
Iterated DFT Based Techniquesfor Join Size Estimation(Extended Abstract)Kamil Sara�c �Omer E�gecio�glu Amr El AbbadiDepartment of Computer ScienceUniversity of California Santa Barbarae-mail: fksarac; omer; amrg@cs.ucsb.edu1 IntroductionThe aim of query optimizers in relational database systems is to select the most e�cient way among allthe possible ways of executing a query. In practice this process requires approximating the cost of possibleexecution sequences and selecting the cheapest one in terms of a cost metric, which is usually the resultingsize of the query operation. The accuracy of this approximation is crucial to the performance of the databasesystems. A small error introduced in the execution of a portion of the query can grow exponentially and a�ectthe overall performance considerably [6].Several techniques (sampling based, parametric and histogram based) have been proposed in the literaturefor estimating query result sizes. The survey by Mannino, Chu and Sager is a good reference on the early workon database size estimation[10]. These techniques present various trade-o�s in terms of storage, precision,run-time overhead, and make varying assumptions about the distribution of the underlying data. Varioussampling techniques that operate at run time and compute estimates based on random samples of data havebeen proposed [9, 4]. Parametric techniques [15] assume mathematical distributions such as normal, uniform,Poisson, and Zipf. The underlying assumption is that the data follows the characteristics of the used parametricdistribution. Histogram based techniques [11, 5] divide attribute value domains into buckets and then recordbucket size information as a histogram. Ioannidis and Poosala [7] used serial histograms which are constructedby grouping attribute values that have similar frequencies. The construction of serial histograms in generalis computationally expensive. A practical heuristic approximation is the end-biased histogram, where mostfrequent values are stored exactly and the rest averaged out [7].In this paper, we propose techniques based on the Discrete Fourier Transform (DFT) to estimate thesize of relations resulting from join operations. The basic idea is the iterated application of DFT to attributevalues modulo the phase information. The �rst version of this method called Approximation by Absolute Value(AAV) gives a logarithmic space representation which is exact for self join operations. Its generalizations TreeApproximation Algorithms (TAA) and Tree Approximation Algorithms with Truncation (TAAT) are builtupon a binary tree representation of the vectors obtained through the iterated application of the DFT. TAAuses AAV as a subprocedure at the lower levels of the tree, whereas TAAT is obtained by truncating thetree at an appropriate level. Both TAA and TAAT provide a spectrum of algorithms that interpolate storagerequirements versus accuracy of the estimates obtained.This paper is organized as follows. In Section 2 we give the problem statement. In Section 3 we presentfundamental properties of the DFT that are used in our algorithms. The algorithms are developed in Sections4 and 5. We evaluate the performance of the algorithms in Section 6 and conclude the paper in Section 7.
1

2 Problem FormulationWe �rst describe the problem of join size estimation in databases. The development and motivation closelyfollows that of Ioannidis and Poosala [5, 7]. Consider a database with relations R0; R1; : : : ; Rn. Let ai , ai+1be attributes of relation Ri. A tree function-free equality-join query Q is de�ned asQ = (R0:a1 = R1:a1 and R1:a2 = R2:a2 and : : : and Rn�1:an = Rn:an):The attributes a1; a2; : : : ; an are called join attributes. Relations Ri, 2 � i � n� 1 participate in Q with twoattributes ai and ai+1 and relations R0 and Rn with one attribute, a1 and an respectively.In order to optimize the execution of query Q, the size S of the resulting relation must be estimated.Frequency matrices Ti keep track of the joint-frequency distribution of attributes ai and ai+1 of Ri. An exactexpression for S is the matrix product S = T0T1 : : : Tn; (1)but the storage of the frequency matrices and exact computation of this product is too costly.We follow the common assumption of attribute independence formulated in [2] and adopted by mostdatabase systems. According to this assumption, the distribution of attribute values are independent ofeach other. Therefore, if Fi and Fi+1 are the frequency distributions of individual attributes ai and ai+1, thenthe frequency matrix Ti can be written as the outer productTi = 1jRij (F Ti � Fi+1)where F Ti is transpose of Fi and jRij represents the number of tuples in Ri. This assumption and associativityenables the calculation of S from (F0F T1)(F2F T3) � � � (Fn�1F Tn): (2)Note that FiF Ti+1 =< Fi; Fi+1 > is the standard inner product of the vectors X = Fi and Y = Fi+1.3 PreliminariesThe main motivation for our approach is the use of DFT based techniques to estimate each of the factorsin (2), and therefore (1). DFT has been used in various estimation problems in database research such asdimension reduction for searching as well as indexing high dimensional data [1, 14].Consider an N -dimensional real vector X = (x1; x2; : : : ; xN). The Discrete Fourier Transform (DFT) ofX is the N -dimensional complex vector X̂ = (x̂1; x̂2; : : : ; x̂N) given by X̂ = FX where F = 1pN k !(i�1)(j�1)kis the N �N Fourier matrix with ! = cos 2�N + I sin 2�N , and I = p�1. It is well known that the DFT of Xcan be computed using the Fast Fourier Transform in O(N logN) arithmetic operations. The fundamentalproperties of the DFT that we make use of are summarized below [3, 12]. If we start with an N -dimensionalnonnegative real vector X with transform X̂, thena) x̂1 = (x1 + x2 + � � �+ xN)=pN is a nonnegative real number.b) x̂i and x̂N�i+2 are conjugate complex numbers for i = 2; 3; : : : ; dN2 e.In our presentation, we assume that N is odd for simplicity, although our techniques extend to the case ofarbitrary N . If we write N = 2m+1, then the coe�cient x̂1 is nonnegative real, and the lists (x̂2; x̂3 : : : ; x̂m)and (x̂N ; x̂N�1; : : : ; x̂m+1) pair up exactly in conjugate pairs. The most important property of the DFT weuse is Parseval's identity [3]:Theorem Suppose X and Y are two N-dimensional real vectors. Then < X; Y >=< X̂; Ŷ > where < ; >denotes the standard complex inner product.
2

We use Parseval's identity in the following expanded form for real vectors X and Y . Suppose X̂ = �+ I�is the decomposition of X̂ into its real and imaginary components. Similarly, write Ŷ = + I�. Then< X; Y >=< �; > + < �; � > (3)where the inner products in (3) are all real. In other words,NXi=1 xiyi = NXi=1 �ii + NXi=1 �i�i:4 Development of Iterated DFT based Algorithms4.1 Motivation: AAV and Self JoinWe start by motivating our approach by using the simple case of a self join, i.e. when a relation is joined withitself on the same attribute. Consider a relation R with an attribute a and let X be the frequency vector of a.We will assume for ease of representation that X is N -dimensional where N is of the form of N = 2k � 1 forsome integer k. The size S of the result for self join is the inner product of the frequency vector X by itself,i.e. < X;X >. Using Parseval's identity in the form (3) with Y = X we have< X;X >= NXi=1 x2i =< �;� > + < �; � >= NXi=1(�2i + �2i) = NXi=1 jx̂ij2 =< X̂; X̂ >; (4)where jx̂ij = p�2i + �2i is the absolute value of x̂i. Hence the inner product of a real vector by itself can becalculated either by summing the squares of its values or by summing the squares of the absolute values ofits complex DFT coe�cients. However the DFT coe�cients x̂2; x̂3; : : : ; x̂N of a real vector occur in complexconjugate pairs for odd N . Since conjugate numbers have the same absolute value, jx̂ij2 = jx̂N�i+2j2 for2 � i � (N + 1)=2. Therefore combining with (4),NXi=1 x2i = x̂21 + 2 N+12Xi=2 jx̂ij2: (5)This reduces the calculation of the desired sum on the left of (5) to the calculation of PN+12i=2 jx̂ij2: This lattersum is the inner product of the (N + 1)=2-dimensional vector X1 = (jx̂2j; jx̂3j; : : : ; jx̂(N+1)=2j) by itself. Sincethis vector is also real, we can take its DFT and iterate this process by using Parseval's identity and (5) ateach step. When N = 2k�1, the next vector to be considered has (N+1)=2 = 2k�1�1 elements, the one afterthat 2k�2� 1, and so on. Therefore this process ends in k = log(N +1) iterations. Let X0 = X and de�ne Xjto be the real vector Xj = (xj1; xj2; : : : ; xjNj) of length Nj = 2k�j �1 obtained after the j-th iteration, wherethe j-th iteration consists of taking the DFT of the Nj�1-st dimensional real vector Xj�1, and consequentlysetting Xj = (jx̂j�1;2j; jx̂j�1;3j; : : : ; jx̂j�1;Nj j).Let x̂01 = x̂1, and let x̂j1 be the �rst element of the DFT X̂j of the vector Xj . By iterating (5), we obtainthe sequence of nonnegative real numbers x̂01; x̂11; : : : ; x̂k�1;1 with the property that< X;X >= x̂201 + 2 [x̂211 + 2 [x̂221 + � � �] � � �]] = k�1Xj=0 2j x̂2j1 : (6)Hence the self join of a relation on an attribute a with N values can be calculated using the k = log(N + 1)representative values computed. We call this algorithm Approximation by Absolute Value (AAV), and denotethe sequence of k values obtained by this method from X by AAV(X).Example 1 Consider the vector X = (54:34; 79:7; 25:88; 97:13; 10:74; 37:52; 66:94) with < X;X >= 25413:9.The application of AAV on X is given in Figure 1. The resulting values AAV (X) that are stored are x̂01 =140:7, x̂11 = 49:33, x̂21 = 13:69. By using these representative values for X, and using (6), we calculate< X;X >= x̂201 + 2x̂211 + 22x̂221 = 140:72 + 2 � 49:332 + 4 � 13:692 = 25413:93

1

Values to Store

0

0

^
X = (54.34, 79.7, 25.88, 97.13, 10.74, 37.52, 66.94)

2

^
2

X = (13.69)

X = (13.69)

1X = (18.87, 22.42, 44.16)
X̂ = (49.33, -8.33 - 10.87 i, -8.33 + 10.87 i) 49.33

140.7

13.69

X = (140.7, 13.03 + 13.65 I, 12.04 - 18.92 I, -23.53 + 37.36 I,
 -23.53 - 37.36 I, 12.04 + 18.92 I, 13.03 - 13.65 I)

Figure 1: Example 1: The tree structure of AAV .4.2 AAV for the General CaseUnfortunately there is no direct equivalent to equation (4) as a way of representing the inner product of twodi�erent vectors. Suppose X and Y are two real vectors with DFTs X̂ = � + I� and Ŷ = + I�. Thusx̂i = �i + I�i and ŷi = i + I�i for i = 1; 2; : : : ; N: Even though < X; Y >=< X̂; Ŷ > by Parseval's theorem,the expression for the inner product we obtain in the frequency domain is< X̂; Ŷ >= NXi=1 �ii + NXi=1 �i�i;which is not necessarily equal to NXi=1 jx̂ijjŷij = NXi=1q�2i + �2iq2i + �2i : (7)However by the Cauchy-Schwarz inequality the sum in (7) is an upper bound to the actual inner product< X̂; Ŷ > and therefore NXi=1 xiyi � NXi=1 jx̂ijjŷij:Now we can use the logarithmic representation obtained above by AAV as follows: Suppose AAV producesthe sequences AAV (X) = x̂01; x̂11; : : : ; x̂k�1;1 for X and AAV (Y) = ŷ01; ŷ11; : : : ; ŷk�1;1 for Y . ThenNXi=1 jx̂ijjŷij = k�1Xj=0 2jx̂j1ŷj1:This approximation to < X; Y > using AAV is exact when X = Y . When Y is close in the N -dimensionalspace to a constant multiple of X , we expect the error in the approximation to be small as a consequence ofthe equality condition in the Cauchy-Schwarz inequality. As the two vectors become more distant in this sense,the error will increase. This crude approximation to < X; Y > has some remarkable asymptotic propertieswhich we mention in Section 6 where we present our experimental results. The outline of the AAV algorithmis given in Figure 2.5 Improving AAV: Tree Based AlgorithmsAAV is a technique that gives us an upper bound for the inner product of two real vectors, which is exact forself join operations. Now we use AAV as a subroutine to develop more accurate approximation by means of a4

AAV Algorithm:1. Calculate AAV (X) for all N -dimensional frequency vectors X by iterated DFT.Each AAV (X) is a sequence of log(N + 1) real numbers.2. Approximate < X; Y > by k�1Xj=0 2j x̂j1ŷj1where AAV (X) = x̂01; x̂11; : : : ; x̂k�1;1 and AAV (Y) = ŷ01; ŷ11; : : : ; ŷk�1;1.Figure 2: Outline of the AAV algorithm.tree based structure. This results in a sequence of methods called Tree Approximation Algorithms (TAAl), onefor every l ranging from 0 to k � 1. This approach exploits the form of Parseval's identity given in equation(3) for N -dimensional real vectors X and Y . The main idea is to keep the real and the imaginary parts ofthe transformed vector X̂ exactly (i.e. without losing the phase information by taking the absolute value asin AAV). This results in two real vectors � and �, each N -dimensional where X̂ = � + I�. Since x̂i andx̂N�i+2 are conjugate complex numbers for i = 2; 3; : : : ; (N + 1)=2, the numbers in the list �2; �3; : : : ; �Nappear in pairs. Similarly the numbers in �2; �3; : : : ; �N appear in pairs. Consider the vectors h(�) =(�2; �3; : : : ; �(N+1)=2) and h(�) = (�2; �3; : : : ; �(N+1)=2). We invoke two instances of the AAV algorithm: oneon h(�) corresponding to the real part of X̂ (left subtree), and one on h(�) corresponding to the imaginarypart of X̂ (right subtree). Thus these two real vectors h(�) and h(�) are treated as raw inputs to the AAValgorithm, producing two lists AAV (h(�)) and AAV (h(�)) consisting of k�1 nonnegative real numbers each,where N = 2k � 1. We demonstrate this process on an example.Example 2 Consider the vector X of the previous example, N = 23 � 1 = 7. The application of TAA1 inwhich we now use AAV at level l = 1 results in the tree structure given in Figure 3.
140.7

0.88 18.53

20.83 28.26X̂ = (20.83)2
X̂ = (28.26)2

0

0

^
X = (54.34, 79.7, 25.88, 97.13, 10.74, 37.52, 66.94)
X = (140.7, 13.03 + 13.65 I, 12.04 - 18.92 I, -23.53 + 37.36 I,

 -23.53 - 37.36 I, 12.04 + 18.92 I, 13.03 - 13.65 I)

Values to Store

X = (13.03, 12.04, -23.53)1

1X̂ = (0.88, 10.84 + 17.78 I,

X = (13.65, -18.92, 37.36)1

1X̂ = (18.53, 2.56 - 28.14 I,

Im

10.84 - 17.78 I) 2.56 + 28.14 I)

Re

Figure 3: Example 2: The tree structure of TAA1, corresponding to level l = 1.For this example we need to store two lists AAV (h(�)) and AAV (h(�)) of length 2 each, plus the number x̂01that is computed at the root of the tree. The structure of the total list to be stored for X is itself a tree whichis depicted on the right side of Figure 3. Since the calculation at the root of the tree in Figure 3 is exact andthe application of the approximate AAV algorithm starts at level l = 1 of the tree, this algorithm is denotedby TAA1. Note that AAV can be viewed as the special case TAA0, starting the application at level 0. We seethat this immediately generalizes to arbitrary level l, and results in an algorithm TAAl for l = 0; 1; : : : ; k � 15

in which the data is exact up to level l and the AAV algorithm is applied to the vectors at the next level. Asa boundary case, we set AAV (X)=X if X is a vector of length 1.Example 3 Continuing with the vector X of the previous examples, the application of TAA2 in which we useAAV after level l = 2 gives the tree structure of Figure 4.
140.7

0

0

^
X = (54.34, 79.7, 25.88, 97.13, 10.74, 37.52, 66.94)
X = (140.7, 13.03 + 13.65 I, 12.04 - 18.92 I, -23.53 + 37.36 I,

 -23.53 - 37.36 I, 12.04 + 18.92 I, 13.03 - 13.65 I)

X = (13.03, 12.04, -23.53)1

1X̂ = (0.88, 10.84 + 17.78 I,
10.84 - 17.78 I)

X = (13.65, -18.92, 37.36)1

1X̂ = (18.53, 2.56 - 28.14 I,
2.56 + 28.14 I)

Re Im

Re Im Re Im

18.530.88

Values to Store

2 2 2 2

^^^^ X = (-28.14)X = (2.56)X = (17.78)X = (10.84) 10.84 17.78 2.56 -28.14Figure 4: Example 3: The tree structure of TAA2, corresponding to level l = 2.The generation of the representative data in the form of a tree for a real vector X using algorithm TAAlcan be described recursively as follows:TAA data generation Algorithm1. Suppose N = 2k � 1, X is an N -dimensional real vector, and X̂ = (x̂1; x̂2; : : : ; x̂N) = �+ I�.2. If l = 0, then TAAl = AAV , and the tree T of values computed as AAV (X) is a linear list of lengthlog(N + 1), where N is the length of X .3. If l > 0, then T has two principal subtrees TRe and TIm. The value at the root of T is x̂1. The subtreesTRe and TIm are constructed by applying algorithm TAAl�1 to the vectors h(�) and h(�), respectively.Figure 5: TAA representative tree generation algorithm.5.1 Tree Approximation Algorithms and the TAA ProductDe�nition 1 Suppose T1 and T2 are two trees of height H and the same shape where the data �eld in eachnode stores a real numerical value. Let Vecl(T1) denote the vector of values in the nodes at level l of T1 orderedfrom left to right. Similarly, de�ne the vector Vecl(T2) for T2. The TAA product of T1 and T2 is de�ned asTAA(T1; T2) = H�1Xl=0 2l < Vecl(T1);Vecl(T2) > (8)In other words we �rst imagine T1 and T2 lined up so that corresponding nodes are on top of one another.We then multiply the numerical values in the paired nodes, further multiply this number by 2**(level of thenode), and then add up the resulting numbers from each node.6

Remark 1 In terms of the TAA product, the approximation given by AAV to < X; Y > is simply TAA(TX ; TY)where TX and TY are the trees (chains) of values AAV (X) and AAV(Y) respectively, produced by algorithmAAV .TAA algorithm at level l for the approximation of result sizes of join operations can be described succinctlyin terms of the TAA product. This is shown in Figure 6.TAA Algorithm for Level l:1. Calculate the representative trees TX for all N -dimensional frequency vectors X by the TAAl datarepresentation generation algorithm given in Figure 5.2. Approximate < X; Y > by the TAA productTAA(TX ; TY) = k�1Xj=0 2j < Vecj(TX);Vecj(TY) > :Figure 6: Outline of the TAA algorithm.Theorem 1 Suppose X and Y are N-dimensional real vectors where N = 2k � 1. Let T lX and T lY denote thetrees that are generated by TAAl for the representation of X and Y respectively, l = 0; 1; : : : ; k � 1. Then1. Each approximation TAA(T lX ; T lY) computed as given in (8) is an upper bound to the inner product< X; Y >. FurthermoreTAA(T 0X ; T 0Y) � TAA(T 1X ; T 1Y) � � � � � TAA(T k�1X ; T k�1Y);and TAA(T k�1X ; T k�1Y) = < X; Y > is exact.2. The number of elements stored in the representative tree T lX generated by TAAl is 2l(k � l + 1)� 1:We give an example for the calculation of the approximation to < X; Y > using the TAA product of thetrees TX and TY for l = 2.Example 4 Take X as in the previous examples. The tree TX produced by algorithm TAA2 for X is as givenon the right hand side of Figure 4. Take Y=(69.97, 82.28, 49.67, 36.22, 29.81, 95.85, 51.74). The applicationof TAA2 on Y produces the tree TY given in Figure 7. The approximation to the inner product < X; Y >using the formulation in (8) on TX and TY is calculated as follows:l = 2: Vec2(TX) = (10:84; 17:78; 2:56;�28:14); Vec2(TY) = (16:13;�14:18;�14:96;�2:04),contribution to (8): 22 � (10:84 � 16:13� 17:78 � 14:18� 2:56 � 14:96+ 28:14 � 2:04)l = 1: Vec1(TX) = (0:88; 18:53); Vec1(TY) = (8:1; 17:9),contribution to (8): 21 � (0:88 � 8:1 + 18:53 � 17:9)l = 0: Vec0(TX) = (140:7); Vec0(TY) = (157:06);contribution to (8): 20 � 140:7 � 157:06Summing the contributions from each level, we �nd TAA(TX ; TY) = 22544. Since we are using TAA2 and2 = k � 1, this approximation is exact, i.e. < X; Y >= 22544.Note that as indicated in part 2. of Theorem 1, the number of elements to be stored when the family ofalgorithms TAA is used varies from k = log(N + 1) for l = 0, to N for l = k � 1. Thus it is not surprisingthat the resulting size of a join operation can be exactly calculated using the full tree obtained for l = k � 1.This is because the number of elements stored as T k�1X for the representation of each vector in this case is7

157.06

8.1 17.9

16.13 -14.18 -14.96 -2.04Figure 7: The tree TY : Application of TAA2 to vector Y .
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

10 19 35 63 111 191 319 511 767 1023

Number of Values Stored

Er
ro

r

TAA

Figure 8: The approximation error of TAAl as a function of level l.N , and there are no savings in terms of space. Figure 8 shows the improvement in the approximation as thelevel l increases in the TAA approach. Fifty pairs of vectors X;Y of dimension N = 210 � 1 were generatedwith uniformly random real entries between 0 and 1. TAAl was run for levels l = 0; 1; : : : ; 9. The number ofelements stored for the corresponding algorithms is given on the horizontal axis. Vertical axis is the averagerelative error of the corresponding approximation.5.2 Tree Approximation Algorithms with TruncationIn the TAA algorithms we stored the �rst DFT coe�cients of vectors at each level exactly up to level l, andconsequently used the the AAV algorithm to get an approximation for the vectors from that level on. FromTheorem 1 we know that AAV gives an upper bound for the inner product, and consequently the algorithmsTAAl are all upper bounds.An alternative approach is to remove the application of AAV after level l in TAAl, and approximate theresult size by using only the �rst DFT coe�cients of vectors in the tree up to level l. From this level on,instead of applying the AAV to the rest of the vectors, we approximate them by zero. In this way the resultingapproximation is no longer an upper bound, as the nonnegative quantities contributed in the application ofAAV down the tree are eliminated. The resulting family of algorithms indexed by level l is called TreeApproximation Algorithms with Truncation (TAAT). To apply TAAT l, we go down l levels in the tree andstore the 2l+1 � 1 values of the partial tree generated. Thus TAAT is in general more e�cient in terms ofstorage than the TAA. The algorithm for using TAAT l to compute an approximation to < X; Y > is is similarto that of TAA. The approximation is given by the TAA product of the trees T lX and T lY as de�ned in (8),8

but the summation is only up to level l instead of k � 1, i.e. the approximation is given bylXj=0 2j < Vecj(TX);Vecj(TY) > :6 Performance EvaluationIn this section we experimentally evaluate the errors due to our approximation techniques. For the purposeof comparison, we compare our algorithms with the end-biased v-optimal histograms (EB) of Ioannidis andPoosala [7]. This approach is practical in terms of computation time and gives very good approximations [7, 13](unlike the serial method, which gives even better approximations, but is computationally impractical for largevector sizes [7]).The �rst set of experiments are designed for estimating a worse case upper bound on the size of a relationresulting from a join operation. This case is referred to as the maximal result size [5]. Given two frequencyvectors X and Y , of the attributes involved in a join operation, the maximal result size can be obtained bysorting the two frequency vectors and assuming that the frequency values at the corresponding entries in thesorted vectors correspond to the same attribute values. AAV uses absolute values for approximating the sizeof a join operation. Since the absolute values represent an upper bound on the actual values, AAV is a goodcandidate for the maximal result case. The experiments were run for vectors of sizes 2k�1 for k = 5; 6; : : : ; 12,and hence the number of values stored per vector (or number of buckets in the standard terminology [7]) rangedfrom 5 to 12. In the �gures, the x-axis refers to the number of values stored, while the y-axis refers to therelative errors as a percentage of the exact size. We used synthetic data from two di�erent data distributions,namely Random Data (generated from a uniform distribution) and Zipf Data. For the former, we generatedfrequency vectors using a pseudorandom number generator that gives uniformly distributed random numberswithin the range [0,1]. For the latter, we used Zipf distributions with di�erent z parameter values.For random data we ran 50 experiments and took the average values{for AAV the variance for all valueswas negligible, and for EB the variance ranged from .0025 to 0. As shown in Figure 9(a) AAV performs muchbetter than EB and its accuracy improves as the size of the vector increases. Since the error due to EB isalways negative, the �gures plot the graphs with the error sign. AAV , on the other hand, always gives apositive error since it gives an upper bound for the worse case. This is more appropriate for upper boundapproximations. For the Zipf data, we generated frequency vectors by �xing z1 for the �rst vector X to 1.0and varied z2 for the second vector Y from 0.0 to 2.0. Figure 9(b) shows that as before AAV always gives anupper bound on the error for the maximal result case. A common observation is that as predicted, wheneverthe data distribution of the two vectors are close to each other, i.e., z1 is close to z2, the error using AAVbecomes smaller, and whenever the value of z2 increases, the approximation is worse. EB performs best whenthe data distribution is quite skewed, i.e., for large values of z. In contrast, when z is in the range 0 to 1,AAV 's performance is superior with relatively small errors.Finally, we compared the two techniques on multiple relation join queries ranging from 2 to 10 relationsjoined. For random data, we ran 50 experiments and show the average error; for Zipf data, we randomlyselected z values for all vectors in the range [0,1]. The vector sizes were �xed to 28 � 1. Figure 10(a) showsthe results of this experiment for Random data, and Figure 10(b) for Zipf data. Again, the approximationerror due to AAV is signi�cantly less than for EB for maximal result size approximation for multiple joinoperations.Above we have seen that AAV performs well for the maximal result size case. In order to evaluate theperformance of TAA we applied it to approximate the size of the relation resulting from a join operation for theaverage case. We ran experiments on random data with frequency vectors of length 2k � 1 for k = 5; 6; : : : ; 12(Figure 11). Interestingly, we observe that when the AAV (= TAA0) algorithm is applied, the ratio of theapproximation to the exact result is asymptotically 4/3 as N tends to in�nity1. Consequently for large N ,we expect 3/4 of the result obtained by AAV to be a better approximation on the average, although not1Let [0; 1]N denote the unit cube in N-dimensional Euclidean space. This asymptotic behavior of AAV would follow from theconvergence of the integral RRX;Y2[0;1]N <AAV (X);AAV (Y)><X;Y > dXdY ! 1:333::.9

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

5 6 7 8 9 10 11 12

Size of the Vectors: 25 - 1, ..., 212 - 1
(a)

A
ve

ra
ge

 E
rr

or EB

AAV

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0

0.
2

0.
4

0.
6

0.
8 1

1.
2

1.
4

1.
6

1.
8 2

z2

(b)

E
rr

or

AAV

EB

Figure 9: Average error for maximal result size. (a) Random Data. (b) Zipf Data

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

2 3 4 5 6 7 8 9 10

Number of Tables in the Join
(a)

E
rr

or

EB

AAV

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

2 3 4 5 6 7 8 9 10

Number of Tables in the Join
(b)

E
rr

or

EB

AAV

Figure 10: Multiple joins case. (a) Random data. (b) Zipf data.
10

0

0.01

0.02

0.03

0.04

0.05

0.06

5 6 7 8 9 10
Number of Values Stored

(a)

E
rr

or EB

TAA

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

1 3 7 15 31 63 12
7

25
5

51
1

10
23

Number of Values Stored
(b)

E
rr

or

EB

TAAT

Figure 11: (a) Average error for TAA. (b) Average error for TAAT.necessarily an upper bound any longer. Figure 11 (a) compares the average error of this approximation to EBand shows that the errors are quite close.In the case of TAAT (Figure 11(b)), we observe that the errors incurred by the two methods are veryclose and interleaved. This is in accordance with the expectation that since TAAT ignores the nonnegativecontribution of AAV , its approximation should be closer to the exact value.The algorithms TAAl are not suitable for unimodal distributions with sharp peaks. In the Zipf distributionfor example, there are only a few values which are quite high relative to the rest. This behavior makes itespecially suitable for EB since these large values are kept in separate buckets and the immaterial part averagedout. The DFT on the other hand is insensitive to the position of high values in the time domain.7 ConclusionWe developed iterated DFT-based algorithms for estimating the size of relations resulting from join operations.DFT has previously been used in database systems for reducing the dimensionality of high-dimensional data,thus making it more suitable for current index structures. In this paper, we used several properties of DFTto reduce the size of the transformed frequency vector, while still providing good approximations for the sizeof join operations. The resulting algorithms present a spectrum of tradeo�s between storage requirementsand accuracy. In particular, the basic algorithm AAV requires logarithmic space and is exact for self-joinoperations. TAA is an iterative, tree-based algorithm where exact calculation is used up to a certain level, andthen AAV is used for approximation. TAA interpolates in terms of accuracy and storage requirements betweenAAV at one extreme to exact calculation on the other, while space requirements increase from logarithmic tolinear. Finally, TAAT was developed by truncating the nonnegative contributions of AAV , and thus providingbetter size approximations. Our preliminary experimental results support our conclusions.References[1] Agrawal R., Faloutsos C., Swami A.: E�cient Similarity Search In Sequence Databases. FODO, 1993.[2] Christodoulakis S.: Implications of Certain Assumptions in Database Performance Evaluation ACMTransactions on Database Systems, 1984.[3] Davis H. F.: Fourier Series and Orthogonal Functions. Dover Publ. N.Y. 1963.[4] Haas P. J. and Swami A. N.: Sampling-Based Selectivity Estimation for Joins Using Augmented FrequencyValue Statistics. The International conference on Data Engineering, 1995.11

[5] Ioannidis Y.: Universality of Serial Histograms. Proceedings of the 19th Conference on Very LargeDatabases, Dublin, 1993.[6] Ioannidis Y., Christodoulakis S.: On the propagation of errors in the size of join results. Proc. of the 1991ACM-SIGMOD Conf. Denver CO, May 1991.[7] Ioannidis Y., Poosala V.: Balancing histogram Optimality and Practicality for Query Result Size Esti-mation. SIGMOD'95, San Jose, CA USA, June 1995[8] Korn F., Jagadish H. V., Faloutsos C.: E�ciently Supporting Ad Hoc Queries in Large Datasets of TimeSequences. SIGMOD'97, AZ, USA, May 1997[9] Lipton R. J., Naughton J. F., and Schneider D. A.: Practical Selectivity Estimation through AdaptiveSampling. Proceedings of ACM-SIGMOD, 1990.[10] Mannino M. V., Chu P., Sager T. : Statistical Pro�le Estimation in Database Systems. ACM ComputingSurveys, 20(3):192-221, Sept 1988.[11] Muralikrishma M, and DeWitt D.: Equi-depth Histograms for Estimating Selectivity Factors for Multi-Dimensional Queries. Proceedings of the ACM-SIGMOD Conference on Management of Data, 1988.[12] Oppenheim A. V., Schafer R. W.: Discrete-time Signal Processing. Prentice Hall Signal Processing Series,1989.[13] Poosala V.: Histogram-based Estimation Techniques in Database Systems. Ph.D. Thesis, University ofWisconsin Madison, 1997.[14] Ra�ei D., Mendelzon A.: Similarity-Based Queries for Time Series Data. Proceedings of the ACM-SIGMOD Conference on Management of Data, 1997.[15] Selinger P., Astrahan M., Chamberlin D., Lorie R., Price T.: Access Path Selection in a RelationalDatabase Management System. Proceedings of the ACM-SIGMOD Conference on Management of Data,1979.

12

