
A new approach to sequence comparison :Normalized sequence alignmentAbdullah N. Arslan� and �Omer E�gecio�gluyDepartment of Computer ScienceUniversity of California, Santa BarbaraSanta Barbara, CA 93106farslan; omerg@cs:ucsb:eduPavel A. PevznerDepartment of Computer Science and EngineeringUniversity of California, San Diego, San Diego, CA 92093ppevzner@cs:ucsd:eduAbstractThe Smith-Waterman algorithm for local sequence alignment is one of the most importanttechniques in computational molecular biology. This ingenious dynamic programming approachwas designed to reveal the highly conserved fragments by discarding poorly conserved initialand terminal segments. However, the existing notion of local similarity has a serious aw: itdoes not discard poorly conserved intermediate segments. The Smith-Waterman algorithm �ndsthe local alignment with maximal score but it is unable to �nd local alignment with maximumdegree of similarity (e.g., maximal percent of matches). Moreover, there is still no e�cientalgorithm that answers the following natural question: do two sequences share a (su�cientlylong) fragment with more than 70% of similarity? As a result, the local alignment sometimesproduces a mosaic of well-conserved fragments arti�cially connected by poorly-conserved or evenunrelated fragments. This may lead to problems in comparison of long genomic sequences andcomparative gene prediction as recently pointed out by Zhang et al. (1999). In this paper wepropose a new sequence comparison algorithm (normalized local alignment) that reports theregions with maximum degree of similarity. The algorithm is based on fractional programmingand its running time is O(n2 logn). In practice, normalized local alignment is only 3-5 timesslower than the standard Smith-Waterman algorithm.Keywords: Sequence alignment, normalized local sequence alignment, algorithm, dynamicprogramming, fractional programming, ratio maximization.1 IntroductionGene prediction in human genome often amounts to using related proteins from other species asclues for �nding exon-intron structures (Gelfand et al., 1996; Pachter et al., 1999; Birney et al.,�Supported in part by a UCSB{COR grant.ySupported in part by NSF Grant No. CCR{9821038.1



1996). Recently, a related paradigm, motivated by availability of complete genomes, has emerged(Batzoglou et al., 2000; Bafna and Huson, 2000; Novichkov et al., 2000). In this new approach,human genes are predicted based on other (e.g., mouse) un-annotated genomic sequences. The ideaof this method is that similarity between nucleotide sequences of related human and mouse exonsis 85% on average, while similarity between introns is 35% on average. This observation motivatesthe following simple approach: use local alignment algorithm (Smith and Waterman, 1981) to �ndthe most similar segments in human and mouse genomic sequences and use these fragments aspotential exons at the further stages.Unfortunately, this approach faces serious di�culties. Smith-Waterman algorithm was devel-oped 20 years ago for a di�erent problem and it is not well suitable for sequence comparison atgenomic scale. Surprisingly enough, we still don't have an e�cient algorithm that �nds the localalignment with the best degree of sequence similarity. The following example illustrates this point.It is well-known that the statistical signi�cance of the local alignment depends on both its scoreand length (Altschul and Erickson, 1986; Altschul and Erickson, 1988). However, the score of a localalignment is not normalized over the length of the matching region. As a result, a local alignmentwith score 1,000 and length 10,000 (long alignment) will be chosen over a local alignment with score998 and length 1,000 (short alignment), although the latter one is probably more important bio-logically. Moreover, if the corresponding alignment paths overlap, the more biologically important\short" alignment will not be detected even by suboptimal sequence alignment algorithm (shadowe�ect). Another unfortunate property of the Smith-Waterman algorithm is that it was designed toexclude non-similar initial and terminal fragments in sequence alignment but it was not designed toexclude non-similar internal fragments. This aw with Smith-Waterman local similarity approach(Figure 1) leads to inclusion of arbitrarily poor internal fragments (mosaic e�ect). As a result, ap-plications of the Smith-Waterman algorithm to comparison of related genomes (particularly withshort introns as C. elegans and C. briggsae) may lead to problems (Zhang et al., 1999).
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Sequence 2

Sequence 1

SCORE > XSCORE > X SCORE = - XFigure 1: The inclusion of an arbitrarily poor region in an alignment (Zhang et al., 1999). If aregion of negative score �X is sandwiched between two regions scoring more than X, then theSmith-Waterman algorithm will join the three regions into a single alignment that may not bebiologically adequate.The attempts to �x the problem of mosaic e�ect undertaken by Goad and Kanehisa (1982)(who introduced alignment with minimal mismatch density) and Sellers (1984) did not lead to suc-cessful algorithms and were later abandoned. The mosaic e�ect was �rst analyzed by Webb Miller(personal communication) and led to some studies trying to �x this problem at the post-processingstage (Huang et al., 1994; Zhang et al., 1999). Zhang et al. (1999) proposed to decompose alocal alignment into sub-alignments that avoid the mosaic e�ect. However, the post-processingapproach may miss the alignments with the best degree of similarity if the Smith-Waterman algo-rithm missed them. As a result, highly similar fragments may be ignored if they are not parts oflarger alignments dominating other local similarities. Another approach to �xing the problems withthe Smith-Waterman algorithm is based on the notion of X-drop, a region within an alignmentthat scores below X. The alignments that contain no X-drops are called X-alignments. AlthoughX-alignments are expensive to compute in practice, Altschul et al. (1997) and Zhang et al. (1998)used some heuristics for searching databases with this approach. Other attempts to �x the problem2



of mosaic e�ect involve modi�cations of the local alignment algorithm that allow insertions of verylong gaps.Another de�ciency of the local alignment was recently revealed by Alexandrov and Solovyev(1998). They asked if the Smith-Waterman algorithm correctly �nds the most biologically adequaterelative in a benchmark sample of di�erent protein families. The answer to this question wasnegative, and Alexandrov and Solovyev (1998) \blamed" it on the fact that the Smith-Watermanalgorithm does not take into account the length of the alignment. They proposed to normalizethe alignment score by its length and demonstrated that this new approach leads to better proteinclassi�cation. However, computing normalized scores in alignments may be very expensive whenthere is a constraint on length. An algorithm for a similar problem (normalized edit distance) usesdynamic programming to compute the minimum edit distances for all lengths (Marzal and Vidal,1993), but requires cubic time and quadratic space. Various parallel algorithms for this problemwere developed by E�gecio�glu and Ibel (1996). We want to emphasize the di�erence between thenormalized local alignment and the previously studied normalized edit distance problem. Thealgorithms by Oommen and Zhang (1996), Vidal et al. (1995), Arslan and E�gecio�glu (1999), Arslanand E�gecio�glu (2000) do not aim to satisfy a constraint on the length, therefore they cannot directlybe adapted to the the computation of normalized scores when lengths are restricted.In this paper, we propose a new practical algorithm that produces local alignment with maxi-mum degree of similarity by extending the ideas presented by Arslan and E�gecio�glu (1999), Arslanand E�gecio�glu (2000). To reect the length of the local alignment in scoring, the score s(I; J)of local alignment involving substrings I and J may be adjusted by dividing s(I; J) by the totallength of the aligned regions: s(I; J)=(jIj+ jJ j). The normalized local alignment problem is to �ndsubstrings I and J that maximize s(I; J)=(jIj+ jJ j) among all substrings I and J with jIj+ jJ j � T ,where T is a threshold for the minimal overall length of I and J . For the same problem with norestriction on overall length, we can develop fast algorithms using fractional programming, howeverthe answer to the problem would be short substrings that are not biologically meaningful. We use aslightly di�erent objective to normalized alignment. We aim to maximize s(I; J)=(jIj+ jJ j+L) fora given parameter L . Our purpose is to provide a way of control over the degree of normalizationby varying L, and at the same time still being able to use fractional programming technique forfast computation.The outline of this paper is as follows. We �rst give a formal de�nition of our approach to thenormalized local alignment problem. We include brief information on Dinkelbach's and Megiddo'smethods as we use them in our algorithms. Description of our algorithms are followed by discussionof some implementation issues and test results, and concluding remarks at the end.2 Normalized Local AlignmentFirst we formulate the alignment problems we study in this paper as optimization problems involv-ing quotients of linear functions. We are then able to use applicable optimization methods such asfractional programming to develop our algorithms for normalized local alignment.Let a = a1a2 � � � an and b = b1b2 � � � bm be two sequences of symbols over an alphabet � withn � m . The alignment graph Ga;b (edit graph in the context of string editing) is used to representall possible alignments (Waterman, 1995) between a and b . It is a directed acyclic graph having(n+ 1)(m + 1) lattice points (u; v) for 0 � u � n, and 0 � v � m as vertices (Figure 2). The arcsof Ga;b are divided into four types :(1) Horizontal arcs: f((u; v � 1); (u; v)) j 0 � u � n, 0 < v � mg .3



(2) Vertical arcs: f((u� 1; v); (u; v)) j 0 < u � n, 0 � v � mg .(3) Matching diagonal arcs: f((u� 1; v � 1); (u; v)) j au = bv, 0 < u � n, 0 < v � mg(4) Mismatching diagonal arcs: f((u � 1; v � 1); (u; v)) j au 6= bv, 0 < u � n, 0 < v � mg
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a nFigure 2: The alignment graph Ga;b where ai � � � ak = ATTGT and bj � � � bl = AGGACAT . Matchingdiagonal arcs are drawn as solid lines while mismatching diagonal arcs are shown by dashed lines.Dotted lines used for horizontal and vertical arcs correspond to indels. An example alignment pathis shown. Only the weights of the arcs in this path are included.Consider a directed path p between two vertices (i� 1; j� 1) and (k; l) on Ga;b where i � k andj � l . We call each such path an alignment path since if we trace the arcs of p, and perform thecorresponding edit operations in segment ai � � � ak, we obtain the segment bj � � � bl as follows :(1) For a horizontal arc ((u; v � 1); (u; v)), insert bv immediately before au .(2) For a vertical arc ((u� 1; v); (u; v)), delete au .(3) For a mismatching diagonal arc ((u� 1; v � 1); (u; v)), substitute bv for au .In the context of sequence alignment, insertions (horizontal arcs) and deletions (vertical arcs)are both called as indels, and the names match, and mismatch, are used to refer to matchingdiagonal, and mismatching diagonal arcs.The objective of sequence alignment is to quantify the similarity between two strings. There arevarious scoring schemes for this purpose. In one simple such method, the arcs of Ga;b have weightsdetermined by positive reals � (mismatch penalty) and � (indel or gap penalty) as shown in Figure2. We assume that a match has a score of 1, a mismatch penalty is �, and an indel has a penaltyof �. Existence of an alignment path with a large total weight between the vertices (i � 1; j � 1)and (k; l) indicates a high similarity between the segments ai � � � ak and bj � � � bl.For clarity of exposition, we assume this simple scoring scheme in setting up the de�nitions.We address the issue of extending the results to more complex scoring schemes in the next section.4



We say that (x; y; z) is an alignment vector for ai � � � ak and bj � � � bl , if there is an alignmentpath between the vertices (i � 1; j � 1) and (k; l) in Ga;b with x matches, y mismatches, and zindels. In Figure 2, (3; 1; 4) is an alignment vector corresponding to the path shown in the �gure.We denote by AV i;j;k;l(a; b) the set of all such alignment vectors, i.e.AV i;j;k;l(a; b) = f(x; y; z) j (x; y; z) is an alignment vector for ai � � � ak and bj � � � blg :Similarly we call (x; y; z) an alignment vector if it is an alignment vector for some pair ai � � � akand bj � � � bl . We de�ne AV (a; b) as the set of all alignment vectors, i.e.AV (a; b) = [i � k;j � l AV i;j;k;l(a; b) (1)An alignment vector (x; y; z) has a score de�ned by �, and �:SCORE(x; y; z) = x� �y � �z (2)The maximum score between segments ai � � � ak and bj � � � bk is the score of an alignment vectorwhose score is the maximum among all the alignment vectors between these two sequences:S�;�(ai � � � ak; bj � � � bk) = maxfSCORE(x; y; z) j (x; y; z) 2 AV i;j;k;l(a; b)g (3)In this paper, we denote by P� the optimum value of problem P . Local Alignment (LA)problem seeks for two segments with the highest similarity score LA� as de�ned byLA��;�(a; b) = maxi � k;j � l fS�;�(ai � � � ak; bj � � � bk)g = maxi � k;j � l fSCORE(x; y; z) j (x; y; z) 2 AV i;j;k;l(a; b)gThe same objective can also be expressed using the de�nition in (1) of the set of alignmentvectors AV (a; b) as LA��;�(a; b) = maxfSCORE(x; y; z) j (x; y; z) 2 AV (a; b)g (4)In other words, the LA problem aims to �nd an alignment vector with highest score, or equivalentlya directed path with largest weight in Ga;b .Before introducing normalization of scores, we �rst de�ne a length function with respect tosome positive constant L asLENGTHL(ai � � � ak; bj � � � bl) = (k � i+ 1) + (l � j + 1) + L :A normalized score (with respect to L) NSL of two segments ai � � � ak, bj � � � bl is the ratio oftheir maximum score to the value of LENGTHL for these segments:NS�;�;L(ai � � � ak; bj � � � bl) = S�;�(ai � � � ak; bj � � � bl)LENGTHL(ai � � � ak; bj � � � bl) (5)Normalized Local Alignment (NLA) problem seeks for two segments ai � � � ak and bj � � � bl forwhich the normalized score is the highest among all possible pairs of segments as expressed below:NLA��;�;L(a; b) = maxi � k;j � l fNS�;�;L(ai � � � ak; bj � � � bl)g5



Observe that if (x; y; z) is an alignment vector for ai : : : ak and bj : : : bl then(k � i+ 1) + (l � j + 1) = 2x+ 2y + zUsing this relation, we see that the function LENGTHL can be given on the set of alignmentvectors (x; y; z) 2 AV (a; b) by the expressionLENGTHL(x; y; z) = 2x+ 2y + z + L (6)We can de�ne the objective of the NLA problem in the domain of alignment vectors by usingde�nitions in (1), (3), (5), and (6) asNLA��;�;L(a; b) = max� SCORE(x; y; z)LENGTHL(x; y; z) j (x; y; z) 2 AV (a; b)� (7)Figure 3 shows some possible problem cases for LA for which NLA discriminates an alignmentwith higher percent matches from the one determined by the LA problem. Part (i) includes anexample for the mosaic e�ect, and parts (ii), and (iii) have examples with non-overlapping andoverlapping alignments respectively. In each case, the shorter alignment(s) with a score of 80 hasa higher normalized score for L < 600 than the longer alignment, whose score is 120.3 AlgorithmsThe alignment problems we de�ne by stating their objectives in the previous section are clearlyoptimization problems of linear functions over the same domain. In other words, using equations(2) and (6), and de�nitions (4) and (7) we can rewrite LA and NLA as the following maximizationproblems : LA�;�(a; b) : maximize x� �y � �z s.t.(x; y; z) 2 AV (a; b)NLA�;�;L(a; b) : maximize x��y��z2x+2y+z+L s.t.(x; y; z) 2 AV (a; b)For a given �, we de�ne a problem which we call the parametric local alignment problemLA�;�;L(�)(a; b) : maximize x� �y � �z � �(2x+ 2y + z + L) s.t. (x; y; z) 2 AV (a; b)Since the formal parameters in the problem descriptions are the same, in the rest of the paperwe will use LA, NLA and LA(�) instead of LA�;�;L(a; b), NLA�;�;L(a; b), and LA�;�;L(�)(a; b),respectively.As we propose next, a parametric local alignment problem can be described in terms of localalignment problem.Proposition 1 For � < 12 , the optimum value LA�(�) of the parametric LA problem can be for-mulated in terms of the optimum value LA� of an LA problem.Proof
6
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The objective of the parametric problem isLA�(�) = maxf(1 � 2�)x� (� + 2�)y � (�+ �)z � �Lg= (1� 2�)max�x� � + 2�1� 2�y � �+ �1� 2�z�� �L= (1� 2�)LA��0;�0(a; b) � �Lwhere �0 = � + 2�1� 2�; �0 = �+ �1� 2�: (8)Thus, computing LA�(�) involves solving the local alignment problem LA�0 ;�0(a; b) , and per-forming some simple arithmetic afterwards. 2Note that since �, � and L are positive, for any alignment vector (x0; y0; z0), its normalized score� = x0 � �y0 � �z02x0 + 2y0 + z0 + L < 12Dinkelbach's algorithm (Dinkelbach, 1967) can be used to solve NLA . Dinkelbach has developeda general algorithm which uses the parametric method of an optimization technique known asfractional programming. The algorithm is applicable to optimization problems which involve aratio of two functions over the same domain where the function in the denominator is assumed tobe positive. The thesis of the parametric method applied to the case of alignment maximizationproblems implies that the optimal solution to NLA can be achieved via a series of optimal solutionsof LA(�) for di�erent � . The central result is that� = NLA� i� LA�(�) = 0 :That is, an alignment vector a has the optimum normalized score � i� a is an optimal alignmentvector for the parametric problem LA(�) whose optimum value is zero. A proof of this essentialproperty of the parametric method is given by Sniedovich (1992). Craven (1988) and Sniedovich(1992) explain various other interesting properties of Dinkelbach's algorithm and fractional pro-gramming.Dinkelbach algorithm for NLA problem is shown in Figure 4. The algorithm starts with aninitial value for � and repeatedly solves LA(�). At each instance of the parametric problem, anoptimal alignment vector (x; y; z) of LA(�) yields a ratio (normalized score) for NLA. This newratio is either equal to �, in which case it is optimum, or larger than � . If it is equal to � thenthe algorithm terminates. Note that in this case LA�(�) = 0 since the optimal alignment vector ofthe last iteration has the normalized score � . Otherwise, the ratio is taken to be the new value of� and LA(�) is solved again. When continued in this fashion, convergence to NLA� is guaranteed.Another way to explain the behavior of the algorithm is as follows. It iteratively modi�es the scoresin such a way that the optimal non-normalized local alignment under the set of converged scoresis also the optimal normalized alignment under the original scores.The parametric problem in this algorithm can be solved using the Smith-Waterman algorithm.An optimal alignment vector needs to be computed along with optimal score for the parametricproblem of the Dinkelbach algorithm. Position of an optimal alignment may also be desired. Thesecan be done by extending the Smith-Waterman algorithm to include, at each entry of the scorematrix, information about the alignment vector corresponding to an optimal alignment path whichends at that node, and the starting node-position of the path. This additional information can be8



Algorithm DinkelbachPick an arbitrary alignment vector (x; y; z) 2 AV (a; b) ,��  x��y��z2x+2y+z+LRepeat� ��Using Prop.1, solve LA(�) and obtain an optimal alignment vector (x; y; z)��  x��y��z2x+2y+z+LUntil �� = �Return(��) Figure 4: Dinkelbach algorithm for NLA.carried over and updated along with the optimal score updates without an increase in the asymp-totic space and time complexity. The resulting space complexity of solving NLA by this algorithmis O(m). The resulting time complexity is the product of the number of iterations and, the timecomplexity of the Smith-Waterman algorithm. Although experimental results suggest that thenumber of iterations is small on average, no satisfactory theoretical average-case/worst-case boundfor the growth of the number of iterations has been established.We show next that a provably better time complexity result can be achieved by using Megiddo'stechnique.Megiddo (1979) introduced a general technique on how to use a given algorithm for optimizing alinear function in order to develop an algorithm for an optimization problem which involves a ratioof two linear functions over the same domain. If we apply his technique to NLA computation, thenthe resulting algorithm is an LA algorithm which assumes a score of 1�� for a match, penalties of���, and ��� for a mismatch and an indel, respectively. � is treated as a variable, not a constant.That is, the algorithm is the same LA algorithm except that the coe�cients are not simple constantsbut linear functions of the parameter �. Instead of repeatedly solving LA(�) with increasing valuesof � as in the Dinkelbach algorithm, this alternative solution simulates the given LA algorithm overthe coe�cients. Additions of these linear functions are linear and can be computed immediately,but comparisons among them need to be done with some care. The algorithm keeps track of theinterval in which the optimum value NLA� lies. This is essential because comparisons in the givenLA algorithm now correspond to those among linear functions, and outcomes may vary dependingon interval under consideration for �.The algorithm starts with the initial interval [�1;+1] for NLA�. If the functions to be com-pared intersect, then their intersection point �0, \a critical value" of �, determines two subintervalsof the initial interval. In calculating which of the two subintervals contains NLA�, the LA algorithm9



is called for help, and problem LA(�0) is solved. The new interval and the result of the comparisonare determined from the sign of the optimum value LA�(�0) as will be explained later. The algo-rithm returns a linear function of � and a �nal interval by which the local maximum of the functioncan be computed. With this technique, if LA is solvable using O(p(n)) comparisons and O(q(n))additions then NLA can be solved in time O(p(n)(p(n)+q(n))) . If we choose the Smith-Watermanalgorithm to simulate then the time complexity of the resulting algorithm is O(n2m2) .Megiddo (1979) also showed that for some problems the critical values of � can be precomputed.In such cases these values give us the possible candidates for the end-points of the smallest intervalwhich eventually contains the optimum value (ratio). (In some applications, even all candidateoptimum values can be precomputed e�ciently (Arslan and E�gecio�glu, 1999; Arslan and E�gecio�glu,2000).Whenever this can be done, binary search can be used to �nd the optimum value. For thealignment problems in this paper: If LA�(�) = 0, then � = NLA�, and an optimal alignment vectorof LA(�) is also an optimal solution of NLA . On the other hand, if LA�(�) > 0, then a larger �,and if LA�(�) < 0, then a smaller � should be tested (i.e. problem LA(�) should be solved witha di�erent value of �). This procedure continues until the \correct" value NLA� is found. Let �0be the largest value in the set for which LA�(�0) is less than or equal to zero. Then an optimalalignment vector of LA(�0) yields the optimum value NLA� . This way, number of invocationsof LA algorithm is much smaller than that of the solution which uses the simulation idea. Thistechnique was used in problems such as minimum ratio cycles, and minimum ratio spanning trees(Megiddo, 1979), and normalized edit distance (Arslan and E�gecio�glu, 1999; Arslan and E�gecio�glu,2000).It does not seem feasible to precompute critical or candidate values for the optimum value ofNLA . However, we will show that an e�cient search for the optimum value is still possible byusing the fact that any two distinct candidate values for NLA� are not arbitrarily close to eachother if the scores are rational. A similar observation was used for the computation of normalizededit distance by Arslan and E�gecio�glu (2000).Let Q(a; b) be the set of possible values for NLA� . That is,Q(a; b) = � x� �y � �z2x+ 2y + z + L j (x; y; z) 2 AV (a; b)�Proposition 2 Let � = min f jq1 � q2j j q1; q2 2 Q(a; b); q1 6= q2gdenote the smallest gap in Q(a; b) and assume � = pq and � = rs are rational. Then� � 1qs(m+ n+ L)2 :Proof Suppose q1; q2 2 Q(a; b) be two normalized scores of the alignment vectors (x1; y1; z1) and(x2; y2; z2), respectively, where q1 > q2 . Then� � x1 � �y1 � �z12x1 + 2y1 + z1 + L � x2 � �y2 � �z22x2 + 2y2 + z2 + L10



Observe that for two positive rationals p1q1 > p2q2 ) p1q1 � p2q2 � 1q1q2 . Also, for any alignmentvector (x; y; z) 2 AV (a; b) , since 2x+ 2y + z � m+ n we have� � 1qs �qsx1 � psy1 � qrz12x1 + 2y1 + z1 + L � qsx2 � psy2 � qrz22x2 + 2y2 + z2 + L�� 1qs(m+ n+ L)2 (9)2We propose the following algorithm RationalNLA for the NLA problem with rational penalties(Figure 5). The algorithm �rst computes the smallest possible gap � between any two distinct valuesfor NLA (Proposition 2). It maintains an interval, [e; f ], such that the optimum value of NLA lies in[e�; f�] where e, and f are appropriate integer values. Initially e is set to zero, and f is set to 12��1since NLA� is in [0; 12) . RationalNLA iteratively solves a parametric local alignment problem withparameter k� where k is the median of integers in [e; f ]. At each iteration the interval is updatedaccording to the sign of the optimum value of the parametric problem as explained in Megiddo'stechnique. The e�ective search space is the integers in [e; f ] and each iteration reduces this space byhalf. The iterations end whenever the optimum value for the parametric local alignment problemis zero upon which the algorithm terminates by returning the parameter k� as the optimum valueof NLA, or whenever there remains no integers between e and f . In the latter case, the algorithmsolves a parametric local alignment problem with parameter f� . An optimal solution of thisparametric problem yields the optimum normalized local alignment score (the optimum value ofNLA).The invariant for the while loop is that e � f , and NLA� is in [e�; f�] . We can prove that itholds by induction on the number of iterations. At the beginning (iteration zero) the invariant istrue since e and f are initialized to zero and 12��1, respectively, and NLA� is in [0; 12) . The proof ofthe inductive step follows from the discussions of Megiddo's search technique. The algorithm returnsthe parameter value if in one of the iterations the optimum value of the local parametric alignmentproblem is zero in which case the algorithm is correct. Otherwise, the while-loop terminates withthe following conditions being true: e � f and e + 1 � f (i.e. e = f or e + 1 = f), and NLA� isin [e�; f�] . Since the minimum distance between any two possible distinct values for NLA� is atleast �,(i) either NLA� = f� ,(ii) or NLA� is in [e�; f�) in which case there is only one possible value for NLA� in [e�; f�) .In both cases, an optimal alignment vector (x; y; z) for the parametric local alignment problemwith parameter f� yields the optimum value NLA� because of the fact that each new solutionto a parametric problem yields a ratio no worse than the parameter value as pointed out in thedescription of the Dinkelbach algorithm.Theorem 1 If algorithm A computes LA� and obtains an optimal alignment vector with time com-plexity T (n;m), then NLA� can be computed in time O(T (n;m) log n) and using (asymptotically)the same space required by algorithm A provided that � and � are rational.Proof The while loop in RationalNLA iterates O(log (12qs(m+ n+ L)2)) times because the spaceon which binary search is performed is included in the set of integers in the range [0; 12qs(m+n+L)2] .11



Algorithm RationalNLA�  1qs(m+n+L)2 where � = pq, and � = rs (Prop. 2)[e; f ] [0; 12qs(m+ n+ L)2]While (e+ 1 < f) dok  b(e+ f)=2cUsing Prop.1, solve LA(k�) and obtain an optimal alignment vector (x; y; z)v  x��y��z2x+2y+z+Lif v = 0 then return(k�)else if v < 0 then f  kelse e kEnd fwhilegUsing Prop.1, solve LA(f�) and obtain an optimal alignment vector (x; y; z)Return� x��y��z2x+2y+z+L�Figure 5: NLA algorithm RationalNLA for rational scores.
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Solving each parametric problem takes T (n;m) time using algorithm A since it involves only alocal alignment computation and some simple arithmetic. The remaining steps take constanttime. Therefore the resulting time complexity is O(T (n;m) log (12qs(m+ n+ L)2)) . The spacecomplexity is the same as that of algorithm A . 2The Smith-Waterman algorithm can be used to �nd the local alignment vectors and hence tosolve the parametric local alignment problems invoked by RationalNLA.Corollary 1 Normalized local alignment of sequences of length n and m can be computed inO(nm logn) time and O(m) space.The ideas in the Dinkelbach algorithm or algorithm RationalNLA are not restricted to a partic-ular scoring scheme. Under any given scoring scheme, provided that the parametric LA problemsin these algorithms can be formulated in terms of an LA problem, these algorithms can be modi�edso that they present a solution to NLA problem. Furthermore, if scores/penalties are rational, andsolving a parametric problem and obtaining an optimal solution (alignment vector) take asymp-totically the same time as that of the underlying LA algorithm, then the complexity results forRationalNLA of Theorem 1 hold. We address two particularly important cases of scoring schemes: a�ne gap penalties, and arbitrary score matrices.Sometimes insertion or deletion of a block of symbols called a gap is treated di�erently than astream of single-symbol indels. A�ne gap penalty for a gap of length k is�+ �kwhere � is a gap open penalty and � is an indel penalty. In this case, we may use a 4-tuple(x; y; z; g) to represent an alignment vector with which the new component g is the number ofgaps. For example, (3; 1; 4; 2) is the alignment vector for the alignment path shown in Figure 2.The alignment vector has two gaps one of which is a single delete, and the other is a block ofthree inserts. The de�nition of the length function LENGTHL does not change under this scoringscheme. The score of an alignment vector can be rewritten asSCORE(x; y; z; g) = x� �y � �z � �g :In some applications, score of a given operation varies depending on the individual symbolsinvolved in the operation (e.g., protein sequence comparison). In this case, we may decide to de�nethe alignment vector such that it includes as a component frequency of each operation. Let i�, �idenote respectively the deletion and insertion of the ith symbol, and ij denote the substitution ofthe jth symbol for the ith symbol of the alphabet � . For a given operation e, let se represent thescore, and fe represent the frequency of this operation. If u = j�j then for a given alignment vectora wherea =< f1�; f2�; : : : ; fu�; f�1; f�2; : : : ; f�u; f11; f12; : : : ; f1u; : : : ; fu1; fu2; : : : ; fuu > ;the score and length functions can be de�ned asSCORE(a) = Xij sijfij +Xi si�fi� +Xi s�if�iLENGTHL(a) = 2Xij fij +Xi fi� +Xi f�i + LOne can verify that in both of these cases, a parametric LA problem can easily be formulated interms of an LA problem under that particular scoring scheme, and our results hold.13



4 Implementation and Test ResultsWe have chosen to implement the Dinkelbach algorithm for NLA computation (a�ne gap penalties)since this algorithm has a good performance in practice. We have modi�ed the Smith-Watermanalgorithm (for a�ne gaps) to obtain and carry along the alignment information through the nodes.In our implementation we have used LENGTHL value of the alignment vectors as a tie breaker.We select an alignment with the largest LENGTHL value in case there are more than one optimalalignments ending in the same node. That is, we favor the alignment with the largest LENGTHLvalue among the alignments with the same normalized score since for two alignments with the samenormalized score, the one with larger LENGTHL value has the higher (non-normalized) score whichmay be preferred over others (The program can be obtained by contacting Arslan, A.N.). In ourtests, the algorithm never required more than 9 invocations of the Smith-Waterman algorithm, andin the majority of cases it took 3� 5 invocations to solve a single NLA problem.Once optimal segments are found for one NLA problem, one may want to continue with moreNLA computations after masking these segments in the two sequences. For this purpose, we havedeveloped algorithm RepeatedDinkelbach. With each alignment between ai : : : ak and bj : : : bl,we store a pair whose �rst component is the alignment vector (x; y; z; g) and second componentis the alignment position (i; j; k; l) . We have used a queue Q to store alignments generated bythe iterations of the Dinkelbach NLA algorithm so that a new NLA computation picks as theinitial alignment the last alignment in Q which does not overlap with the alignment reported inthe last iteration. This way we improve the average number of iterations per NLA computation.RepeatedDinkelbach continues generating alignments until no alignment whose normalized scoreis larger than a given threshold score T can be found in unmasked regions of the sequences.This termination condition is easy to implement since the normalized scores are decreasing asthey are reported. Another alternative would be to let the algorithm run until there remainsno more alignments with positive score. We have also implemented a version of the algorithmwhich �rst masks a set of regions as a pre-processing step. This allows us to explicitly stop theNLA computations at any time we want, and resume the computation of alignments from where it(almost) left using the second algorithm.We have tested our algorithms with various values of L . We observe that if L is large weobtain alignments with high scores but low normalized scores, while if L is small then the resultingalignments have high normalized scores but they may be short and less interesting biologically.In other words, as the value of L increases our algorithm �nds longer optimal alignments fora particular instance of the problem. It is di�cult to determine a value for L which performswell in (almost) every case because a proper value is data-dependent. If the highest normalizedscore (with respect to the current value of L) belongs to an alignment that is too short to bebiologically interesting then we need to increase the value of L to favor the longer (biologicallyinteresting) alignments. For example for the alignments in Figure 3, L has to be at least 600 sothat the longer alignment wins over the shorter one. If alignments returned as optimal do nothave su�ciently high normalized scores then a smaller values of L should be tried. One needsto experiment various values for L for a particular instance of sequence alignment. Another wayto get rid of unwanted short alignments can be to mask the corresponding regions and rerunthe algorithm. If we decide to do so we need to be sure that these regions do not take partin desired alignments. As a common practice in sequence alignment, we �rst masked the repeatsby RepeatMasker (http://ftp.genome.washington.edu/RM/RepeatMasker.html) before running ouralgorithm. These biologically uninteresting regions may have high normalized scores. They may14



become part of unwanted short alignments. Therefore hiding repeats may help eliminate shortalignments to be output as optimal by our algorithm. To visualize the di�erence between di�erentapproaches to sequence alignment, we represented every area of similarity as a rectangle ratherthan as a diagonal in conventional drawings of dot-matrices. Rectangles in the �gures show thesegments involved in the alignments. In Figures 6 and 7 the alignment regions returned by Smith-Waterman algorithm are shown using dotted lines whereas those determined by post-processingalgorithm by Zhang et al. (1999) are distinguished by dashed lines. Rectangles with thick linesare the ones obtained by our algorithm. We have included percent matches (number of matchesdivided by the average length of the segments) for the alignments we have found. Our algorithmcaptures the regions found by these algorithms but provides more \granularity" in representingthe most similar fragments of the aligned regions. To achieve even higher level of granularity onecan either reduce the threshold T for reported alignments or vary L at di�erent iterations of thealgorithm. As expected, the regions not included in found normalized local alignments show littlesimilarity: the degree of similarity \outside" the boxes in Figures 6 and 7 is usually below 35%.
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Figure 6: Normalized local alignments of orthologous human (GenBank Acc. No. AF030876) andmouse (GenBank Acc. No. AF121351) genomic sequences (L = 2000, � = 1, � = 6, and � = 0:2).
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5 ConclusionsThe arrival of long genomic sequences raises new challenges in sequence comparison. In particular,the traditional tools for computing and representing alignments may not be suitable for genomic-scale sequence comparison. These challenges were recently addressed by Schwartz et al. (2000)who introduced the Percent Identity Plots or PIPs. PIPs are compact and convenient substitutesfor dot-matrices that, in addition to revealing similar segments, reect the percent of similaritybetween di�erent segments of compared sequences. Our normalized local approach is conceptuallysimilar to this approach in an attempt to �nd the regions with the highest percent of similarity.The undesirable properties of linear scoring in sequence alignment were �rst revealed by Altschuland Erickson (1986) who proposed di�erent non-linear scoring functions. They also noticed thatalignments with non-linear scoring functions are di�cult to compute in practice. The de�ciency oflinear scoring functions are well-known in other application domains of dynamic programming. Inparticular, non-linear scoring functions lead to better practical algorithms for Speech Recognitionand Recognition of Hand-Written Texts (Vidal et al., 1995). In computational molecular biology,Pearson (1995) and Shpaer et al. (1996) tried to remedy the de�ciencies of the linear scoringfunctions by re-normalization of the Smith-Waterman scores at the post-processing stage. This re-normalization led to signi�cant improvement in the selectivity of the database searches. Althoughthese approaches are similar in spirit to our work, we emphasize the important di�erence: re-normalizations rearrange the ranked list of the Smith-Waterman scores but do not a�ect the Smith-Waterman algorithm itself. It is possible that an alignment found by normalized local alignmentalgorithm is overlapping with no alignments given by Smith-Waterman algorithm.Pearson, 1995 (Pearson, 1995), Shpaer et al., 1996 (Shpaer et al., 1996) and Brenner etal.,1998 (Brenner et al., 1998) made the comparative analysis of FASTA, BLAST and the Smith-Waterman algorithm for functional protein classi�cation. Abdueva et al. 2001 (Abdueva et al.,2001) used their test framework to study the e�ect of alignment length on sensitivity of databasesearch. The preliminary results of this work demonstrate that normalization improves the func-tional protein classi�cation.Some sequence comparison practitioners have been using a few runs of the Smith-Watermanalgorithm with varied gap penalties to arrive to a biologically adequate alignment. However, thechoice of gap penalties in such searches remained largely heuristic. Our algorithm for normal-ized sequence alignment mimics this approach but provides a rigorous justi�cation for choosingparameters in di�erent runs of the Smith-Waterman algorithm.Although the normalized local alignment approach proved to be successful in our preliminarytests, a number of questions remain unsolved. Most importantly, the statistics of normalizedlocal alignment is poorly understood. The statistical questions associated with the classical localalignment are so complex (Arratia et al., 1990; Waterman and Gordon, 1990; Waterman andVingron, 1994) that we did not even dare to try estimating statistical signi�cance of normalizedlocal alignment. Normalization helps eliminate the mosaic and shadow e�ects. The success dependson the value of L. It seems that no single choice of L eliminates all these unwanted e�ects, andreveals all the most important alignments at the same time. However, we can argue that thereexists a value of L with which an important alignment may be detected by normalized alignmentalgorithm if it has su�ciently high normalized score. An important problem is that given aninstance of sequence alignment, the rules governing the optimal choice of the parameter L are notyet well understood. 17
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