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THE ISOPERIMETRIC NUMBER OF d{DIMENSIONAL k{ARYARRAYSM. CEMIL AZIZO�GLU and �OMER E�GECIO�GLUDepartment of Computer ScienceUniversity of CaliforniaSanta Barbara, California 93106, USAfazizoglu,omerg@cs.ucsb.eduReceived (received date)Revised (revised date)Communicated by Editor's nameABSTRACTThe d{dimensional k{ary array Adk is the d{fold Cartesian product graph of thepath graph Pk with k vertices. We show that the (edge) isoperimetric number i(Adk) ofAdk is given by i(Adk) = i(Pk) = 1=b k2 c and identify the cardinalities and the structureof the isoperimetric sets. For odd k, the cardinalities of isoperimetric sets in Adk are12 (kd � 1); 12 (kd � k); : : : ; 12 (kd � kd�1), whereas every isoperimetric set for k even hascardinality 12kd.Keywords: Isoperimetric number, array, bisection, edge{separator, partition, extremal{set.1. IntroductionGiven a graph G and a subset X of its vertices, let @X denote the edge{boundaryof X ; the set of edges which connect vertices in X with vertices in V (G) nX . Theedge{isoperimetric number, or simply the isoperimetric number, of G is de�ned asi(G) = min1�jXj� jV (G)j2 j@X jjX j : (1)That is, the set of vertices of G is partitioned into two nonempty sets and theratio of the number of edges between the two parts and the number of vertices inthe smaller one is minimized over all such partitions. As examples of isoperimetricnumbers:� i(Kk) = dk2 e for the complete graph Kk with k vertices,� i(Pk) = 1=bk2c for the path Pk with k vertices,� i(Ck) = 2=bk2c for the cycle Ck with k vertices.A subset X which achieves the minimum ratio in (1) is called an isoperimetric set.We refer the reader to Mohar [13] or Chung [8] for a discussion of basic results1



and various interesting properties of i(G) and to Bezrukov [5] for a comprehensivesurvey of this and related problems.The d{dimensional k{ary array Adk is an undirected graph with kd nodes labeledby the integers from 0 to kd � 1. Two nodes in Adk are connected by an edge if andonly if the k{ary representations of their labels di�er in exactly one digit and theabsolute value of the di�erence in that digit is exactly one. Figure 1 illustrates a2{dimensional 4{ary array A24.
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Fig. 1. The 2{dimensional 4{ary array A24.The Cartesian product G�H of two graphs G and H is the graph with vertexset V (G) � V (H), in which vertices (u; v) and (u0; v0) are adjacent if and only ifu is adjacent to u0 in G and v = v0, or v is adjacent to v0 in H and u = u0. Amultidimensional array is the Cartesian product of paths of varying length, i.e.Pk1 �Pk2 �� � ��Pkd . Thus Adk is a special type of multidimensional array in whichk1 = k2 = � � � = kd = k.In this paper, we investigate isoperimetric properties of d{dimensional k{aryarrays for arbitrary k and d. Speci�cally, we prove the following.Theorem 1 The isoperimetric number of the d{dimensional k{ary array Adk isgiven by i(Adk) = i(Pk) = � 2k if k even;2k�1 if k odd: (2)As a byproduct of the proof, we also show that there are exactly d distinct cardi-nalities 12 (kd � 1); 12 (kd � k); : : : ; 12 (kd � kd�1)of isoperimetric sets in the d{dimensional k{ary arrayAdk when k is odd. In contrast,every isoperimetric set has cardinality kd=2 when k is even. We give a descriptionof the isoperimetric sets for both even and odd k.1.1. MotivationThe notion of isoperimetric number of a graph G serves as a measure of con-nectivity of G as it quanti�es the minimal interaction between a set of vertices X2



and its complement V (G) nX in terms of the number of edges between them. Thisidea is also important in algorithm design. For instance, the notion of isoperimet-ric number is implicit in the divide-and-conquer strategy in graph algorithms. Toillustrate, consider an algorithm which adopts divide-and-conquer strategy wherethe set of vertices of the underlying graph is split into two \fairly balanced" partssuch that the algorithm can be run on the two corresponding subgraphs recursively,and the results are combined to obtain a solution for the original problem. Thecombining of results at the last step needs to be carried out with minimal e�ort ifsuch a scheme is expected to be e�cient. The idea is to split the graph in such away as to keep the interaction between the two partitions (in terms of the numberof edges in the boundary) as small as possible.The isoperimetric number is closely related to the notion of bisection widthbw(G) of a graph G, which is the minimum number of edges that must be removedfrom the graph in order to split V (G) into two equal{sized (within one) subsets. Theisoperimetric number of a graph establishes a lower bound for its bisection width.For instance, one can give an alternate proof of the known lower boundbw(Adk) � ( kd�1 if k even;kd�1k�1 if k odd : (3)using the formula (2) for the isoperimetric number since,bw(Adk)bkd2 c � i(Adk):For even k, (3) was proved by Leighton [11] by an embedding method. Nakano [14]also used an embedding technique to prove the odd case in inequality (3). In thispaper, we extend these two techniques to get tight edge{isoperimetric lower boundswhich lead to the exact formula (2) for i(Adk) for arbitrary k and d.1.2. OutlineThe outline of the rest of this paper is as follows: In Section 2 we summarizeprevious work on isoperimetric properties of various families of product graphs. Theproof of our main result appears in Section 3. We treat the cases of even and oddk separately, and in each of these cases, we give tight upper and lower bounds thatprove formula (2) for i(Adk). In Section 4 we give the cardinalities of the feasibleisoperimetric sets in Adk as well as describe their recursive construction. Section 5concludes the paper with remarks and future considerations.2. A Summary of Previous WorkThere has been a signi�cant amount of research in the area of isoperimetricbounds on various popular classes of graphs such as arrays and tori. The notion ofisoperimetric number of a graph is related to the theory of extremal sets in graphs.An extremal set of a graph for a given m is, in a broad sense, a con�guration of mvertices with 3



� minimum number of boundary edges, or� maximum number of spanned edgesamong all such m{vertex subsets of the given graph. The problem of �nding ex-tremal sets of the �rst (or, second) type is called the minimum{boundary{edge prob-lem (or, the maximum{induced{edge problem). It can be shown that the minimum{boundary{edge and the maximum{induced{edge problems are equivalent for regulargraphs [7].The maximum{induced{edge problem for the hypercube (hence the minimum{boundary{edge problem, because of its regularity) was solved by Harper [10] andextended by Lindsey [12] to the d{dimensional k{ary clique which we shall de�neformally in the next section. In both instances, there is a nested structure ofsolutions, and the �rst m vertices in lexicographical order constitute an extremalset. The maximum{induced{edge problem for the d{dimensional k{ary array Adkwas �rst solved by Bollob�as and Leader [7]. Since Adk is not regular, this is nothelpful in solving the minimum{boundary{edge problem. It was later extended tomultidimensional arrays by Ahlswede and Bezrukov [1] who also gave a solution forPk1 � Pk2 for the minimum{boundary{edge problem. The �rst nontrivial boundson the minimum{boundary{edge problem for the d{dimensional k{ary arrays weregiven by Bollob�as and Leader [7]. The bounds obtained are not tight enough toyield i(Adk) exactly however. Similar problems have been de�ned in the literaturefor the vertex{boundary of a given con�guration of vertices. For instance, Riordan[15] gave an ordering of vertices on the even discrete torus minimizing the numberof vertices at shortest distance t from the vertices in the ordering. Wang and Wang[16] solved a similar problem for P1�� � ��P1, i.e. the d{dimensional in�nite grid,where the minimum is taken over all nonempty �nite subsets of vertices. In theirresult, each P1 may be in�nite in both directions or in one direction only. Theyalso gave a simple ordering of the vertices in which the �rst m vertices constitutean extremal set minimizing the vertex{boundary.A natural approach for the exact calculation of i(Adk) is to try to exploit therecursive Cartesian product structure Adk = Pk � Ad�1k . For instance, Mohar [13]gave a proof for i(Pk1�Pk2) = minfi(Pk1); i(Pk2)g. It can be proved in general thati(Pk�G) = i(Pk) where G is any connected graph with k vertices [2]. These resultsindicate that (2) holds for d = 2. However, it does not seem possible to extend themdirectly to get the desired bound for i(Pk�Ad�1k ). It was shown in [2], for instance,that i(Pk � G) 6= i(Pk) if G has more than k vertices even when i(G) � i(Pk) (itis well{known that i(Pk � G) < i(Pk) if i(G) < i(Pk)). General results on graphproducts based on the second smallest eigenvalue of the Laplacian [13], or the bound12m � i(G1�G2�� � ��Gn) � m where m = minfi(G1); i(G2); � � � ; i(Gn)g reportedby Chung and Tetali [9] do not yield the desired tight lower bound for i(Adk), either.3. The Isoperimetric Number of AdkIn this section we prove the two cases in Theorem 1 by showing that each ofthe two expressions on the right{hand side of equation (2) is an upper and a lowerbound for i(Adk). 4



3.1. The Upper BoundTo establish the upper bound, we utilize a general inequality given in [13] forthe isoperimetric number of a Cartesian product graphi(G�H) � minfi(G); i(H)g: (4)Thus, by taking G = Pk and H = Ad�1k in (4), we have i(Adk) � minfi(Pk); i(Ad�1k )gwhich implies i(Adk) � 1=bk2c since i(Pk) = 1=bk2 c.The proof of the lower bound will be handled in two cases depending on theparity of k. The case with even k is given next.3.2. The Lower Bound for Even kWe �rst state our claim formally in the following proposition.Proposition 1 For the d{dimensional k{ary array Adk with k even, i(Adk) � 2=k.Proof. We prove the lower bound for even k by extending the embedding techniqueof Leighton [11] who used it to obtain a lower bound for bw(Adk) for even k. Givena d{dimensional k{ary array Adk where k is even, we embed into Adk the kd{nodedirected complete graph Kkd with the vertex set f0; : : : ; kd � 1g. Any two distinctvertices u and v 2 V (Kkd) are connected by the directed edges (u; v) and (v; u).The edge from node u = (u1; u2; � � � ; ud) to node v = (v1; v2; � � � ; vd) of thecomplete graph is routed through the path(u1; u2; � � � ; ud)! (v1; u2; � � � ; ud)! (v1; v2; u3 � � � ; ud)! � � � ! (v1; v2; � � � ; vd)in the array. That is, when routing the edge from u to v, following edges in Adk, we�rst \correct" the value of u along the dimension with the smallest index that isdi�erent from the value in v at that index until the two values become equal. Then,we correct the value of the next smallest index where they di�er and so on. Theprocess stops when all the dimensions have eventually been corrected.When k is even, at most kd+1=2 edges of the complete graph are routed througha given edge in the array (see [11], page 225). In other words, removal of an edgein the array is equivalent to disconnecting at most kd+1=2 edges in the completegraph.Now we prove that j@X j=jX j � 2=k for any X � V (Adk) where 1 � jX j � kd=2.Consider such a subset X . Also, let X 0 be the corresponding subset of vertices inV (Kkd) under the embedding. Then, X 0 has boundary @X 0 with 2jX 0j(kd � jX 0j)edges in the complete graph since each vertex in X 0 is connected with every vertexin the remaining kd � jX 0j vertices by two (directed) edges. That is, j@X 0j =2jX 0j(kd � jX 0j). We then havej@X j � j@X 0jkd+12 ) j@X jjX j � j@X 0jkd+12 jX j = 2jX 0j(kd � jX 0j)kd+12 jX jBut 2jX 0j(kd � jX 0j)kd+12 jX j � 2k (5)5



since jX j = jX 0j and jX j � kd=2. 23.3. The Lower Bound for Odd kIn this section, we prove the following proposition.Proposition 2 For the d{dimensional k{ary array Adk with k > 1 odd, i(Adk) �2=(k � 1).Unfortunately, the technique used for even k does not yield a tight lower boundwhen k is odd. Speci�cally, with the same embedding method, one can at best geti(Adk) � 2(kd + 1)kd+1 � kd�1for odd k. Note that the right hand side is a smaller than the desired lower bound2=(k � 1). Instead, we prove this case by extending the embedding technique ofNakano [14]. Before going into the proof, we shall �rst give a characterization ofgraphs based on linear layouts and develop some notation to facilitate our treatment.Our notation and terminology are similar to those used in [14].3.4. Linear LayoutsA linear layout L of a graph G is a one-to-one mapping between the vertices inthe graph and the numbers f0; : : : ; jV (G)j�1g, i.e., L : V (G) ! f0; 1; : : : ; jV (G)j�1g is a bijection. One can think of this mapping as assigning each node a position onthe number line between 0 and jV (G)j�1 as shown in Figure 2. For a d{dimensionalk{ary array Adk, the identity mapping I which assigns each vertex to the value ofits own label is called the label{order layout. We refer to the region between two
0 2 3 5 6 7 81 4Fig. 2. The label{order layout of A23 with a cut at gap 4.nodes assigned to positions x� 1 and x, 1 � x � jV (G)j � 1 as gap x.The cut of a graph G under a linear layout L at gap x, denoted by C(G;L; x),is the set of edges which connect vertices assigned to positions smaller than x withthose in positions greater than or equal to x. That is, C(G;L; x) = f(u; v) 2E(G) j L(u) < x � L(v)g. Evidently, C(G;L; x) is equivalent to @X in the graphG where X = fL�1(0); L�1(1); : : : ; L�1(x�1)g. Based on this characterization, wewant to prove the following inequality,jC(Adk ; L; x)jx � 2k � 1 (6)for any L and 1 � x � (kd � 1)=2 where x = jX j.6



A related graph topology which is used in Nakano's technique as well as in ourproof is the d{dimensional k{ary clique Kdk . The topology of a Kdk resembles Adk. Italso has kd nodes labeled by the integers from 0 to kd�1. Similar to Adk, there is anedge between two nodes if and only if k{ary representations of their labels di�er inexactly one digit. However, unlike Adk, the absolute value of the di�erence does nothave to be exactly one. Another characterization is that a Kdk is a d{fold Cartesianproduct of the complete graph Kk with k vertices. The label{order layout of a Kdkis de�ned the same way as that of an Adk. Figure 3 illustrates a 2{dimensional 4{aryclique K24 . Nakano proved the following lemma in [14].
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Fig. 3. The 2{dimensional 4{ary clique K24 .Lemma 1 (Nakano, 1993) For the d{dimensional k{ary clique Kdk , the inequalityjC(Kdk ; I; x)j � jC(Kdk ; L; x)jholds for any layout L and gap x.In other words, vertices corresponding to the �rst x numbers in the label{orderlayout (i.e. vertices with labels 0 to x � 1) constitute an extremal set in a d{dimensional k{ary clique Kdk minimizing the edge{boundary, among all such x{element subsets of vertices.Intuitively, we embed aKdk into Adk and bound from below the number of bound-ary edges of any x{element subset of vertices in Kdk using Nakano's lemma and thefact that, as a result of the embedding, removal of any edge in the array will resultin disconnection of at most a certain number of edges in the array. To this end,we �rst give the following embedding lemma which characterizes the isoperimetricnumber problem for Adk in terms of a cut width problem for Kdk when k is odd.Lemma 2 Given a d{dimensional k{ary array Adk where k is odd and an integerx with 1 � x � (kd � 1)=2,i(Adk) � 2k � 1 if jC(Kdk ; I; x)j � k + 12 x:Proof. The embedding of Kdk into Adk is done in the obvious manner: The edgefrom u = (a1; : : : ; ai�1; r; ai+1; : : : ; ad) to v = (a1; : : : ; ai�1; s; ai+1; : : : ; ad) of the7



clique with r < s is embedded through the path(a1; : : : ; ai�1; r; ai+1; : : : ; ad)! (a1; : : : ; ai�1; r + 1; ai+1; : : : ; ad)! � � �! (a1; : : : ; ai�1; s� 1; ai+1; : : : ; ad)! (a1; : : : ; ai�1; s; ai+1; : : : ; ad)in the array. Then, at most (k2 � 1)=4 edges of Kdk are routed through any edge ofAdk [14]. Consider the set of edges in a cut of Adk under a linear layout L at gap x,i.e. C(Adk ; L; x). There is a set of edges in the Kdk under the same layout L and gapx, C(Kdk ; L; x), corresponding to this cut as a result of the embedding. This meansjC(Adk; L; x)j � jC(Kdk ; L; x)j(k2�1)4 :Thus, we have jC(Adk ; L; x)jx � jC(Kdk ; L; x)j(k2�1)4 x � jC(Kdk ; I; x)j(k2�1)4 xby Nakano's lemma. Hence, it su�ces to show for 1 � x � (kd � 1)=2,jC(Kdk ; I; x)j(k2�1)4 x � 2k � 1which is equivalent to showing jC(Kdk ; I; x)j � x(k + 1)=2 for 1 � x � (kd � 1)=2,and Lemma 2 follows. 2At this point, we have reduced the proof of the isoperimetric number of thearray into proving the following claim.Claim 1 For odd k, jC(Kdk ; I; x)j � x(k+1)=2 holds whenever 1 � x � (kd�1)=2.The proof of Claim 1 is by induction on d which we give next. Consider the setX of �rst x nodes of a Kdk in label{order layout where 1 � x � (kd � 1)=2. Fornotational convenience, let Bd(x) = jC(Kdk ; I; x)j. That is, Bd(x) is the number ofedges in the layout that connect these x nodes to the remaining kd � x. We �rstgive a recurrence relation for Bd(x) which we subsequently use in our inductiveargument. First note that x = ad�1kd�1 + � � � + a1k + a0 with 0 � ai < k. Thusad�1; : : : ; a1; a0 are the digits of x in base k and x = (ad�1 � � �a1a0)k. Note that Xis made up of ad�1 copies of Kd�1k , ad�2 copies of Kd�2k and so on. An example ofthis is shown in Figure 4. The vertices rendered in dark constitute subset X andthe boundary edges @X (= C(K23 ; I; 4)) are shown by dashed lines. The subset Xconsists of one copy of K13 (bottom row vertices) and one copy of K03 (vertex 3).We record the following observation as a lemma, since we use it repeatedly in theproof.Lemma 3 If x = (ad�1 � � � a1a0)k and 1 � x � (kd � 1)=2, then ad�1 � (k � 1)=2.Lemma 4 Suppose x = (ad�1 � � � a1a0)k. Then Bd(x) satis�es the recursionBd(x) = ad�1(1 + ad�1)kd�1 � x(1 + 2ad�1 � k) +Bd�1(x� ad�1kd�1) (7)with B1(a0) = a0(k � a0). 8
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3Fig. 4. The K23 with set X = f0; 1; 2; 3g and B2(4) = 8.Proof. Let a = ad�1. We show that Bd(x) satis�es the recursionBd(x) = akd�1(k�a)�(x�akd�1)a+(x�akd�1)(k�a�1)+Bd�1(x�akd�1) (8)which can then be simpli�ed to (7). The �rst term of (8) is the number of edgeson the boundary if X consisted of only a copies of Kd�1k . From this we take outthe number of edges that link the vertices in these copies to the remaining portionof X (which we think of as lying in the (a + 1)st copy of Kd�1k in Kdk) and add,in turn, the number of edges from the vertices in this lower dimensional set ofcardinality x � akd�1 to the nodes in the remaining k � a � 1 copies of Kd�1k . Atthis point, we have counted all the boundary edges in one dimension, hence we canget rid of this dimension altogether and consider only the boundary edges of theremaining x�akd�1 vertices that reside on the (a+1)st subclique. But the numberof boundary edges in that subclique is precisely Bd�1(x�akd�1). Hence, by addingthis, we get (8). 2Lemma 5 Suppose k is odd and x = (ad�1ad�2 � � �a0)k with 1 � x � (kd � 1)=2.Then Bd(x) � x(k + 1)=2.Proof. This lemma is a restatement of Claim 1. We prove it by induction on d. Forthe base case d = 1, B1(a0) = a0(k � a0) � x(k + 1)=2 since x = a0. For inductivehypothesis we assume that Bd(x) � x(k+1)=2 holds whenever 1 � x � (kd� 1)=2.We are required to prove,Bd+1(x) = ad(1 + ad)kd � x(1 + 2ad � k) +Bd(x� adkd) � xk + 12 (9)for 1 � x � (kd+1 � 1)=2 where x = (adad�1 � � � a0)k. We prove this inequality byconsidering the two possible cases: x�adkd � (kd�1)=2 and x�adkd � (kd+1)=2.Case I: x� adkd � (kd � 1)=2Note that the inductive hypothesis is directly applicable and we havead(1 + ad)kd � x(1 + 2ad � k) +Bd(x� adkd) �ad(1 + ad)kd � x(1 + 2ad � k) + (x� adkd)k + 12 :Thus, it su�ces to provead(1 + ad)kd � x(1 + 2ad � k)� adkd k + 12 � 0:9



After factoring and rearranging the terms, this is equivalent to�2x� adkd��ad � k � 12 � � 0: (10)The �rst factor in (10) is always strictly positive since x � 1 and adkd < x. Thesecond factor is nonnegative by Lemma 3. Note that equality in (10) is possibleonly for ad = (k � 1)=2.Case II: x� adkd � (kd + 1)=2In this case, the inductive hypothesis cannot be used directly. Fortunately, however,Bd(x) = Bd(kd�x) and the inductive step can be used as Bd(kd�x) � (kd�x)(k+1)=2 for x � (kd + 1)=2. Now the inequality we want to prove becomesad(1 + ad)kd � x(1 + 2ad � k) +Bd(kd � (x� adkd)) � xk + 12 :By using the inductive hypothesis, we havead(1 + ad)kd � x(1 + 2ad � k) +Bd(kd � (x� adkd)) �ad(1+ad)kd�x(1+2ad�k)+(kd�(x�adkd))k + 12 :Thus, after rearrangement of the terms above, it su�ces to showkd�ad + k + 12 � � 2x: (11)Note in this case that ad < (k� 1)=2 (or, equivalently ad � (k� 3)=2), as otherwisex would exceed (kd+1 � 1)=2. The inequality (11) is equivalent tokd k + 12 � adkd + 2ad�1kd�1 + 2ad�2kd�2 + � � �+ 2a0:But ad�1kd�1+ad�2kd�2+ � � �+a0 � kd�1 since this is a base k expansion. Thus,it su�ces to prove kd k + 12 � kd k � 32 + 2kd � 2:After expansion of terms, this inequality is seen to be equivalent tokd+1 + kd � kd+1 + kd � 4which obviously holds. Furthermore, we also note that the inequality (9) is strictin this case. 2This completes the proof of Claim 1. Therefore, Proposition 2, and consequentlyTheorem 1 is proved.4. Isoperimetric Sets and Their CardinalitiesTheorem 2 The cardinalities of the isoperimetric sets of a Adk are12 (kd � 1); 12 (kd � k); : : : ; 12 (kd � kd�1)for odd k, and kd=2 for even k. 10



Proof. For odd k, an isoperimetric set X of an Adk with x vertices must satisfyBd(x) = x(k + 1)=2 where 1 � x � jV (Adk)j=2. From the proof of Lemma 5, theequation Bd(x) = x(k + 1)=2 has exactly d roots in this interval given by(m; 0; 0; : : : ; 0); (m;m; 0; : : : ; 0); : : : ; (m;m; : : : ;m)written in base k with m = (k � 1)=2. These can be written as12 (kd � 1); 12 (kd � k); : : : ; 12 (kd � kd�1):For even k, any isoperimetric set must make the two sides of inequality (5) equal,which occurs only for x = kd=2. 2Because of the structural symmetry of arrays, there are multiple isoperimetricsets with the same cardinality. For instance, an isoperimetric set, when k is even,is the set of vertices with the kd=2 smallest (or, largest) label values. For odd kthe con�guration of the isoperimetric sets is more interesting in that they form anice recursive structure. For instance, the set of vertices with the �rst 12 (kd�kd�1)smallest labels constitute an isoperimetric set. We can obtain another isoperimetricset if we add to this set the next k�12 kd�2 vertices. Continuing this way, we canobtain an isoperimetric set corresponding to any one of the d cardinalities listedabove.5. Conclusion and Future ConsiderationsWe used embedding based techniques to obtain an exact expression for theisoperimetric number of d{dimensional k{ary arrays for arbitrary d and k, and alsogave a description of isoperimetric sets and their cardinalities. Work on extendingthese results to similar topologies such as tori and generalized cylinders as well asgeneral multidimensional arrays is in progress [3]. We would like to note that adirect application of our proof for the odd case does not extend automatically tomultidimensional arrays. The reason for this is that contrary to the case of Adkand Kdk , an extremal set of a multidimensional clique does not correspond to anisoperimetric set of a multidimensional array through an extension of the embeddingdescribed in the proof.AcknowledgementsWe would like to thank Imrich Vrto for bringing reference [14] to our attentionas well as Sergei Bezrukov and two anonymous referees for their constructive com-ments. The �rst author would like to thank _Izmir Institute of Technology, _Izmir,Turkey for their support in the form of a fellowship.References1. R. Ahlswede and S.L. Bezrukov, \Edge-isoperimetric theorems for integer pointarrays," Appl. Math. Letters, 8(2) (1995) pp. 75{80.2. M.C. Azizo�glu and �O. E�gecio�glu, \Isoperimetric number of the Cartesian productof graphs and paths," Congressus Numerantium, Vol. 131 (1998) pp. 135{143.11
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