
EÆient Computation of Long SimilarSubsequenesAbdullah N. Arslan and �Omer E�geio�glu ?Department of Computer SieneUniversity of California, Santa BarbaraSanta Barbara, CA 93106 USAfarslan,omerg�s.usb.eduAbstrat. Given sequenes X of length n and Y of length m withn � m, let LAt� and NLAt� denote the maximum ordinary, and maxi-mum length normalized sores of loal alignments with length at least agiven threshold value t. The alignment length is de�ned as the sum ofthe lengths of the involved subsequenes, and length normalized soreof an alignment is the quotient of the ordinary sore by the alignmentlength. We develop an algorithm whih �nds an alignment with ordi-nary sore � LAt�, and length � (1� 1r )t for a given r, in time O(rnm)and spae O(rm). The algorithm an be used to �nd an alignment withlength normalized sore > � for a given positive � with the same timeand spae omplexity and within the same approximation bounds. Thusthis algorithm provides a length-approximate answer to a query suh as\Do X and Y share a (suÆiently long) fragment with more than 70%of similarity?" We also show that our approah gives improved approx-imation algorithms for the normalized loal alignment problem. In thisase we an eÆiently �nd an alignment with length � (1� 1r )t whihhas a length normalized sore � NLAt�.Keywords: Loal alignment, normalized loal alignment, approximationalgorithm, dynami programming, ratio maximization.1 IntrodutionLoal sequene alignment aims to reveal similar regions in a given pair of se-quenes X and Y . The ommon notion of loal similarity su�ers from somewell-known anomalies resulting from not taking into aount the lengths of thesubsequenes involved in the alignments. The so-alledmosai e�et in an align-ment is observed when a very poor region is sandwihed between two regionswith high similarity sores. Shadow e�et is observed when a biologially im-portant short alignment is not deteted beause it overlaps with a signi�antlylonger yet biologially inadequate alignment with higher overall sore. Sev-eral studies in the literature have aimed to desribe methods to redue theseanomalies (Arslan and E�geio�glu, 2002 [6℄, Arslan et al., 2001 [5℄, Zhang et al.,1999 [11℄, Zhang et al., 1998 [10℄, Altshul et al., 1997 [4℄).? Supported in part by NSF Grants No. CCR{9821038 and No. EIA{9818320.



It is well-known that the statistial signi�ane of loal alignment depends onboth its sore and length (Altshul and Erison, 1986 [2℄, 1988 [3℄). Alexandrovand Solovyev, 1998 [1℄ proposed to normalize the alignment sore by its lengthand demonstrated that this new approah leads to better protein lassi�ation.Arslan et al., 2001 [5℄ de�ned the normalized loal alignment problem in whihthe goal is to �nd subsequenes I and J that maximize s(I; J)=(jI j+ jJ j) amongall subsequenes I and J with jI j+ jJ j � t, where s(I; J) is the sore, and t is athreshold for the overall length of I and J . The standard dynami programmingsolution to this problem requires ubi time. By dropping the length onstraintand hanging the objetive to the maximization of s(I; J)=(jI j + jJ j + L) forreal parameter L, it is possible to have some ontrol over the desired alignmentlengths while keeping the omputational omplexity small [5℄.In this paper we onentrate on the length onstrained version of normalizedloal alignment. The problem is feasible if there is an alignment with positivenormalized sore and length at least t, where the length of an alignment is de-�ned as the sum of the lengths of the subsequenes involved in the alignment.We develop an algorithm whih provides an approximate ontrol over the totallength of the resulting alignment while guaranteeing that the normalized sore ismaximum ahievable by any alignment of length � t . The approximation ratio isontrolled by a parameter r. For a feasible problem, the algorithm returns subse-quenes with total length � (1� 1r )t. The omputations take O(rnm) time andO(rm) spae (Theorem 1, setion 3). We subsequently revisit the two normalizedloal alignment algorithms proposed in [5℄. In these algorithms we hange thesubproblems involving ordinary loal alignments to those whih have a lengthonstraint, and we use the approximation algorithm we present in this paperto solve them. We show that this way we an obtain an alignment whih has anormalized sore no smaller than the optimum sore of the original normalizedloal alignment problem with total length at least (1� 1r )t provided that theoriginal problem is feasible (Theorem 2, setion 4). In both resulting algorithmsthe spae omplexity is O(rm) . The number of subproblems that need to besolved is the same as in [5℄ : While one algorithm establishes that O(logn) in-voations of our approximation algorithm is suÆient, experiments suggest thatthe other algorithm requires only 3� 5 iterations, resulting in observed O(rnm)time omplexity.2 BakgroundGiven two sequenesX = x1x2 : : : xn and Y = y1y2 : : : ym with n � m, alignmentgraph GX;Y is used to represent all possible alignments between all subsequenesof X and Y . It is a direted ayli graph having (n + 1)(m + 1) lattie points(u; v) as verties for 0 � u � n, and 0 � v � m (See for example, [9, 6℄). Analignment path for subsequenes xi � � �xk, and yj � � � yl is a direted path fromvertex (i � 1; j � 1) to (k; l) in GX;Y where i � k and j � l. We will use theterms alignment and alignment path interhangeably.



The objetive of sequene alignment is to quantify the similarity between twosequenes. There are various soring shemes for this purpose. In the basi sor-ing sheme, the ars of GX;Y are assigned weights determined by non-negativereals Æ (mismath penalty) and � (indel or gap penalty). We assume that s(xi; yj)is the similarity sore between the symbols xi, and yj whih is 1 for a math(xi = yj) and �Æ for a mismath (xi 6= yj). The following is the lassial dy-nami programming formulation ([9℄) to ompute the maximum loal alignmentsore Si;j ending at eah vertex (i; j):Si;j = maxf0; Si�1;j � �; Si�1;j�1 + s(xi; yj); Si;j�1 � �g (1)for 1 � i � n, 1 � j � m, with the boundary onditions Si;j = 0 whenever i = 0or j = 0.Let � indiate the subsequene relation. The loal alignment (LA) prob-lem seeks subsequenes I � X and J � Y with the highest similarity sore.The optimum loal alignment sore LA�(X;Y ) is de�ned as LA�(X;Y ) =maxfs(I; J) j I � X; J � Y g = maxi;j Si;j , where s(I; J) > 0 , hereinafter, isthe best loal alignment sore between I and J . LA� an be omputed using theSmith-Waterman algorithm [8℄ in time O(nm) and spae O(m).In what follows, for any optimization problem P , we denote by P� its opti-mum value, and sometimes drop the parameters from the notation when theyare obvious from the ontext. We all P feasible if it has a solution with thegiven parameters.As in [5℄ the objetive of the normalized loal alignment problem (NLAt) anbe written asNLAt�(X;Y ) = maxfs(I; J)=(jI j+ jJ j) j I � X; J � Y; jI j+ jJ j � tg (2)In general optimal alignments for LA and NLAt are di�erent (see [5℄ for a detailedexample).3 Finding long alignments with high ordinary soreFor a given t, we de�ne the loal alignment with length threshold sore betweenX and Y asLAt�(X;Y ) = maxfs(I; J) j I � X; J � Y; and jI j+ jJ j � tg (3)To solve LAt we an extend the dynami programming formulation in (1) byadding another dimension. At eah entry of the dynami programming matrix westore optimum sores for all possible lengths up tom+n, inreasing the time andspae omplexity to O(n2m) and O(nm), respetively, whih are unaeptablyhigh in pratie.We give an approximation algorithm APX-LAtwhih omputes a loal align-ment whose sore is at least LAt�, and whose length is at least (1� 1r )t providedthat the LAt problem is feasible, i.e. s(bI; bJ) � LAt� and jbI j + j bJ j � (1� 1r )t :



For simpliity, we assume a basi soring sheme. Our approximation idea issimilar to that in Arslan and E�geio�glu, 2002 [6℄. Instead of a single sore, wemaintain at eah node (i; j) of GX;Y , a list of alignments with the property thatfor positive s where s is the optimum sore ahievable over the set of alignmentswith length � t and ending at (i; j), at least one element of the list atives sores and length t�� where � is a positive integral parameter. We show that thedynami programming formulation an be extended to preserve this propertythrough the nodes. In partiular, an alignment with sore � LAt�, and length� t�� will be observed in one of the nodes (i; j) during the omputations.We imagine the verties of GX;Y as grouped into b(n+m)=� diagonal slabsat distane � from eah other as shown in Figure 1. The length of a diagonal aris 2 while the length of eah horizontal, or vertial ar is 1 . Eah slab onsistsof b�=2 + 1 diagonals. Two onseutive slabs share a diagonal whih we alla boundary . The left and the right boundaries of slab b are respetively theboundaries shared by the left and right neighboring slabs of b. As a subgraph, aslab ontains all the edges in GX;Y inident to the verties in the slab exept forthe horizontal and vertial edges inident to the verties on the left boundary(whih belong to the preeding slab), and the diagonal edges inident to theverties on the �rst diagonal following the left boundary.Now to a given diagonal d in GX;Y , we assoiate a number of slabs as follows.Let slab 0 with respet to diagonal d be the slab that ontains the diagonal d itself.The slabs to the left of slab 0 are then ordered onseutively as slab 1, slab 2, : : :with respet to d. In other words, slab k with respet to diagonal d is the subgraphof GX;Y omposed of verties plaed inlusively between diagonals bd=� and dif k = 0, and between diagonal (bd=� � k)� and (bd=� � k + 1)�, otherwise.Figure 1 inludes sample slabs with respet to diagonal d, and alignments endingat some node (i; j) on this diagonal.
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Fig. 1. Slabs with respet to diagonal d, and alignments ending at node (i; j) startingat di�erent slabs.



Let Si;j;k represent the optimum sore ahievable at (i; j) by any alignmentstarting at slab k with respet to diagonal i + j for 0 � k < dt=�e . Fork = dt=�e, Si;j;k is slightly di�erent: It is the maximum of all ahievable soresby an alignment starting in or before slab k . Also let Li;j;k be the length of anoptimal alignment starting at slab k, and ahieving sore Si;j;k . A single slaban ontribute at most � to the length of any alignment. We store at eah node(i; j) dt=�e+1 sore-length pairs (Si;j;k;Li;j;k) for 0 � k � dt=�e orrespondingto dt=�e+1 optimal alignments that end (i; j) . Figure 2 shows the steps of ourapproximation algorithm APX-LAt. The proessing is done row-by-row startingwith the top row (i = 0) of GX;Y .Step 1 of the algorithm performs the initialization of the lists of the nodesin the top row (i = 0). Step 2 implements omputation of sores as ditatedby the dynami programming formulation in (1). Let maxp of a list of sore-length pairs be a pair with the maximum sore in the list. We obtain an optimalalignment with sore Si;j;k by extending an optimal alignment from one of thenodes (i�1; j), (i�1; j�1), or (i; j�1) . We note that extending an alignment at(i; j) from node (i�1; j�1) inreases the length by 2 and the sore by s(xi; yj),whereas from nodes (i � 1; j) or (i; j � 1) adds 1 to the length and �� to thesore of the resulting alignment. There are two ases:(1) If the urrent node (i; j) is not on the �rst diagonal after a boundarythen nodes (i � 1; j), (i � 1; j � 1) and (i; j � 1) share the same slabs withnode (i; j) . In this ase (Si;j;k ;Li;j;k) is alulated by using (Si�1;j;k;Li�1;j;k),(Si�1;j�1;k ;Li�1;j�1;k), and (Si;j�1;k ;Li;j�1;k) as shown in Step 2:b where(Si�1;j�1;k ;Li�1;j�1;k) � (s(xi; yj); 2) = (Si�1;j�1;k + s(xi; yj);Li�1;j�1;k + 2)if Si�1;j�1;k > 0 or k = 0; and (0; 0) otherwise. This is beause, by de�nition,every loal alignment has a positive sore, and it is either a single math, or it isan extension of an alignment whose sore is positive. Therefore we do not let analignment with no sore be extended unless the resulting alignment is a singlemath in the urrent slab.(2) If the urrent node is on the �rst diagonal following a boundary (i.e. i + jmod � = 1) then the slabs for the nodes involved in the omputations fornode (i; j) di�er as shown in Figure 3. In this ase slab k for node (i; j) is slabk � 1 for nodes (i � 1; j), (i � 1; j � 1) and (i; j � 1) . Moreover any alignmentending at (i; j) starting at slab 0 for (i; j) an only inlude one of the edges((i � 1; j); (i; j)) or ((i � 1; j � 1); (i; j)) both of whih have negative weight�� . Therefore, (Si;j;0;Li;j;0) is set to (0; 0) . Steps 2:a:1 and 2:a:2 show thealulation of (Si;j;k ;Li;j;k) respetively for 0 < k < dt=�e and for k = dt=�e .The running maximum sore dLAt is updated whenever a newly omputedsore for an alignment with length � t�� is larger than the urrent maximumwhih an only happen with alignments starting in or before slab dt=�e � 1 .The �nal value dLAt is returned in Step 3. The alignment position ahieving thissore may also be desired. This an be done by maintaining for eah optimalalignment a start and end position information besides its sore and length. Inthis ase in addition to the running maximum sore, the start and end positionsof a maximal alignment should be stored and updated.



Algorithm APX-LAt(Æ; �)1: Initialization:set dLAt = 0set (S0;j;k;L0;j;k) = (0; 0) for all j; k, 0 � j � m, and 0 � k � dt=�e2: Main omputations:for i = 1 to n dofset (Si;0;k;Li;0;k) = (0; 0) for all k, 0 � k � dt=�efor j = 1 to m dof if (i+ j mod � = 1) thenfset (Si;j;0;Li;j;0) = (0; 0)for k = 1 to dt=�e � 1 do2:a:1 set (Si;j;k;Li;j;k) = maxpf (0; 0); (Si�1;j;k�1;Li�1;j;k�1) + (��; 1);(Si�1;j�1;k�1;Li�1;j�1;k�1)� (s(xi; yj); 2);(Si;j�1;k�1;Li;j�1;k�1) + (��; 1) gfor k = dt=�e2:a:2 set (Si;j;k;Li;j;k) = maxpf (0; 0); (Si�1;j;k�1;Li�1;j;k�1) + (��; 1);(Si�1;j�1;k�1;Li�1;j�1;k�1)� (s(xi; yj); 2);(Si;j�1;k�1;Li;j�1;k�1) + (��; 1);(Si�1;j;k;Li�1;j;k) + (��; 1);(Si�1;j�1;k;Li�1;j�1;k)� (s(xi; yj); 2);(Si;j�1;k;Li;j�1;k) + (��; 1) gg elsef for k = 0 to dt=�e do2:b set (Si;j;k;Li;j;k) = maxpf (0; 0); (Si�1;j;k;Li�1;j;k) + (��; 1);(Si�1;j�1;k;Li�1;j�1;k)� (s(xi; yj); 2);(Si;j�1;k;Li;j�1;k) + (��; 1) ggfor k = dt=�e � 1 if Li;j;k � t�� then set dLAt = maxfdLAt;Si;j;kgfor k = dt=�e set dLAt = maxfdLAt;Si;j;kggg3: Return dLAt Fig. 2. Algorithm APX-LAt.
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Fig. 3. Relative numbering of the slabs with respet to (i; j), (i � 1; j), (i � 1; j � 1)and (i; j � 1) when node (i; j) is on the �rst diagonal following boundary b(i+ j)=� .We �rst show that Si;j;k alulated by the algorithm is the optimum soreahievable and Li;j;k is the length of an alignment ahieving this sore over theset of all alignments ending at node (i; j) and starting with respet to diagonali+ j: 1) at slab k for 0 � k < dt=�e, 2) in or before slab k for k = dt=�e . Thislaim an be proved by indution. If we assume that the laim is true for nodes(i� 1; j), (i� 1; j � 1) and (i; j � 1), and for their slabs, then we an easily seeby following Step 2 of the algorithm that the laim holds for node (i; j) and itsslabs.Let optimum sore LAt� for the alignments of length � t be ahieved at node(i; j) . Consider the alulations of the algorithm at (i; j) at whih an optimalalignment ends. There are two possible orientations of an optimal alignment asshown in Figure 4: 1) It starts at some node (i0; j0) of slab k = dt=�e � 1 . Byour previous laim an alignment starting at slab k with sore Si;j;k � LAt� isaptured in Step 2. The length of this alignment Li;j;k is at least t � � sinethe length of the optimal alignment is � t, and both start at the same slab andend at (i; j). 2) It starts at some node (i00; j00) in or before slab k = dt=�e .Again by the previous laim an alignment starting in or before slab k with soreSi;j;k � LAt� is aptured in Step 2. The length of this alignment Li;j;k is at leastt�� sine slab k is at distane � t�� from (i; j) . Therefore the �nal value dLAtreturned in Step 3 is � LAt� and it is ahieved by an alignment whose length is� t�� . We summarize these results in the following theorem.Theorem 1. For a feasible LAt problem, Algorithm APX-LAt returns an align-ment (bI; bJ) suh that s(bI; bJ) � LAt� and jbI j+ j bJ j � (1� 1r )t for any r > 1. Thealgorithm's omplexity is O(rnm) time and O(rm) spae.Proof. Algorithm APX-LAt is similar to the Smith-Waterman algorithm exeptthat at eah node instead of a single sore, dt=�e+1 entries for sore-length pairsare stored and manipulated. Therefore the resulting omplexity exeeds that
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Also for a given �, we have the parametri loal alignment with length thresholdproblem LAt(�)LAtÆ;�(�) : maximize x� Æy � �z � �(2x + 2y + z) s.t. (x; y; z) 2 AVtA parametri loal alignment with length threshold problem an be desribedin terms of a loal alignment with length threshold problem.Proposition 1. For � 6= 12 , the optimum value LAt�(�) of the parametri LAtproblem an be formulated in terms of the optimum value LAt� of an LAt prob-lem.Proof. The optimum value of the parametri problem, when � 6= 12 , isLAt�(�) = (1� 2�)LAt�Æ0;�0 where Æ0 = Æ + 2�1� 2�; �0 = �+ �1� 2� : (5)Thus, omputing LAt�(�) involves solving the loal alignment problem LAtÆ0;�0 ,and performing some simple arithmeti afterward.We assume without loss of generality that for any alignment the sore doesnot exeed the number of mathes. Therefore for any alignment vetor, its nor-malized sore � � 12 . We onsider � = 12 as a speial ase sine it an onlyhappen when the alignment is omposed of mathes only.An optimal solution to a ratio optimization problemNLAt an be ahieved viaa series of optimal solutions of the parametri problem with di�erent parametersLAt(�). In fat � = NLAt� i� LAt�(�) = 0 . Details for a very similar resultan be found in [5℄.Proposition 2. When solving LAt(�), Algorithm APX-LAt returns an align-ment (bI; bJ) with normalized sore higher than �, and jbI j + j bJ j � (1� 1r )t ifProblem Qt is feasible.Proof. Assume that Problem Qt is feasible. Then NLAt� > �, and thereforeLAt�(�) > 0 whih implies that Algorithm APX-LAt with parameters Æ0 and �0(of Proposition 1) returns an alignment (bI; bJ) suh that its sore is positive (i.e.s(bI; bJ)� �(jbI j+ j bJ j) > 0, or equivalently its normalized sore is higher than �)and jbI j+ j bJ j � (1� 1r )t by the approximation results of Algorithm APX-LAt .Theorem 2. If NLAt� > 0 then an alignment with normalized sore at leastNLAt�, and total length at least (1� 1r )t an be omputed for any r > 1 in timeO(rnm logn), and using O(rm) spae.Proof. Algorithm RationalNLAt given in Figure 5 aomplishes this. The algo-rithm is based on a binary searh for optimum normalized sore over an intervalof integers. This takes O(logn) parametri problems to solve. The algorithm issimilar to the RationalNLA algorithm in [5℄, and the results are derived simi-larly.



Algorithm APX-RationalNLAtIf there is an exat math of size (1� 1r )t then return( 12 ) and exit�  1qs(m+n)2 where Æ = pq , and � = rs[e; f ℄ [0; 12��1℄��  0While (e+ 1 < f) dok  d(e+ f)=2eIf APX-LAt(k�) > 0 then fe k, and ��  x�Æy��z2x+2y+z for (x; y; z) optimal gelse f  kEnd fwhilegReturn(��) Fig. 5. Algorithm APX-RationalNLAt for rational sores.If NLAt� > 0 then we an also ahieve the same approximation guaranteeby using a Dinkelbah algorithm given in [5℄ as the template. The details ofthe resulting algorithm are presented in Figure 6. Solutions of the parametriproblems through the iterations yield improved (higher) values to � exept forthe last iteration. The resulting algorithm performs no more than 3�5 iterationson the average as experiments suggest.Algorithm DinkelbahIf APX-LAt(0) � 0 then return(0) and exit��  x�Æy��z2x+2y+z where (x; y; z) is optimal for APX-LAt(0)Repeat� ��if APX-LAt(�) > 0 then ��  x�Æy��z2x+2y+z for (x; y; z) optimalUntil �� � �Return(��) Fig. 6. Dinkelbah algorithm for NLAt.Our approximation and omplexity results hold for two partiularly impor-tant ases of soring shemes: aÆne gap penalties, and arbitrary soring matries.We an develop variants of Algorithm APX-LAt for these soring shemes withsimple modi�ations. In the ase of arbitrary soring matries, penalties dependon individual symbols involved in the operations. Varying penalties an easilybe inorporated in the dynami programming formulation. In the ase of aÆnegap penalties, the total penalty of a gap (a blok of insertions, or a blok of dele-tions) of size k is � + k� where �, and � are the gap open penalty, and the gapextension penalty, respetively. AÆne gap penalties require a slightly di�erentdynami programming formulation than the one given for basi soring sheme(1). It an be desribed as follows ([9℄) : Let Ei;j = Fi;j = Si;j = 0 when i or j



is 0 then de�ne Ei;j = maxfSi;j�1 � �; Ei;j�1 � �g;Fi;j = maxfSi�1;j � �; Fi�1;j � �g;Si;j = maxf0; Si�1;j�1 + s(xi; yj); Ei;j ; Fi;jg (6)AÆne gap penalties do not inrease the omplexity of the loal alignmentproblem, i.e. the problem an be solved in time O(nm) and using O(m) spae.Figure 7 shows the variant of Algorithm APX-LAt for aÆne gap penalties. Theapproximation and omplexity results expressed in Theorem 1 an be obtainedby Algorithm APX-LAt-AFFINE for aÆne gap penalties.We an verify that in both ases of these soring shemes a parametri LAtproblem an easily be formulated in terms of an LAt problem. We an developvariants of NLAt algorithms for them suh that the same approximation andomplexity results hold.5 Implementation and test resultsWe have implemented versions of Algorithm APX-LAt andDinkelbah for aÆnegap penalties and tested ourDinkelbah program on bli-4 lous in C. elegans andC.briggsae for various values of parameters t and r. We have observed that theprogram performs 3�5 invoations of APX-LAt implementation on the average.Therefore for reasonable hoie of r its time requirement is 3r to 5r times that of aSmith-Waterman implementation on the average. In Figure 9, we inlude resultsfor optimal alignments obtained as t runs from 1; 000 to 22; 000 in inrements of1; 000, and from 30; 000 to 90; 000 in inrements of 10; 000, and for �xed r = 5 .On a Beowulf lass super-omputer whih is omposed of a luster of 42 linux-based 400-500 Mhz workstations it took about 8 days to omplete the tests. Wenote that we ould use a fast heuristi algorithm to solve the parametri loalalignment problems and improve the running time by orders of magnitude, butthen the approximation guarantee of the results no longer holds.We have used a sore of 1 for a math, �1 for a mismath, and �6 � 0:2kfor a gap of length k. In Figure 9, we have multiplied the normalized soresby 10; 000 to be able to display them on the same sale as the ordinary sores.As expeted in general, normalized sores steadily derease with the inreasingalignment lengths. The alignments whose lengths exeed 32; 100 inlude regionswith very poor sores.Test runs like this an generate important statistial information. For in-stane in this ase we an infer from our approximation results and from thenormalized sore 0:33 of the alignment with length 16; 048 that 0:33 annot beobtained by any alignment whose length exeeds 16; 048=(1� 1=5) � 20; 000 .



Algorithm APX-LAt-AFFINE(Æ; �; �)1: Initialization:set dLAt = 0set (E0;j;k;LE0;j;k) = (F0;j;k;LF0;j;k) = (S0;j;k;LS0;j;k) = (0; 0)for all j; k, 0 � j � m, 0 � k � dt=�e2: Main omputations :for i = 1 to n do fset (Ei;0;k;LEi;0;k) = (Fi;0;k;LFi;0;k) = (Si;0;k;LSi;0;k) = (0; 0)for all k, 0 � k � dt=�efor j = 1 to m do fif (i+ j mod � = 1) then fset (Ei;j;0;LEi;j;0) = (Fi;j;0;LFi;j;0) = (Si;j;0;LSi;j;0) = (0; 0)for k = 1 to dt=�e � 1 do fset (Ei;j;k;LEi;j;k) = maxf (Si;j�1;k�1;LSi;j�1;k�1) + (��; 1);(Ei;j�1;k�1;LEi;j�1;k�1) + (��; 1) gset (Fi;j;k;LFi;j;k) = maxf (Si�1;j;k�1;LSi�1;j;k�1) + (��; 1);(Fi�1;j;k�1;LFi�1;j;k�1) + (��; 1) gset (Si;j;k;LSi;j;k) = maxf (0; 0);(Si�1;j�1;k�1;LSi�1;j�1;k�1)� (s(xi; yj); 2);(Ei;j;k;LEi;j;k); (Fi;j;k;LFi;j;k) ggfor k = dt=�e do fset (Ei;j;k;LEi;j;k) = maxf (Si;j�1;k�1;LSi;j�1;k�1) + (��; 1);(Ei;j�1;k�1;LEi;j�1;k�1) + (��; 1);(Si;j�1;k;LSi�1;j;k) + (��; 1);(Ei;j�1;k;LEi;j�1;k) + (��; 1) gset (Fi;j;k;LFi;j;k) = maxf (Si�1;j;k�1;LSi�1;j;k�1) + (��; 1);(Fi�1;j;k�1;LFi�1;j;k�1) + (��; 1);(Si�1;j;k;LSi�1;j;k) + (��; 1);(Fi�1;j;k;LFi�1;j;k) + (��; 1) gset (Si;j;k;LSi;j;k) = maxf (0; 0);(Si�1;j�1;k�1;LSi�1;j�1;k�1)� (s(xi; yj); 2);(Si�1;j�1;k;LSi�1;j�1;k)� (s(xi; yj); 2);(Ei;j;k;LEi;j;k); (Fi;j;k;LFi;j;k) ggg: : :Fig. 7. Algorithm APX-LAt-AFFINE . The algorithm ontinues in Figure 8 .



else ffor k = 0 to dt=�e do fset (Ei;j;k;LEi;j;k) = maxf (Si;j�1;k;LSi;j�1;k) + (��; 1);(Ei;j�1;k;LEi;j�1;k) + (��; 1) gset (Fi;j;k;LFi;j;k) = maxf (Si�1;j;k;LSi�1;j;k) + (��; 1);(Fi�1;j;k;LFi�1;j;k) + (��; 1) gset (Si;j;k;LSi;j;k) = maxf (0; 0); (Si�1;j�1;k;LSi�1;j�1;k)� (s(xi; yj); 2);(Ei;j;k;LEi;j;k); (Fi;j;k;LFi;j;k) gggfor k = dt=�e � 1 if LEi;j;k � t�� then setdLAt = maxfdLAt;Si;j;kgfor k = dt=�e setdLAt = maxfdLAt;Si;j;kggg3: Return LAt�Fig. 8. Continuation of Algorithm APX-LAt-AFFINE from Figure 7 .6 ConlusionWe have developed an algorithm for �nding suÆiently long similar subsequenesin two sequenes of lengths n and m respetively, with n � m . Given thresholds� and t the proposed algorithm �nds an alignment with a normalized sorehigher than � and with total length no smaller than (1� 1r )t, provided that theorresponding normalized loal alignment problem is feasible. The length of theresult an be made arbitrarily lose to t by inreasing r. This is done at theexpense of alloating more resoures as the time and spae omplexities dependon the parameter r as O(rnm) and O(rm) respetively.Based on the tehniques previously proposed in [5℄, and using the approxima-tion algorithm we present in this paper, we have further developed ways to �ndan alignment with normalized sore no smaller than the maximum normalizedsore ahievable by alignments with length at least t. The alignment returned bythe algorithm is guaranteed to have total length � (1� 1r )t . In our experimentswe have observed that the time requirement of the Dinkelbah implementationis O(rnm) on the average. This is better ompared to the worst-ase time om-plexity O(n2m) of the naive algorithm.We believe that our approximation algorithms have made normalized sores aviable similarity measure in pairwise loal alignment as they provide approximateontrol over the desired alignment lengths. Sine the omputed normalized sorefor a partiular value of t is an upper bound for the atual normalized soresahievable by sequenes of length at least t, these algorithms an also be usedto ollet statistis about sores of alignments versus length for a partiular pairof input sequenes.
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