, y) .

Then, using the first few polynomials I0(x) = 0, I1(x) = 1, I2(x) = 2x and I3(x) =
x2 + 2x + 2 as given in Theorem 1 and with some algebra, we obtain an identity
satisfied by I (x, y) given in (15). ��
Corollary 2 The irregularity polynomial of Fibonacci cube �n is given by

In(x) = En + 2En−1(x − 1) + En−2(x − 1)2 (17)

= (En − 2En−1 + En−2) + (2En−1 − 2En−2) x + En−2x
2 (18)

for any n ≥ 2 where En is the number of edges of �n as given in (13).

Proof Combining the generating functions given in (14) and (15), we can write

I (x, y) =
∑

n≥0

In(x)y
n = y

(
1 − y − y2

)2
(
1 + (x − 1)y

)2

=
⎛

⎝
∑

n≥0

En y
n

⎞

⎠
(
1 + 2(x − 1)y + (x − 1)2y2

)

and equate the coefficient of yn on both sides. ��
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In [4], it is shown that the irregularity of �n is

irr(�n) = 2
5

(
(n − 1) fn + 2n fn−1

) = 2En−1 .

Since irr(�n) is obtained by taking the derivative of In(x) and then substitution x = 1,
the first expression (17) immediately gives

irr(�n) = 2En−1 .

The second expression (18) provides formulas for the number of edges uv ∈ E(�n)

for which
∣∣deg�n

(u) − deg�n
(v)

∣∣ = r . Denoting this number by δr (�n) for n ≥ 2, we
have δr (�n) = 0 for r > 2 with

δ0(�n) = En − 2En−1 + En−2 = 1
5 (nLn−3 + 2 fn)

δ1(�n) = 2En−1 − 2En−2 = 2
5 (nLn−2 + fn)

δ2(�n) = En−2 = 1
5 (nLn−1 − 2 fn) , (19)

in terms of Fibonacci and Lucas numbers, where we have used (13) and the clas-
sical identity Ln = fn+1 + fn−1. These in turn give the higher moments of∣∣deg�n

(u) − deg�n
(v)

∣∣ over uv ∈ E(�n) as

∑

uv∈E(�n)

| deg�n
(u) − deg�n

(v)|m = δ1(�n) + 2mδ2(�n)

= 2En−1 + (2m − 2)En−2 . (20)

So of course, the m = 1 case of (20) gives irr(�n) = 2En−1 as obtained in [4].
Calculating from (20) and (13), we find that the second moment is given by

∑

uv∈E(�n)

| deg�n
(u) − deg�n

(v)|2 = 2En − 2 fn .

4 Irregularity Polynomial of Lucas Cubes

Using the fundamental decomposition of Lucas cubes in terms of Fibonacci cubes
and considering the cases similar to the ones that arise in the proof of Theorem 1, we
obtain the following result for the irregularity polynomial of Lucas cubes.

Let Jn(x) = I�n (x) denote the irregularity polynomial of �n . Then

Theorem 2 For any n ≥ 4, the irregularity polynomial Jn(x) of �n is given by

Jn+2(x) − Jn+1(x) − Jn(x) = In+1(x) − In(x) − In−2(x) − In−3(x) (21)

where In(x) is the irregularity polynomial of�n, and J1(x) = 0, J2(x) = 2x, J3(x) =
3x2, J4(x) = 4x2 + 4, J5(x) = 5x2 + 10x and J6(x) = 12x2 + 12x + 6.
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Proof The proof follows along the lines of the argument given for Fibonacci cubes,
but there are more cases to consider because of the peculiarities of Lucas cubes. We
include the proof for completeness.

The polynomials Jn(x) for n ≤ 6 are found by direct inspection. For all n ≥ 7, we
use the fundamental decomposition (5) and consider the following three cases:

1. Assume that e ∈ 10�n−30. We know that the irregularity polynomial of �n−3
is In−3(x) and the degrees of vertices of all e ∈ 10�n−30 increase by one in
�n since there is a perfect matching between 10�n−30 and 00�n−30 ⊂ 0�n−1.
Consequently, there will be no change in the imbalance of such edges of �n .
Therefore, all of these edges contribute In−3(x) to Jn(x).

2. Assume that e = uv ∈ �n with u ∈ 10�n−30 and v ∈ 00�n−30 ⊂ 0�n−1.
The number of neighbors of u and v in 10�n−30 and 00�n−30 is the same. The
difference in the degrees of such vertices is possible if there exists any neighbor
of v in 0�n−1 \ 00�n−30 (where “\” denotes set difference) due to the perfect
matchings in (7). Here, we have the following subcases:

(a) If v ∈ 00�n−400∩000�n−40 = 000�n−500, then there are two neighbors of v
in 0�n−1 \00�n−30, one in 000�n−501 ⊂ 00�n−401 and one in 010�n−500 ⊂
010�n−40. The total contribution of this case to Jn(x) is fn−3x2.

(b) Ifv ∈ 00�n−400\000�n−40 = 0010�n−600, then there is exactly oneneighbor
of v in 0�n−1 \ 00�n−30, which is the one in 0010�n−601 ⊂ 00�n−401. The
contribution of this case to Jn(x) is fn−4x .

(c) Ifv ∈ 000�n−40\00�n−400 = 000�n−6010, then there is exactly oneneighbor
of v in 0�n−1 \ 00�n−30, which is the one in 010�n−6010 ⊂ 010�n−40. The
contribution of this case to Jn(x) is fn−4x .

(d) If v ∈ 00�n−30 \ (00�n−400 ∪ 000�n−40), then there is no neighbor of v

in 0�n−1 \ 00�n−30. Then, the contribution of this case to Jn(x) is fn−1 −
2 fn−2 + fn−3 = fn−5.

3. Assume that e ∈ 0�n−1. In view of (6), we have three subcases.

(a) Assume that e ∈ 010�n−3. Considering all such edges, we see that the degrees
of vertices of all these edges increase by one due to the perfect matching
between 010�n−3 and 000�n−3 in �n , and therefore, the total contribution of
such edges to Jn(x) is In−3(x).

(b) Assume that e = uv ∈ 0�n−1 such that u ∈ 010�n−3 and v ∈ 00�n−2. These
edges are the ones in the perfect matching between 010�n−3 and 000�n−3 ⊂
00�n−2. We have the following further subcases:
i. If u ∈ 010�n−40 ⊂ 010�n−3 and v ∈ 000�n−40 ⊂ 000�n−3, then the

number of neighbors of u and v in 010�n−3 and 000�n−3 is the same,
respectively. But in �n , if v ∈ 0000�n−50, then deg(v) − deg(u) = 2,
since v has exactly one neighbor in 1000�n−50 ⊂ 10�n−30 and one
in 0010�n−50 ⊂ 0010�n−4, and if v ∈ 00010�n−60, then deg(v) −
deg(u) = 1, since v has one neighbor in 10010�n−60 ⊂ 10�n−30. The
contribution of this case to Jn(x) is fn−3x2 + fn−4x .

ii. If u ∈ 010�n−501 ⊂ 010�n−3 and v ∈ 000�n−501 ⊂ 000�n−3, then in
�n , we have deg(v)− deg(u) ∈ {0, 1} and the only difference comes if v

123



762 Ö. Eğecioğlu

has neighbor in 0010�n−601 ⊂ 0010�n−4. The contribution of this case
to Jn(x) is fn−4x + fn−5.

(c) Assume that e ∈ 00�n−2. These edges are the ones of 0�n−1 that are not in
010�n−3 and that are not occur during the connection of 00�n−2 and 010�n−3.
Using (7), we have the following subcases to consider:
i. If e ∈ 00�n−401, then considering all such edges of 0�n−1 ⊂ �n , assume

that all of them contribute X to In−1(x) of 0�n−1 and Jn(x) since there is
no edge between 00�n−401 and 10�n−30 in �n .

ii. Assume that e = uv ∈ 00�n−2 such that u ∈ 00�n−401 and v ∈ 00�n−30.
These edges are the ones in the perfect matching between 00�n−401 and
00�n−400 ⊂ 00�n−30 ⊂ 00�n−2. We have the following subcases:
– If u ∈ 0010�n−601 and v ∈ 0010�n−600, then in �n , we have
deg(v) − deg(u) ∈ {1, 2} since all of such v has exactly one
neighbor 1010�n−600 ⊂ 10�n−30 and fn−5 of them has another
neighbor in 00000�n−700. The contribution of this case to Jn(x) is
fn−5x2 + fn−6x .

– If u ∈ 000�n−501 and v ∈ 000�n−500, then in �n , u has exactly one
neighbor in 010�n−501 ⊂ 010�n−3 and v has exactly one neighbor in
010�n−500 ⊂ 010�n−3. Furthermore, each v has one more neighbor
in 100�n−500 ⊂ 10�n−30 and also, fn−4 of them has a neighbor in
000�n−6010 ⊂ 00�n−5010 ⊂ 00�n−400. Therefore, the contribution
of this case to Jn(x) is fn−4x2 + ( fn−3 − fn−4)x = fn−4x2 + fn−5x .

iii. If e ∈ 00�n−30, then considering all such edges, we see that their contri-
bution to In−1(x) of 0�n−1 and contribution to Jn(x) are the same since
there is a perfect matching between 00�n−30 and 10�n−30. This contri-
bution can be evaluated by subtracting the contribution of the edges of
0�n−1 \ 00�n−30 from In−1(x). Note that, since we need to consider the
edges of 0�n−1, we have to discard the effect of the perfect matching
between 00�n−30 and 10�n−30 in the above calculations in this case.
Therefore, using the above subcases in the 3rd case, all of e ∈ 00�n−30
contribute In−1(x)− In−3(x)− X − ( fn−3x + fn−4)− ( fn−4x + fn−5)−
( fn−5x + fn−6) − ( fn−4x + fn−5) to Jn(x).

Summing up all of the above contributions, we obtain that

Jn(x) = In−1(x) + In−3(x) + 3 fn−3x
2 + 2 fn−6x − Ln−5 . (22)

By using the recursion of Fibonacci and Lucas numbers, (22) and the values of In(x)
and Jn(x) for n ≤ 6, we obtain the desired result similar to the last part of the proof
of Theorem 1. ��

Define the generating function of the sequence {Jn(x)}n≥0 of the irregularity poly-
nomials Jn(x) of �n by

J (x, y) =
∑

n≥1

Jn(x)y
n = 2xy2 + 3x2y3 + (4x2 + 4)y4 + · · ·
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Corollary 3 The generating function J (x, y) of the sequence {Jn(x)}n≥0 of the irreg-
ularity polynomials Jn(x) of �n is given by

J (x, y) =
y
(
c1(x)y + c2(x)y2 + c3(x)y3 + c4(x)y4 + c5(x)y5 + c6(x)y6

)

(
1 − y − y2

)2

(23)

where

c1(x) = 2x

c2(x) = x(3x − 4)

c3(x) = −2(x − 1)(x + 2)

c4(x) = −2(x − 1)(3x − 4)

c5(x) = 2(x − 1)(2x − 1)

c6(x) = 3(x − 1)2.

Proof We multiply identity (21) of Theorem 2 by yn+2 and sum for n ≥ 4. Using
the expression for the generating function I (x, y) already obtained in Corollary 1 and
the first few polynomials as given in Theorem 2, we obtain an identity satisfied by
J (x, y) which is then solved and simplified to obtain the expression in (23). We omit
the details. ��

Using the generating function in (14) and multiplying out the right-hand side of
(23), we immediately obtain for n ≥ 6,

Jn(x) = En−1c1(x) + En−2c2(x) + En−3c3(x)

+En−4c4(x) + En−5c5(x) + En−6c6(x) , (24)

where the polynomials c1(x), c2(x), . . . , c6(x) are as defined in Corollary 3. Collect-
ing powers of x in (24), we have

Jn(x) = δ0(�n) + δ1(�n)x + δ2(�n)x
2 (25)

where

δ0(�n) = 4En−3 − 8En−4 + 2En−5 + 3En−6

δ1(�n) = 2En−1 − 4En−2 − 2En−3 + 14En−4 − 6En−5 − 6En−6

δ2(�n) = 3En−2 − 2En−3 − 6En−4 + 4En−5 + 3En−6 ,
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in terms of the number of edges En of �n . We already know the explicit formula for
En as given in (13). Simplifying the above expressions, we obtain

δ0(�n) = n fn−5

δ1(�n) = 2n fn−4

δ2(�n) = n fn−3 (26)

as the coefficients in (25).
We note that the coefficients above happen to give the correct irregularity polyno-

mials for n = 4, 5 as well.
We can also expand Jn(x) in powers of x−1 and simplify the resulting coefficients.

As a consequence, we have

Corollary 4 The irregularity polynomial Jn(x) of the Lucas cube �n is given by

Jn(x) = n fn−1 + 2n fn−2(x − 1) + n fn−3(x − 1)2 (27)

= n fn−5 + 2n fn−4x + n fn−3x
2 (28)

for n ≥ 4 with J1(x) = 0, J2(x) = 2x, and J3(x) = 3x2.

Note that the irregularity polynomial Jn(x) of Lucas cube �n is always a multiple
of n and an integral polynomial.

Let �n = |E(�n)| denote the number of edges of �n . It can be shown [8] that
�n = n fn−1. Since irr(�n) is obtained by taking the derivative of Jn(x) and then
substitution x = 1, the first expression (27) immediately gives the irregularity of �n :

Corollary 5 For all n ≥ 3

irr(�n) = 2n fn−2 = 2�n−1 + 2 fn−2 .

The second expression (28) provides formulas for the number of edges uv ∈ E(�n)

for which
∣∣deg�n

(u) − deg�n
(v)

∣∣ = r . These are the coefficients that appear in (26).
The higher moments of

∣∣deg�n
(u) − deg�n

(v)
∣∣ over uv ∈ E(�n) are obtained as

∑

uv∈E(�n)

∣∣deg�n
(u) − deg�n

(v)
∣∣m = δ1(�n) + 2mδ2(�n) = 2n fn−4 + 2mn fn−3 .(29)

Again, the m = 1 case of (29) gives irr(�n) = 2n fn−2. It is interesting that the
second moment is given by

∑

uv∈E(�n)

∣∣deg�n
(u) − deg�n

(v)
∣∣2 = 2n fn−4 + 4n fn−3 = 2�n ,

which is the sumof the degrees of the vertices in�n , the so-called handshaking lemma.

123



The Irregularity Polynomials… 765

Remark 1 The pairwise asymptotic ratios of the quantities for �n in (26) are identical
to the asymptotic ratios of the corresponding ones for �n in (19). In other words, the
behavior of the zeros of In(x) and Jn(x) for large n is identical. Using the properties
of the Fibonacci and the Lucas numbers, we find that asymptotically both polynomials

have a double root at x = −φ−1 = 1−√
5

2 .
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5. Chartrand, G., Erdős, P., Oellermann, O.R.: How to define an irregular graph. College Math. J. 19,

36–42 (1988)
6. Hsu, W.-J.: Fibonacci cubes-a new interconnection technology. IEEE Trans. Parallel Distrib. Syst. 4,

3–12 (1993)
7. Klavžar, S.: Structure of Fibonacci cubes: a survey. J. Comb. Optim. 25, 505–522 (2013)
8. Munarini, E., Cippo, C.P., Zagaglia Salvi, N.: On the Lucas cubes. Fibonacci Quart. 39, 12–21 (2001)
9. Réti, T.: On some properties of graph irregularity indices with a particular regard to the σ -index. Appl.

Math. Comput. 344–345, 107–115 (2019)
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