Iterated DFT Based Techniques

for Join Size Estimation
(Extended Abstract)

Kamil Sara¢c  Omer Egecioglu ~ Amr El Abbadi

Department of Computer Science
University of California Santa Barbara
e-mail: {ksarac, omer, amr}Qcs.ucsb.edu

1 Introduction

The aim of query optimizers in relational database systems is to select the most efficient way among all
the possible ways of executing a query. In practice this process requires approximating the cost of possible
execution sequences and selecting the cheapest one in terms of a cost metric, which is usually the resulting
size of the query operation. The accuracy of this approximation is crucial to the performance of the database
systems. A small error introduced in the execution of a portion of the query can grow exponentially and affect
the overall performance considerably [6].

Several techniques (sampling based, parametric and histogram based) have been proposed in the literature
for estimating query result sizes. The survey by Mannino, Chu and Sager is a good reference on the early work
on database size estimation[10]. These techniques present various trade-offs in terms of storage, precision,
run-time overhead, and make varying assumptions about the distribution of the underlying data. Various
sampling techniques that operate at run time and compute estimates based on random samples of data have
been proposed [9, 4]. Parametric techniques [15] assume mathematical distributions such as normal, uniform,
Poisson, and Zipf. The underlying assumption is that the data follows the characteristics of the used parametric
distribution. Histogram based techniques [11, 5] divide attribute value domains into buckets and then record
bucket size information as a histogram. Ioannidis and Poosala [7] used serial histograms which are constructed
by grouping attribute values that have similar frequencies. The construction of serial histograms in general
is computationally expensive. A practical heuristic approximation is the end-biased histogram, where most
frequent values are stored exactly and the rest averaged out [7].

In this paper, we propose techniques based on the Discrete Fourier Transform (DFT) to estimate the
size of relations resulting from join operations. The basic idea is the iterated application of DFT to attribute
values modulo the phase information. The first version of this method called Approxzimation by Absolute Value
(AAV) gives a logarithmic space representation which is exact for self join operations. Its generalizations Tree
Approzimation Algorithms (TAA) and Tree Approximation Algorithms with Truncation (TAAT) are built
upon a binary tree representation of the vectors obtained through the iterated application of the DFT. TAA
uses AAV as a subprocedure at the lower levels of the tree, whereas TAAT is obtained by truncating the
tree at an appropriate level. Both TAA and TAAT provide a spectrum of algorithms that interpolate storage
requirements versus accuracy of the estimates obtained.

This paper is organized as follows. In Section 2 we give the problem statement. In Section 3 we present
fundamental properties of the DFT that are used in our algorithms. The algorithms are developed in Sections
4 and 5. We evaluate the performance of the algorithms in Section 6 and conclude the paper in Section 7.



2 Problem Formulation

We first describe the problem of join size estimation in databases. The development and motivation closely
follows that of Ioannidis and Poosala [5, 7]. Consider a database with relations Rg, Ry, ..., R,. Let a;, a;4;
be attributes of relation R;. A tree function-free equality-join query @ is defined as

@ = (Ro.a1 = Ry.a1 and Ry.a5 = Ro.as and...and R, _1.a, = Ry.ay).

The attributes aq, a9, ..., a, are called join attributes. Relations R;, 2 < i < n — 1 participate in @ with two
attributes a; and a;11 and relations Ry and R,, with one attribute, a; and a, respectively.

In order to optimize the execution of query @), the size S of the resulting relation must be estimated.
Frequency matrices T; keep track of the joint-frequency distribution of attributes a; and a;4; of R;. An exact
expression for S is the matrix product

S =TT, ...T,, (1)

but the storage of the frequency matrices and exact computation of this product is too costly.

We follow the common assumption of attribute independence formulated in [2] and adopted by most
database systems. According to this assumption, the distribution of attribute values are independent of
each other. Therefore, if F; and F;y; are the frequency distributions of individual attributes a; and a;1, then
the frequency matrix T; can be written as the outer product

1

T = —
| Ri|

(F" x Fit1)

where F!' is transpose of F; and |R;| represents the number of tuples in R;. This assumption and associativity
enables the calculation of S from
(Fo ) (FaFf) - (Far Fy). (2)

Note that FiFZEl =< F}, F;11 > is the standard inner product of the vectors X = F; and Y = Fj1;4.

3 Preliminaries

The main motivation for our approach is the use of DFT based techniques to estimate each of the factors
in (2), and therefore (1). DFT has been used in various estimation problems in database research such as
dimension reduction for searching as well as indexing high dimensional data [1, 14].

Consider an N-dimensional real vector X = (z1,%a,...,2n). The Discrete Fourier Transform (DFT) of
X is the N-dimensional complex vector X = (i1, &2, ...,#n) given by X = FX where F = ﬁ” w=DGE=)|
is the N x N Fourier matrix with w = cos ZW” + Isin %’r, and I = /—1. It is well known that the DFT of X
can be computed using the Fast Fourier Transform in O(N log N) arithmetic operations. The fundamental
properties of the DFT that we make use of are summarized below [3, 12]. If we start with an N-dimensional
nonnegative real vector X with transform X, then

a) &1 =(x1 +x2+ - +2xn)/VN is a nonnegative real number.
b) #; and &y _;10 are conjugate complex numbers for i = 2,3, ..., [g]

In our presentation, we assume that N is odd for simplicity, although our techniques extend to the case of
arbitrary N. If we write N = 2m + 1, then the coefficient #; is nonnegative real, and the lists (2, %3 ..., Zm)
and (Zn,ZN_1,-..,Tm+1) pair up exactly in conjugate pairs. The most important property of the DFT we
use is Parseval’s identity [3]:

Theorem Suppose X and Y are two N -dimensional real vectors. Then < XY >=< X, Y > where < , >
denotes the standard complex inner product.



We use Parseval’s identity in the following expanded form for real vectors X and Y. Suppose X=a+ 13
is the decomposition of X into its real and i imaginary components. Similarly, write Y = v+ 15. Then

<X Y>=<a,y>+<08,6> (3)

where the inner products in (3) are all real. In other words,
N N N
domigi=Y i+ Bidi
i=1 i=1 i=1

4 Development of Iterated DFT based Algorithms

4.1 Motivation: AAV and Self Join

We start by motivating our approach by using the simple case of a self join, i.e. when a relation is joined with
itself on the same attribute. Consider a relation R with an attribute a and let X be the frequency vector of a.
We will assume for ease of representation that X is N-dimensional where N is of the form of N = 2F — 1 for
some integer k. The size S of the result for self join is the inner product of the frequency vector X by itself,
ie. < X, X >. Using Parseval’s identity in the form (3) with ¥ = X we have

N N
<X, X>=) asi=<a,a>+<B,8>=> (af + 1) Z|rl|2 <X, X >, (4)
i=1 i=1

where |#;| = \/a? + 7 is the absolute value of #;. Hence the inner product of a real vector by itself can be
calculated either by summing the squares of its values or by summing the squares of the absolute values of
its complex DFT coefficients. However the DFT coefficients &5, Z3,...,Zxn of a real vector occur in complex
conjugate pairs for odd N. Since conjugate numbers have the same absolute value, |2;|> = |#n_;y2|? for
2 <i < (N +1)/2. Therefore combining with (4),

Z =2 22\:@\2 ()

N+4+1

This reduces the calculation of the desired sum on the left of (5) to the calculation of Zj \#:;|%. This latter
sum is the inner product of the (N + 1)/2-dimensional vector Xy = (|Z2|,[Z3], ..., [Z(n41)/2]) by itself. Since
this vector is also real, we can take its DFT and iterate this process by using Parseval’s identity and (5) at
each step. When N = 2% — 1, the next vector to be considered has (N +1)/2 = 2¥~1 — 1 elements, the one after
that 2¢=2 — 1, and so on. Therefore this process ends in k = log(/N + 1) iterations. Let Xq = X and define X;
to be the real vector X; = (x;1,2j2,...,2;n;) of length N; = = 2¥=7 _1 obtained after the j-th iteration, where
the j-th iteration consists of taking the DFT of the N;_;-st dimensional real vector X;_;, and consequently
setting X; = (|1Zj_1,2], [Zj—1,3], -+ [Zj—1,5,])-

Let 291 = 21, and let ;; be the first element of the DFT Xj of the vector X;. By iterating (5), we obtain
the sequence of nonnegative real numbers Zo1,Z11,...,2x—1,1 Wwith the property that

<X, X >=af) +2[2%, +2[23, +-- | ] ] =) 2l . (6)

Hence the self join of a relation on an attribute a with N values can be calculated using the k = log(N + 1)
representative values computed. We call this algorithm Approzimation by Absolute Value (AAV), and denote
the sequence of k values obtained by this method from X by AAV( X ).

Example 1 Consider the vector X = (54.34,79.7,25.88,97.13,10.74,37.52,66.94) with < X, X >= 25413.9.
The application of AAV on X is given in Figure 1. The resulting values AAV (X ) that are stored are To1 =
140.7, £11 = 49.33, Z291 = 13.69. By using these representative values for X, and using (6), we calculate

< X, X >= 32, +223, + 2222, = 140.77 + 2% 49.33% + 4 % 13.69% = 25413.9



Valuesto Store

),$0= (54.34, 79.7, 25.88, 97.13, 10.74, 37.52, 66.94 )

X,=(140.7,13.03 + 13.651, 12.04 - 18.921, -23.53 + 37.36 |,
-23.53-37.361,12.04 + 18.921, 13.03- 13.651 )

X = (18:87,2242,44.16)
X ,=(49.33,-8.33- 10.871, -8.33 + 10.871 )

|

X,=(13.69)
X,=(13.69)

Figure 1: Example 1: The tree structure of AAV.

4.2 AAV for the General Case

Unfortunately there is no direct equivalent to equation (4) as a way of representing the inner product of two
different vectors. Suppose X and Y are two real vectors with DFTs X =a+ I3 and VY = v+ I§. Thus
Ti=a;+ I63; and §; =v; + 1J; for i =1,2,..., N. Even though < XY >=< X,V > by Parseval’s theorem,
the expression for the inner product we obtain in the frequency domain is

N N
< X,Y/ >= Zal% —+ Zﬂl(sl,
i=1 i=1

which is not necessarily equal to

N N
S laallinl = Y \Jad + B24/97 + 62 ™)
i=1 i=1

However by the Cauchy-Schwarz inequality the sum in (7) is an upper bound to the actual inner product

< X,Y > and therefore
N N

i=1 i=1
Now we can use the logarithmic representation obtained above by AAV as follows: Suppose AAV produces
the sequences AAV(X) = Zo1,Z11,...,2,—1,1 for X and AAV(Y) = go1, 011, .- -, Ug—1,1 for Y. Then

N k—1
D 1&gl =Y Yénd5.
i=1 =0

This approximation to < X,Y > using AAV is exact when X =Y. When Y is close in the N-dimensional
space to a constant multiple of X, we expect the error in the approximation to be small as a consequence of
the equality condition in the Cauchy-Schwarz inequality. As the two vectors become more distant in this sense,
the error will increase. This crude approximation to < X,Y > has some remarkable asymptotic properties
which we mention in Section 6 where we present our experimental results. The outline of the AAV algorithm
is given in Figure 2.

5 Improving AAV: Tree Based Algorithms

AAYV is a technique that gives us an upper bound for the inner product of two real vectors, which is exact for
self join operations. Now we use AAV as a subroutine to develop more accurate approximation by means of a



A AV Algorithm:

1. Calculate AAV(X) for all N-dimensional frequency vectors X by iterated DFT.
Each AAV(X) is a sequence of log(N + 1) real numbers.

2. Approximate < X,Y > by
k—1
> i,
§=0

where AAV(X) = .fgl,.’i‘ll, ce ,.’i‘k,171 and AAV(Y) = yOl;yll ..... yk 1,1-

Figure 2: Outline of the AAV algorithm.

tree based structure. This results in a sequence of methods called Tree Approzimation Algorithms (TAA,), one
for every [l ranging from 0 to £ — 1. This approach exploits the form of Parseval’s identity given in equation
(3) for N-dimensional real vectors X and Y. The main idea is to keep the real and the imaginary parts of
the transformed vector X ezactly (i.e. without losing the phase information by taking the absolute value as
in AAV). This results in two real vectors a and 3, each N-dimensional where X =a+ I13. Since #; and
ZN_ito are conjugate complex numbers for i = 2,3,... (N + 1)/2, the numbers in the list as,as,...,an
appear in pairs. Similarly the numbers in (s, f8s,..., 8y appear in pairs. Consider the vectors h(a) =
(2,0a3,...,0(ny1y2) and h(B) = (B2, B3, ..., Bn+1)/2). We invoke two instances of the AAV algorithm: one
on h(a) corresponding to the real part of X (left subtree), and one on h(j) corresponding to the imaginary
part of X (right subtree). Thus these two real vectors h(a) and h(j3) are treated as raw inputs to the AAV
algorithm, producing two lists AAV (h(a)) and AAV (h(B)) consisting of k — 1 nonnegative real numbers each,
where N = 2¥ — 1. We demonstrate this process on an example.

Example 2 Consider the vector X of the previous ezample, N = 23 — 1 = 7. The application of TAA; in
which we now use AAV at level | = 1 results in the tree structure given in Figure 3.

Valuesto Store

(54.34, 79.7, 25.88, 97.13, 10.74, 37.52, 66.94)

,=(140.7,13.03 + 13.65 1, 12.04 - 18.921, -23.53 + 37.36 |,
-23.53-37.361,12.04 + 18.921, 13.03 - 13.65 1 )

Re Im / \
X,=(13.03, 12.04, -23.53) X,=(13.65,-18.92, 37.36)

N

X,=(0.88,10.84 + 17.781, X,=(1853,256-28.141,

10.84-17.781) 256+28.141)

X, =(2089) X ,=(28.26)

Figure 3: Example 2: The tree structure of TAA,, corresponding to level [ = 1.

Xo=
/\
X,=

For this example we need to store two lists AAV (h(«)) and AAV (h(5)) of length 2 each, plus the number Zg;
that is computed at the root of the tree. The structure of the total list to be stored for X is itself a tree which
is depicted on the right side of Figure 3. Since the calculation at the root of the tree in Figure 3 is exact and
the application of the approximate AAV algorithm starts at level [ = 1 of the tree, this algorithm is denoted
by TAA;. Note that AAV can be viewed as the special case TA A, starting the application at level 0. We see
that this immediately generalizes to arbitrary level [, and results in an algorithm TAA; for I =0,1,...,k —1



in which the data is exact up to level [ and the AAV algorithm is applied to the vectors at the next level. As
a boundary case, we set AAV(X)=X if X is a vector of length 1.

Example 3 Continuing with the vector X of the previous examples, the application of TAAs in which we use
AAV after level | = 2 gives the tree structure of Figure 4.

Valuesto Store
),SU: (54.34, 79.7, 25.88, 97.13, 10.74, 37.52, 66.94 )
X,=(140.7,13.03 + 13.651, 12.04 - 18.921, -23.53 + 37.36 |,
-23.53-37.361,12.04 + 18921, 13.03- 13.651 )

Re AN

X,=(13.03, 12.04, -23.53) X,=(13.65,-18.92,37.36) 088
N .
X,=(0.88,10.84 + 17.781, X ,=(1853,2.56-28.141,

10.84-17.781) 256 +28.141)
N N N N
X,=(10.84) X,=(17.78) X,=(256) X,=(-28.14) 1084

Figure 4: Example 3: The tree structure of TAA,, corresponding to level | = 2.

The generation of the representative data in the form of a tree for a real vector X using algorithm TAA,;
can be described recursively as follows:

TAA data generation Algorithm
1. Suppose N = 2% — 1, X is an N-dimensional real vector, and X = (Z1,Z2,...,ZN) = a+ 1.

2. If | =0, then TAA; = AAV, and the tree T of values computed as AAV(X) is a linear list of length
log(N + 1), where N is the length of X.

3. If I > 0, then T has two principal subtrees Tr. and T7,,. The value at the root of T" is ;. The subtrees
Tgre and T, are constructed by applying algorithm TAA; 1 to the vectors h(a) and h(3), respectively.

Figure 5: TAA representative tree generation algorithm.

5.1 Tree Approximation Algorithms and the TAA Product

Definition 1 Suppose Ty and T are two trees of height H and the same shape where the data field in each
node stores a real numerical value. Let Vec)(Ty) denote the vector of values in the nodes at level | of Ty ordered
from left to right. Similarly, define the vector Veci(Ta) for Ty. The TAA product of Ty and Ty is defined as

H—-1
TAA(T), Ty) = > 2 < Veey(Ty), Veer(Th) > (8)
1=0

In other words we first imagine T} and T3 lined up so that corresponding nodes are on top of one another.
We then multiply the numerical values in the paired nodes, further multiply this number by 2**(level of the
node), and then add up the resulting numbers from each node.




Remark 1 In terms of the TAA product, the approzimation given by AAV to < X, Y > is simply TAA(Tx,Ty)
where Tx and Ty are the trees (chains) of values AAV (X) and AAV (Y ) respectively, produced by algorithm
AAV.

TA A algorithm at level [ for the approximation of result sizes of join operations can be described succinctly
in terms of the TAA product. This is shown in Figure 6.

TAA Algorithm for Level [:

1. Calculate the representative trees Tx for all N-dimensional frequency vectors X by the TAA; data
representation generation algorithm given in Figure 5.

2. Approximate < XY > by the TAA product

k—1
TAA(Tx,Ty) = 2 < Vec;(Tx), Vec;(Ty) > .

j=0

Figure 6: Outline of the TAA algorithm.

Theorem 1 Suppose X and Y are N-dimensional real vectors where N = 2% — 1. Let T, and T, denote the
trees that are generated by TAA; for the representation of X and Y respectively, | =0,1,...,k — 1. Then

1. Each approzimation TAA(T%,TL) computed as given in (8) is an upper bound to the inner product
< X,Y >. Furthermore

TAA(TY, Ty) > TAA(Ty, Ty) > --- > TAA(TY ' Ty ),
and TAA(TE ', TE" = < X,V > is exact.
2. The number of elements stored in the representative tree T% generated by TAA; is 2'(k —1+1) — 1.

We give an example for the calculation of the approximation to < X,Y > using the TAA product of the
trees Tx and Ty for | = 2.

Example 4 Take X as in the previous examples. The tree Tx produced by algorithm TAA, for X is as given
on the right hand side of Figure 4. Take Y =(69.97, 82.28, 49.67, 36.22, 29.81, 95.85, 51.74). The application
of TAAy on'Y produces the tree Ty given in Figure 7. The approzimation to the inner product < X,Y >
using the formulation in (8) on Tx and Ty is calculated as follows:

I = 2: Vees(Tx) = (10.84,17.78,2.56, 28.14), Vees(Ty) = (16.13, ~14.18, —14.96, —2.04),
contribution to (8): 22 x (10.84 x 16.13 — 17.78 x 14.18 — 2.56 * 14.96 + 28.14 % 2.04)

I =1: Vee,(Tx) = (0.88,18.53), Ve, (Ty) = (8.1,17.9),
contribution to (8): 2' % (0.88 x 8.1 + 18.53 % 17.9)

I =0: Veco(Tx) = (140.7), Veco(Ty) = (157.06),
contribution to (8): 2° x 140.7 x 157.06

Summing the contributions from each level, we find TAA(Tx,Ty) = 22544. Since we are using TAAs and
2 =k — 1, this approzimation is exact, i.e. < X,Y >= 22544,

Note that as indicated in part 2. of Theorem 1, the number of elements to be stored when the family of
algorithms TAA is used varies from k = log(IN + 1) for l = 0, to N for | = k — 1. Thus it is not surprising
that the resulting size of a join operation can be exactly calculated using the full tree obtained for I = k£ — 1.
This is because the number of elements stored as T)kfl for the representation of each vector in this case is



Error

0,15 R e\t | [—m— TAA

10 19 35 63 111 191 319 511 767 1023
Number of Values Stored

Figure 8: The approximation error of TAA; as a function of level [.

N, and there are no savings in terms of space. Figure 8 shows the improvement in the approximation as the
level [ increases in the TAA approach. Fifty pairs of vectors X,Y of dimension N = 2!° — 1 were generated
with uniformly random real entries between 0 and 1. TAA; was run for levels I = 0,1,...,9. The number of
elements stored for the corresponding algorithms is given on the horizontal axis. Vertical axis is the average
relative error of the corresponding approximation.

5.2 Tree Approximation Algorithms with Truncation

In the TAA algorithms we stored the first DFT coefficients of vectors at each level exactly up to level [, and
consequently used the the AAV algorithm to get an approximation for the vectors from that level on. From
Theorem 1 we know that AAV gives an upper bound for the inner product, and consequently the algorithms
TAA; are all upper bounds.

An alternative approach is to remove the application of AAV after level | in TAA;, and approximate the
result size by using only the first DFT coefficients of vectors in the tree up to level [. From this level on,
instead of applying the AAV to the rest of the vectors, we approximate them by zero. In this way the resulting
approximation is no longer an upper bound, as the nonnegative quantities contributed in the application of
AAV down the tree are eliminated. The resulting family of algorithms indexed by level I is called Tree
Approzimation Algorithms with Truncation (TAAT). To apply TAAT;, we go down [ levels in the tree and
store the 2/*1 — 1 values of the partial tree generated. Thus TAAT is in general more efficient in terms of
storage than the TAA. The algorithm for using TAAT,; to compute an approximation to < X,Y > is is similar
to that of TAA. The approximation is given by the TAA product of the trees T% and T} as defined in (8),



but the summation is only up to level [ instead of k£ — 1, i.e. the approximation is given by

1
ZQj < Vecj(Tx), Vec;(Ty) > .

j=0

6 Performance Evaluation

In this section we experimentally evaluate the errors due to our approximation techniques. For the purpose
of comparison, we compare our algorithms with the end-biased v-optimal histograms (EB) of Ioannidis and
Poosala [7]. This approach is practical in terms of computation time and gives very good approximations [7, 13]
(unlike the serial method, which gives even better approximations, but is computationally impractical for large
vector sizes [7]).

The first set of experiments are designed for estimating a worse case upper bound on the size of a relation
resulting from a join operation. This case is referred to as the mazimal result size [5]. Given two frequency
vectors X and Y, of the attributes involved in a join operation, the maximal result size can be obtained by
sorting the two frequency vectors and assuming that the frequency values at the corresponding entries in the
sorted vectors correspond to the same attribute values. AAV uses absolute values for approximating the size
of a join operation. Since the absolute values represent an upper bound on the actual values, AAV is a good
candidate for the maximal result case. The experiments were run for vectors of sizes 2% — 1 for k = 5,6, ..., 12,
and hence the number of values stored per vector (or number of buckets in the standard terminology [7]) ranged
from 5 to 12. In the figures, the z-axis refers to the number of values stored, while the y-axis refers to the
relative errors as a percentage of the exact size. We used synthetic data from two different data distributions,
namely Random Data (generated from a uniform distribution) and Zipf Data. For the former, we generated
frequency vectors using a pseudorandom number generator that gives uniformly distributed random numbers
within the range [0,1]. For the latter, we used Zipf distributions with different z parameter values.

For random data we ran 50 experiments and took the average values—for AAV the variance for all values
was negligible, and for EB the variance ranged from .0025 to 0. As shown in Figure 9(a) AAV performs much
better than EB and its accuracy improves as the size of the vector increases. Since the error due to EB is
always negative, the figures plot the graphs with the error sign. AAV, on the other hand, always gives a
positive error since it gives an upper bound for the worse case. This is more appropriate for upper bound
approximations. For the Zipf data, we generated frequency vectors by fixing z; for the first vector X to 1.0
and varied 29 for the second vector Y from 0.0 to 2.0. Figure 9(b) shows that as before AAV always gives an
upper bound on the error for the maximal result case. A common observation is that as predicted, whenever
the data distribution of the two vectors are close to each other, i.e., z; is close to zo, the error using AAV
becomes smaller, and whenever the value of z increases, the approximation is worse. EB performs best when
the data distribution is quite skewed, i.e., for large values of z. In contrast, when z is in the range 0 to 1,
AAV’s performance is superior with relatively small errors.

Finally, we compared the two techniques on multiple relation join queries ranging from 2 to 10 relations
joined. For random data, we ran 50 experiments and show the average error; for Zipf data, we randomly
selected z values for all vectors in the range [0,1]. The vector sizes were fixed to 2% — 1. Figure 10(a) shows
the results of this experiment for Random data, and Figure 10(b) for Zipf data. Again, the approximation
error due to AAV is significantly less than for EB for maximal result size approximation for multiple join
operations.

Above we have seen that AAV performs well for the maximal result size case. In order to evaluate the
performance of TAA we applied it to approximate the size of the relation resulting from a join operation for the
average case. We ran experiments on random data with frequency vectors of length 2¥ — 1 for k = 5,6,...,12
(Figure 11). Interestingly, we observe that when the AAV (= TAAp) algorithm is applied, the ratio of the
approximation to the exact result is asymptotically 4/3 as N tends to infinity'. Consequently for large N,
we expect 3/4 of the result obtained by AAV to be a better approximation on the average, although not

ILet [0, I}N denote the unit cube in N-dimensional Euclidean space. This asymptotic behavior of AAV would follow from the

convergence of the integral ffX v %dXdY 5 1.333...



Average Error

Error

0.05

0.04

10 1 1 002 d L NG T

-0.05 | R

o
[

-0.02 -

Error

0.5 004 |-

L
-0.2 - -0.06 1 -

-0.25

Sizeof the Vectors: 2°- 1, ..., 22-1 2z,
@ ®

Figure 9: Average error for maximal result size. (a) Random Data. (b) Zipf Data

0.1

-

-0,1 | R~ SR SO S S S

0,2 |

-034-

044

Error

-0.5 -

-0.6 1

-0.7 1~

-08 -

-0.9 -

Number of Tablesin the Join Number of Tablesin the Join
@ (b)

Figure 10: Multiple joins case. (a) Random data. (b) Zipf data.

10



0.06

0.007

0.006 - e s =St

0.005 -{ ST ———————

—o—EB
—l—TAA

Error
Error

0.003 -+ e xw s ——EB
—W—TAAT

0,002 -

0,00 -{ S ——

1

3

7
154
3

3

7

7 8 9 10
Number of Values Stored Number of Values Stored
(@ (b)

Figure 11: (a) Average error for TAA. (b) Average error for TAAT.

necessarily an upper bound any longer. Figure 11 (a) compares the average error of this approximation to EB
and shows that the errors are quite close.

In the case of TAAT (Figure 11(b)), we observe that the errors incurred by the two methods are very
close and interleaved. This is in accordance with the expectation that since TAAT ignores the nonnegative
contribution of AAV, its approximation should be closer to the exact value.

The algorithms TA A; are not suitable for unimodal distributions with sharp peaks. In the Zipf distribution
for example, there are only a few values which are quite high relative to the rest. This behavior makes it
especially suitable for EB since these large values are kept in separate buckets and the immaterial part averaged
out. The DFT on the other hand is insensitive to the position of high values in the time domain.

7 Conclusion

We developed iterated DFT-based algorithms for estimating the size of relations resulting from join operations.
DFT has previously been used in database systems for reducing the dimensionality of high-dimensional data,
thus making it more suitable for current index structures. In this paper, we used several properties of DFT
to reduce the size of the transformed frequency vector, while still providing good approximations for the size
of join operations. The resulting algorithms present a spectrum of tradeoffs between storage requirements
and accuracy. In particular, the basic algorithm AAV requires logarithmic space and is exact for self-join
operations. TAA is an iterative, tree-based algorithm where exact calculation is used up to a certain level, and
then AAV is used for approximation. TA A interpolates in terms of accuracy and storage requirements between
AAV at one extreme to exact calculation on the other, while space requirements increase from logarithmic to
linear. Finally, TAAT was developed by truncating the nonnegative contributions of AAV | and thus providing
better size approximations. Qur preliminary experimental results support our conclusions.

References

[1] Agrawal R., Faloutsos C., Swami A.: Efficient Similarity Search In Sequence Databases. FODO, 1993.

[2] Christodoulakis S.: Implications of Certain Assumptions in Database Performance Evaluation ACM
Transactions on Database Systems, 1984.

[3] Davis H. F.: Fourier Series and Orthogonal Functions. Dover Publ. N.Y. 1963.

[4] Haas P. J. and Swami A. N.: Sampling-Based Selectivity Estimation for Joins Using Augmented Frequency
Value Statistics. The International conference on Data Engineering, 1995.

11



[5]

Ioannidis Y.: Universality of Serial Histograms. Proceedings of the 19th Conference on Very Large
Databases, Dublin, 1993.

Ioannidis Y., Christodoulakis S.: On the propagation of errors in the size of join results. Proc. of the 1991
ACM-SIGMOD Conf. Denver CO, May 1991.

Ioannidis Y., Poosala V.: Balancing histogram Optimality and Practicality for Query Result Size Esti-
mation. SIGMOD’95, San Jose, CA USA, June 1995

Korn F., Jagadish H. V., Faloutsos C.: Efficiently Supporting Ad Hoc Queries in Large Datasets of Time
Sequences. SIGMOD’97, AZ, USA, May 1997

Lipton R. J., Naughton J. F., and Schneider D. A.: Practical Selectivity Estimation through Adaptive
Sampling. Proceedings of ACM-SIGMOD, 1990.

Mannino M. V., Chu P., Sager T. : Statistical Profile Estimation in Database Systems. ACM Computing
Surveys, 20(3):192-221, Sept 1988.

Muralikrishma M, and DeWitt D.: Equi-depth Histograms for Estimating Selectivity Factors for Multi-
Dimensional Queries. Proceedings of the ACM-SIGMOD Conference on Management of Data, 1988.

Oppenheim A. V., Schafer R. W.: Discrete-time Signal Processing. Prentice Hall Signal Processing Series,
1989.

Poosala V.: Histogram-based Estimation Techniques in Database Systems. Ph.D. Thesis, University of
Wisconsin Madison, 1997.

Rafiei D., Mendelzon A.: Similarity-Based Queries for Time Series Data. Proceedings of the ACM-
SIGMOD Conference on Management of Data, 1997.

Selinger P., Astrahan M., Chamberlin D., Lorie R., Price T.: Access Path Selection in a Relational
Database Management System. Proceedings of the ACM-SIGMOD Conference on Management of Data,
1979.

12



