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ABSTRACT

The d-dimensional k-ary array Aﬁ is the d—fold Cartesian product graph of the
path graph Py with k vertices. We show that the (edge) isoperimetric number 2(AZ) of
Al is given by i(A¢) = i(P) = 1/|£] and identify the cardinalities and the structure
of the isoperimetric sets. For odd k, the cardinalities of isoperimetric sets in Aﬁ are
%(k‘i —1), %(kd —k),..., %(kd — k971), whereas every isoperimetric set for k even has
cardinality %kd.

Keywords: Isoperimetric number, array, bisection, edge separator, partition, extremal
set.

1. Introduction

Given a graph G and a subset X of its vertices, let X denote the edge—boundary
of X; the set of edges which connect vertices in X with vertices in V(G) \ X. The
edge—isoperimetric number, or simply the isoperimetric number, of G is defined as

@~ ox

= min .
1< x <@l [ X

(1)

That is, the set of vertices of GG is partitioned into two nonempty sets and the
ratio of the number of edges between the two parts and the number of vertices in
the smaller one is minimized over all such partitions. As examples of isoperimetric
numbers:

e i(Ky) = [£] for the complete graph K with k vertices,

e i(P) =1/|%] for the path P with k vertices,

e i(Cy) =2/|%] for the cycle Cj with k vertices.
A subset X which achieves the minimum ratio in (1) is called an isoperimetric set.
We refer the reader to Mohar [13] or Chung [8] for a discussion of basic results



and various interesting properties of i(G) and to Bezrukov [5] for a comprehensive
survey of this and related problems.

The d—dimensional k—ary array Ag is an undirected graph with k% nodes labeled
by the integers from 0 to k% — 1. Two nodes in A¢ are connected by an edge if and
only if the k—ary representations of their labels differ in exactly one digit and the
absolute value of the difference in that digit is exactly one. Figure 1 illustrates a
2-dimensional 4-ary array A3.
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Fig. 1. The 2 dimensional 4 ary array AZ.

The Cartesian product G x H of two graphs G and H is the graph with vertex
set V(G) x V(H), in which vertices (u,v) and (u',v") are adjacent if and only if
u is adjacent to w’' in G and v = v', or v is adjacent to v' in H and u = u'. A
multidimensional array is the Cartesian product of paths of varying length, i.e.
Py, x Py, x---x Pg,. Thus A,’ﬁ is a special type of multidimensional array in which
ky=ko=---=kg=kFk.

In this paper, we investigate isoperimetric properties of d dimensional k£ ary
arrays for arbitrary £ and d. Specifically, we prove the following.

Theorem 1 The isoperimetric number of the d dimensional k ary array A;f is

given by
2 .
. dy _ : _ * if k even,
i =it ={ Fa R o @
As a byproduct of the proof, we also show that there are exactly d distinct cardi-
nalities
d d d d—1
%(k 71)7 %(k 7k)7 7%(’43 —k )
of isoperimetric sets in the d dimensional & ary array A,’ﬁ when k is odd. In contrast,
every isoperimetric set has cardinality k%/2 when k is even. We give a description
of the isoperimetric sets for both even and odd k.

1.1. Motivation

The notion of isoperimetric number of a graph G serves as a measure of con-
nectivity of G as it quantifies the minimal interaction between a set of vertices X



and its complement V(G) \ X in terms of the number of edges between them. This
idea is also important in algorithm design. For instance, the notion of isoperimet-
ric number is implicit in the divide-and-conquer strategy in graph algorithms. To
illustrate, consider an algorithm which adopts divide-and-conquer strategy where
the set of vertices of the underlying graph is split into two “fairly balanced” parts
such that the algorithm can be run on the two corresponding subgraphs recursively,
and the results are combined to obtain a solution for the original problem. The
combining of results at the last step needs to be carried out with minimal effort if
such a scheme is expected to be efficient. The idea is to split the graph in such a
way as to keep the interaction between the two partitions (in terms of the number
of edges in the boundary) as small as possible.

The isoperimetric number is closely related to the notion of bisection width
bw(@) of a graph G, which is the minimum number of edges that must be removed
from the graph in order to split V(@) into two equal—sized (within one) subsets. The
isoperimetric number of a graph establishes a lower bound for its bisection width.
For instance, one can give an alternate proof of the known lower bound

k' if k even
d > )
bU)(Ak) = { Ickd:ll Zf k odd. (3)

using the formula (2) for the isoperimetric number since,
buw(A4)

%)
For even k, (3) was proved by Leighton [11] by an embedding method. Nakano [14]
also used an embedding technique to prove the odd case in inequality (3). In this

> i(Af).

paper, we extend these two techniques to get tight edge—isoperimetric lower bounds
which lead to the exact formula (2) for i(A¢) for arbitrary k and d.

1.2. QOutline

The outline of the rest of this paper is as follows: In Section 2 we summarize
previous work on isoperimetric properties of various families of product graphs. The
proof of our main result appears in Section 3. We treat the cases of even and odd
k separately, and in each of these cases, we give tight upper and lower bounds that
prove formula (2) for i(A¢). In Section 4 we give the cardinalities of the feasible
isoperimetric sets in A,’f as well as describe their recursive construction. Section 5
concludes the paper with remarks and future considerations.

2. A Summary of Previous Work

There has been a significant amount of research in the area of isoperimetric
bounds on various popular classes of graphs such as arrays and tori. The notion of
isoperimetric number of a graph is related to the theory of extremal sets in graphs.
An extremal set of a graph for a given m is, in a broad sense, a configuration of m
vertices with



e minimum number of boundary edges, or
e maximum number of spanned edges

among all such m vertex subsets of the given graph. The problem of finding ex-
tremal sets of the first (or, second) type is called the minimum boundary edge prob-
lem (or, the mazimum induced edge problem). It can be shown that the minimum
boundary edge and the maximum induced edge problems are equivalent for regular
graphs [7].

The maximum induced edge problem for the hypercube (hence the minimum
boundary edge problem, because of its regularity) was solved by Harper [10] and
extended by Lindsey [12] to the d dimensional k ary clique which we shall define
formally in the next section. In both instances, there is a nested structure of
solutions, and the first m vertices in lexicographical order constitute an extremal
set. The maximum induced edge problem for the d dimensional k& ary array Az
was first solved by Bollobds and Leader [7]. Since A{ is not regular, this is not
helpful in solving the minimum boundary edge problem. It was later extended to
multidimensional arrays by Ahlswede and Bezrukov [1] who also gave a solution for
Py,
on the minimum-boundary—edge problem for the d—dimensional k—ary arrays were
given by Bollobds and Leader [7]. The bounds obtained are not tight enough to
yield i(A¢) exactly however. Similar problems have been defined in the literature
for the vertex—boundary of a given configuration of vertices. For instance, Riordan

. X P, for the minimum-boundary—edge problem. The first nontrivial bounds

[15] gave an ordering of vertices on the even discrete torus minimizing the number
of vertices at shortest distance t from the vertices in the ordering. Wang and Wang
[16] solved a similar problem for Py, X - - - X Py, i.e. the d—dimensional infinite grid,
where the minimum is taken over all nonempty finite subsets of vertices. In their
result, each Py, may be infinite in both directions or in one direction only. They
also gave a simple ordering of the vertices in which the first m vertices constitute
an extremal set minimizing the vertex—boundary.

A natural approach for the exact calculation of i(A%) is to try to exploit the
recursive Cartesian product structure A¢ = P, x AY~'. For instance, Mohar [13]
gave a proof for i(Py, x Py,) = min{i(Py,),i(Px,)}. It can be proved in general that
i(Py x G) = i(Py) where G is any connected graph with & vertices [2]. These results
indicate that (2) holds for d = 2. However, it does not seem possible to extend them
directly to get the desired bound for i(Py, x A{™"). It was shown in [2], for instance,
that i(Py x G) # i(Py) if G has more than k vertices even when i(G) > i(Py) (it
is well known that i(P, x G) < i(Pg) if i(G) < i(Pg)). General results on graph
products based on the second smallest eigenvalue of the Laplacian [13], or the bound
2m < i(Gy x Ga x -+ x Gp) < m where m = min{i(G1),i(G>), - -,i(Gyn)} reported
by Chung and Tetali [9] do not yield the desired tight lower bound for i(A{), either.

3. The Isoperimetric Number of Az

In this section we prove the two cases in Theorem 1 by showing that each of
the two expressions on the right—hand side of equation (2) is an upper and a lower
bound for i(A%).



3.1. The Upper Bound

To establish the upper bound, we utilize a general inequality given in [13] for
the isoperimetric number of a Cartesian product graph

i(G x H) < min{i(G),i(H)}. (4)

Thus, by taking G = Py and H = A{~" in (4), we have i(A{) < min{i(Py), (4% ")}
which implies i(Af) < 1/[%] since i(Py) = 1/[%].

The proof of the lower bound will be handled in two cases depending on the
parity of k. The case with even k is given next.

3.2. The Lower Bound for Fven k

We first state our claim formally in the following proposition.
Proposition 1 For the d-dimensional k—ary array A with k even, i(A{) > 2/k.
Proof. We prove the lower bound for even k by extending the embedding technique
of Leighton [11] who used it to obtain a lower bound for bw(A¢) for even k. Given
a d dimensional k ary array A¢ where k is even, we embed into A{ the k% node
directed complete graph K« with the vertex set {0,..., k% — 1}. Any two distinct
vertices u and v € V(K a) are connected by the directed edges (u,v) and (v, u).

The edge from node u = (uy,u9,---,uq) to node v = (vy,va,---,v4) of the
complete graph is routed through the path

(711,7127"'7%1) — ('U1>U2>"'>Ud) — (1)1,112,“3"',“4) — = ('UI:UQ:"':Ud)

in the array. That is, when routing the edge from u to v, following edges in A¢, we
first “correct” the value of u along the dimension with the smallest index that is
different from the value in v at that index until the two values become equal. Then,
we correct the value of the next smallest index where they differ and so on. The
process stops when all the dimensions have eventually been corrected.

When k is even, at most k97! /2 edges of the complete graph are routed through
a given edge in the array (see [11], page 225). In other words, removal of an edge
in the array is equivalent to disconnecting at most k%+1/2 edges in the complete
graph.

Now we prove that [0X|/|X| > 2/k for any X C V(A{) where 1 < |X| < k?/2.
Consider such a subset X. Also, let X’ be the corresponding subset, of vertices in
V(Kja) under the embedding. Then, X' has boundary X' with 2| X'|(k? — | X'|)
edges in the complete graph since each vertex in X' is connected with every vertex
in the remaining k% — |X'| vertices by two (directed) edges. That is, |[0X'| =
2| X'|(k? — | X'|). We then have

li ! ! d _ l
ox|s X1 10X Jox 21Xk~ 1X')

kd2+1 |X‘ = kd2+1‘X| kd2+1 |X‘
But ! d !
20X\ (k! — X)) 2 )
SEX Tk
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since | X| = |X'| and | X| < k¢/2. O

3.3. The Lower Bound for Odd k

In this section, we prove the following proposition.
Proposition 2 For the d dimensional k ary array A% with k > 1 odd, i(A}) >
2/(k—1).
Unfortunately, the technique used for even k does not yield a tight lower bound
when k is odd. Specifically, with the same embedding method, one can at best get

d
i) > 2D
for odd k. Note that the right hand side is a smaller than the desired lower bound
2/(k — 1). Instead, we prove this case by extending the embedding technique of
Nakano [14]. Before going into the proof, we shall first give a characterization of
graphs based on linear layouts and develop some notation to facilitate our treatment.
Our notation and terminology are similar to those used in [14].

3.4. Linear Layouts

A linear layout L of a graph G is a one-to-one mapping between the vertices in
the graph and the numbers {0, ..., |V(G)|-1},ie., L: V(G) — {0,1,...,|V(G)| -
1} is a bijection. One can think of this mapping as assigning each node a position on
the number line between 0 and |V (G)|—1 as shown in Figure 2. For a d—dimensional
k ary array AZ, the identity mapping I which assigns each vertex to the value of
its own label is called the label order layout. We refer to the region between two

—
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Fig. 2. The label-order layout of A% with a cut at gap 4.

nodes assigned to positions z — 1 and z, 1 <z < |V(G)| — 1 as gap z.

The cut of a graph G under a linear layout L at gap z, denoted by C(G, L, z),
is the set of edges which connect vertices assigned to positions smaller than x with
those in positions greater than or equal to z. That is, C(G,L,z) = {(u,v) €
E(G) | L(u) < z < L(v)}. Evidently, C(G, L, z) is equivalent to X in the graph
G where X = {L7'(0),L~'(1),..., L= "(x —1)}. Based on this characterization, we
want to prove the following inequality,

\C’(Ag,L,:U)\> 2
T — k-1

(6)

for any L and 1 < z < (k? — 1)/2 where z = | X|.



A related graph topology which is used in Nakano’s technique as well as in our
proof is the d dimensional k ary clique K,‘f. The topology of a K,‘f resembles A,‘f. It
also has k? nodes labeled by the integers from 0 to k% — 1. Similar to A%, there is an
edge between two nodes if and only if k—ary representations of their labels differ in
exactly one digit. However, unlike A{, the absolute value of the difference does not
have to be exactly one. Another characterization is that a K¢ is a d-fold Cartesian
product of the complete graph K with k vertices. The label-order layout of a K,‘f
is defined the same way as that of an A¢. Figure 3 illustrates a 2-dimensional 4-ary
clique K3. Nakano proved the following lemma in [14].

Fig. 3. The 2 dimensional 4 ary clique KZ.

Lemma 1 (Nakano, 19938) For the d dimensional k ary clique K,(cl, the inequality
CUE. 1,2)] < |C(KE L)

holds for any layout L and gap .
In other words, vertices corresponding to the first  numbers in the label order
layout (i.e. vertices with labels 0 to x — 1) constitute an extremal set in a d
dimensional k ary clique K,‘f minimizing the edge boundary, among all such z
element subsets of vertices.

Intuitively, we embed a K¢ into A¢ and bound from below the number of bound-
ary edges of any x—element subset of vertices in K,? using Nakano’s lemma and the
fact that, as a result of the embedding, removal of any edge in the array will result
in disconnection of at most a certain number of edges in the array. To this end,
we first give the following embedding lemma which characterizes the isoperimetric
number problem for A¢ in terms of a cut width problem for K when £ is odd.
Lemma 2 Given a d—dimensional k—-ary array Ag where k is odd and an integer
rwith 1 <z < (k1-1)/2,

2

i(Af) > -1 if |C(K{,1,z)|>

E+1
2

€.

Proof. The embedding of K into A¢ is done in the obvious manner: The edge
from u = (ay,...,a;_1,7,Gjx1,...,aq) to v = (@1,...,a;_1,8,Gi41,...,aq) of the



clique with r < s is embedded through the path
(al,...,ai,l,r,aHl,...,ad) e (al,...,ai,l,r+1,ai+1,...,ad) —

- (alz"':aifhs_17ai+17"':ad) - (a17...,(Lz‘,l,S,(li+1,...7ad)

in the array. Then, at most (k? —1)/4 edges of Kl are routed through any edge of
A4 [14]. Consider the set of edges in a cut of A¢ under a linear layout L at gap =,
i.e. C(A4 L,z). There is a set of edges in the K{ under the same layout L and gap
x, C’(K,f, L, ), corresponding to this cut as a result of the embedding. This means

C(Ke, L,x)
C(at, L) > CELL )]

1
Thus, we have
CAL L) o |CEY L) |C(KY T o)

= k21 = k21
T %m ( - )

T
by Nakano’s lemma. Hence, it suffices to show for 1 <z < (k% —1)/2,

|C(K,?,I,.r)| 2
>
[(EES VP
4

which is equivalent to showing |C(K{, I,z)| > z(k +1)/2 for 1 <z < (k- 1)/2,
and Lemma 2 follows. |
At this point, we have reduced the proof of the isoperimetric number of the
array into proving the following claim.
Claim 1 For odd k, |C(K,1,7)| > x(k+1)/2 holds whenever 1 <z < (k% —1)/2.
The proof of Claim 1 is by induction on d which we give next. Consider the set
X of first # nodes of a K¢ in label order layout where 1 < z < (k¢ —1)/2. For
notational convenience, let By(z) = |C(K{,1,z)|. That is, B4(r) is the number of
edges in the layout that connect these z nodes to the remaining k% — z. We first
give a recurrence relation for By(z) which we subsequently use in our inductive
argument. First note that z = ag_ 1k P+ -+ a1k + ag with 0 < a; < k. Thus
ag—1,-..,a1,aq are the digits of z in base k and = = (ag—1 - - - ajag)k. Note that X
is made up of ayz_1 copies of K,?il, aq_o copies of K,;i*2 and so on. An example of
this is shown in Figure 4. The vertices rendered in dark constitute subset X and
the boundary edges X (= C(K3,1,4)) are shown by dashed lines. The subset X
consists of one copy of K1 (bottom row vertices) and one copy of KJ (vertex 3).
We record the following observation as a lemma, since we use it repeatedly in the
proof.
Lemma 3 Ifz = (ag_1 - ajao)g and 1 <z < (k —1)/2, then aqg_y < (k —1)/2.

Lemma 4 Suppose x = (aq—1 - --a1a9). Then By(z) satisfies the recursion
By(z) = ag_1(1+ ad,l)k’Fl —x(l+2a4-1 — k) + Bag_1(z — ad,lkdfl) (7

with B1 ((lo) = (lo(k — ao).



Fig. 4. The K2 with set X = {0,1,2,3} and By(4) = 8.

Proof. Let a = az—;. We show that By(z) satisfies the recursion
By(x) = ak® ' (k—a)— (z—ak® a+ (z—ak? ") (k—a—1)+By_1(z—ak?") (8)

which can then be simplified to (7). The first term of (8) is the number of edges
on the boundary if X consisted of only a copies of K,ffl. From this we take out
the number of edges that link the vertices in these copies to the remaining portion
of X (which we think of as lying in the (a + 1)** copy of Ki ' in K{) and add,
in turn, the number of edges from the vertices in this lower dimensional set of
cardinality £ — ak?~! to the nodes in the remaining k¥ — a — 1 copies of Klffl. At
this point, we have counted all the boundary edges in one dimension, hence we can
get rid of this dimension altogether and consider only the boundary edges of the
remaining = — ak?~! vertices that reside on the (a+ 1)*! subclique. But the number
of boundary edges in that subclique is precisely By_1(xz —ak?'). Hence, by adding
this, we get (8). O
Lemma 5 Suppose k is odd and x = (ag_1aq_2---ag)y with 1 <z < (k4 —1)/2.
Then Bg(z) > z(k +1)/2.

Proof. Thislemma is a restatement of Claim 1. We prove it by induction on d. For
the base case d =1, By(ag) = ao(k — ag) > xz(k + 1)/2 since z = aq. For inductive
hypothesis we assume that By(z) > x(k +1)/2 holds whenever 1 < z < (k% —1)/2.
We are required to prove,

kE+1
2

Baii(z) = ag(1 + ag)k® — 2(1 + 2aq — k) + Ba(z — agk?) >z (9)

for 1 <z < (k%! —1)/2 where = = (agaq_1---ag)x. We prove this inequality by
considering the two possible cases: © —aqk? < (k% —1)/2 and x —aqk? > (k% +1)/2.
Case I: = —agk? < (k% —1)/2

Note that the inductive hypothesis is directly applicable and we have

ag(1+ ag)k® — 2(1 4 2a4 — k) + By(z — aqk?) >

E+1
ag(1 4 ag)k® — 2(1 + 2a4 — k) + (z — adkd)% .
Thus, it suffices to prove

k+1
ag(1+ ag)k? —z(1 4 2a4 — k) — adkd% > 0.



After factoring and rearranging the terms, this is equivalent to

(2.77 — adkd) (ad — %) > 0. (10)

The first factor in (10) is always strictly positive since > 1 and aqk? < x. The
second factor is nonnegative by Lemma 3. Note that equality in (10) is possible
only for ag = (k—1)/2.

Case II: 2 —aqk® > (k4 +1)/2

In this case, the inductive hypothesis cannot be used directly. Fortunately, however,
By(z) = By(k?—z) and the inductive step can be used as By(k?—z) > (k% —z)(k+
1)/2 for z > (k% + 1)/2. Now the inequality we want to prove becomes

k+1
5

ag(1+ag)k® — z(1 +2aq — k) + Ba(k* — (z — agk?)) >z
By using the inductive hypothesis, we have

ag(1 4 ag)k® — (14 2a4 — k) + Ba(k? — (z — aqk?)) >

k+1
ad(1+ad)kd—az(1+2ad—k)+(kd—(m—adkd))% .
Thus, after rearrangement of the terms above, it suffices to show
kE+1
kd(ad + %) > 2. (11)

Note in this case that ag < (k—1)/2 (or, equivalently ay < (k —3)/2), as otherwise
x would exceed (k%! —1)/2. The inequality (11) is equivalent to

kdk ; > agk® + 2a4 1k 4+ 2042k + - + 2ay.
But ag_1k%* '+ ag_2k? 2 +---+ag < k% —1 since this is a base k expansion. Thus,
it suffices to prove
gk 1 kE+1
2
After expansion of terms, this inequality is seen to be equivalent to

>kdk2 + 2% — 2.

kd+1 +kd de+1+kd—4

which obviously holds. Furthermore, we also note that the inequality (9) is strict
in this case. |

This completes the proof of Claim 1. Therefore, Proposition 2, and consequently
Theorem 1 is proved.

4. Isoperimetric Sets and Their Cardinalities
Theorem 2 The cardinalities of the isoperimetric sets of a A% are
%(k _1)7 %(kd_k) BRI %(k kd 1)

for odd k, and k%/2 for even k.
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Proof. For odd k, an isoperimetric set X of an A,‘f with x vertices must satisfy
By(z) = x#(k +1)/2 where 1 < 2 < [V(A4)|/2. From the proof of Lemma 5, the
equation By(x) = z(k + 1)/2 has exactly d roots in this interval given by

(m,0,0,...,0), (m,m,0,...,0),...,(m,m,...,m)
written in base k with m = (k — 1)/2. These can be written as

%(kd*l)a %(kd*k)a 3 %(kd*kdil)'

For even k, any isoperimetric set must make the two sides of inequality (5) equal,
which occurs only for z = k?/2. O

Because of the structural symmetry of arrays, there are multiple isoperimetric
sets with the same cardinality. For instance, an isoperimetric set, when k is even,
is the set of vertices with the k?/2 smallest (or, largest) label values. For odd k
the configuration of the isoperimetric sets is more interesting in that they form a
nice recursive structure. For instance, the set of vertices with the first 1 (k? — k971)
smallest labels constitute an isoperimetric set. We can obtain another isoperimetric
set if we add to this set the next ’“2;114(1’2 vertices. Continuing this way, we can
obtain an isoperimetric set corresponding to any one of the d cardinalities listed
above.

5. Conclusion and Future Considerations

We used embedding based techniques to obtain an exact expression for the
isoperimetric number of d—-dimensional k—ary arrays for arbitrary d and k, and also
gave a description of isoperimetric sets and their cardinalities. Work on extending
these results to similar topologies such as tori and generalized cylinders as well as
general multidimensional arrays is in progress [3]. We would like to note that a
direct application of our proof for the odd case does not extend automatically to
multidimensional arrays. The reason for this is that contrary to the case of A¢
and K,? an extremal set of a multidimensional clique does not correspond to an
isoperimetric set of a multidimensional array through an extension of the embedding
described in the proof.
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