Efficient Computation of Long Similar
Subsequences

Abdullah N. Arslan and Omer Egecioglu *

Department of Computer Science
University of California, Santa Barbara
Santa Barbara, CA 93106 USA

{arslan,omer}@cs.ucsb.edu

Abstract. Given sequences X of length n and Y of length m with
n > m, let LAt" and NLAt" denote the maximum ordinary, and maxi-
mum length normalized scores of local alignments with length at least a
given threshold value ¢. The alignment length is defined as the sum of
the lengths of the involved subsequences, and length normalized score
of an alignment is the quotient of the ordinary score by the alignment
length. We develop an algorithm which finds an alignment with ordi-
nary score > LAt", and length > (1 — 1)t for a given r, in time O(rnm)
and space O(rm). The algorithm can be used to find an alignment with
length normalized score > X for a given positive A with the same time
and space complexity and within the same approximation bounds. Thus
this algorithm provides a length-approximate answer to a query such as
“Do X and Y share a (sufficiently long) fragment with more than 70%
of similarity?” We also show that our approach gives improved approx-
imation algorithms for the normalized local alignment problem. In this
case we can efficiently find an alignment with length > (1 — 1)¢ which
has a length normalized score > NLAt".

Keywords: Local alignment, normalized local alignment, approximation
algorithm, dynamic programming, ratio maximization.

1 Introduction

Local sequence alignment aims to reveal similar regions in a given pair of se-
quences X and Y. The common notion of local similarity suffers from some
well-known anomalies resulting from not taking into account the lengths of the
subsequences involved in the alignments. The so-called mosaic effect in an align-
ment is observed when a very poor region is sandwiched between two regions
with high similarity scores. Shadow effect is observed when a biologically im-
portant short alignment is not detected because it overlaps with a significantly
longer yet biologically inadequate alignment with higher overall score. Sev-
eral studies in the literature have aimed to describe methods to reduce these
anomalies (Arslan and Egecioglu, 2002 [6], Arslan et al., 2001 [5], Zhang et al.,
1999 [11], Zhang et al., 1998 [10], Altschul et al., 1997 [4]).

* Supported in part by NSF Grants No. CCR, 9821038 and No. EIA 9818320.

It is well-known that the statistical significance of local alignment depends on
both its score and length (Altschul and Ericson, 1986 [2], 1988 [3]). Alexandrov
and Solovyev, 1998 [1] proposed to normalize the alignment score by its length
and demonstrated that this new approach leads to better protein classification.
Arslan et al., 2001 [5] defined the normalized local alignment problem in which
the goal is to find subsequences I and J that maximize s(I,.J)/(]I|+ |J|) among
all subsequences I and J with |I| + |J| > ¢, where s(I, J) is the score, and ¢ is a
threshold for the overall length of I and J . The standard dynamic programming
solution to this problem requires cubic time. By dropping the length constraint
and changing the objective to the maximization of s(I,.J)/(|I| + |J| + L) for
real parameter L, it is possible to have some control over the desired alignment,
lengths while keeping the computational complexity small [5].

In this paper we concentrate on the length constrained version of normalized
local alignment. The problem is feasible if there is an alignment with positive
normalized score and length at least ¢, where the length of an alignment is de-
fined as the sum of the lengths of the subsequences involved in the alignment.
We develop an algorithm which provides an approximate control over the total
length of the resulting alignment while guaranteeing that the normalized score is
maximum achievable by any alignment of length > ¢ . The approximation ratio is
controlled by a parameter r. For a feasible problem, the algorithm returns subse-
quences with total length > (1 — 1)¢. The computations take O(rnm) time and
O(rm) space (Theorem 1, section 3). We subsequently revisit the two normalized
local alignment algorithms proposed in [5]. In these algorithms we change the
subproblems involving ordinary local alignments to those which have a length
constraint, and we use the approximation algorithm we present in this paper
to solve them. We show that this way we can obtain an alignment which has a
normalized score no smaller than the optimum score of the original normalized
local alignment problem with total length at least (1 —)¢ provided that the
original problem is feasible (Theorem 2, section 4). In both resulting algorithms
the space complexity is O(rm) . The number of subproblems that need to be
solved is the same as in [5] : While one algorithm establishes that O(logn) in-
vocations of our approximation algorithm is sufficient, experiments suggest that
the other algorithm requires only 3 — 5 iterations, resulting in observed O(rnm)
time complexity.

2 Background

Given two sequences X = 1z ... 2, and Y = y19s ...y with n > m, alignment
graph Gxy is used to represent all possible alignments between all subsequences
of X and Y. It is a directed acyclic graph having (n + 1)(m + 1) lattice points
(u,v) as vertices for 0 < u < n, and 0 < v < m (See for example, [9,6]). An
alignment path for subsequences z; - - -z, and y; - - -y; is a directed path from
vertex (i — 1,5 — 1) to (k,1) in Gx,y where i < k and j < I. We will use the
terms alignment and alignment path interchangeably.

The objective of sequence alignment is to quantify the similarity between two
sequences. There are various scoring schemes for this purpose. In the basic scor-
ing scheme, the arcs of Gx y are assigned weights determined by non-negative
reals d (mismatch penalty) and p (indel or gap penalty). We assume that s(z;, y;)
is the similarity score between the symbols z;, and y; which is 1 for a match
(z; = y;) and —9d for a mismatch (z; # y;). The following is the classical dy-
namic programming formulation ([9]) to compute the maximum local alignment
score S; ; ending at each vertex (i, j):

Sij=max{0, Si—1; — i, Si—1j-1+5(wi,y;), Sij-1— p} (1)

for 1 <i <n,1<j <m, with the boundary conditions S; ; = 0 whenever i = 0
or j =0.

Let C indicate the subsequence relation. The local alignment (LA) prob-
lem seeks subsequences I C X and J C Y with the highest similarity score.
The optimum local alignment score LA*(X,Y) is defined as LA*(X,Y) =
max{s({,J) | I C X,J C Y} = maxS;;, where s(I,J) > 0 , hereinafter, is

ij

the best local alignment score between I and .J. LA™ can be computed using the
Smith-Waterman algorithm [8] in time O(nm) and space O(m).

In what follows, for any optimization problem P, we denote by P* its opti-
mum value, and sometimes drop the parameters from the notation when they
are obvious from the context. We call P feasible if it has a solution with the
given parameters.

As in [5] the objective of the normalized local alignment problem (NLAt) can
be written as

NLAE(X,Y) = max{s(L, 7)1+ |J) | IS X, JCY, 1|+ 1] >} (2)
In general optimal alignments for LA and NLAt are different (see [5] for a detailed

example).

3 Finding long alignments with high ordinary score

For a given t, we define the local alignment with length threshold score between
X and Y as

LAt (X,Y) =max{s(I,J) | IC X,J CY, and |I| +

J| >t} (3)

To solve LAt we can extend the dynamic programming formulation in (1) by
adding another dimension. At each entry of the dynamic programming matrix we
store optimum scores for all possible lengths up to m+mn, increasing the time and
space complexity to O(n?m) and O(nm), respectively, which are unacceptably
high in practice.

We give an approximation algorithm AP X-LAt which computes a local align-
ment whose score is at least LAt*, and whose length is at least (1 —)¢ provided

that the LAt problem is feasible, i.e. s(I,J) > LAt* and |I| +|J| > (1 — Dt .

For simplicity, we assume a basic scoring scheme. Our approximation idea is
similar to that in Arslan and Egecioglu, 2002 [6]. Instead of a single score, we
maintain at each node (i,j) of Gx y, a list of alignments with the property that
for positive s where s is the optimum score achievable over the set of alignments
with length > ¢ and ending at (i,), at least one element of the list actives score
s and length ¢ — A where A is a positive integral parameter. We show that the
dynamic programming formulation can be extended to preserve this property
through the nodes. In particular, an alignment with score > LAt*, and length
>t — A will be observed in one of the nodes (i, j) during the computations.

We imagine the vertices of Gx y as grouped into |[(n+m)/A] diagonal slabs
at distance A from each other as shown in Figure 1. The length of a diagonal arc
is 2 while the length of each horizontal, or vertical arc is 1 . Each slab consists
of |A/2] + 1 diagonals. Two consecutive slabs share a diagonal which we call
a boundary . The left and the right boundaries of slab b are respectively the
boundaries shared by the left and right neighboring slabs of b. As a subgraph, a
slab contains all the edges in G x y incident to the vertices in the slab except for
the horizontal and vertical edges incident to the vertices on the left boundary
(which belong to the preceding slab), and the diagonal edges incident to the
vertices on the first diagonal following the left boundary.

Now to a given diagonal d in G x y, we associate a number of slabs as follows.
Let slab 0 with respect to diagonal d be the slab that contains the diagonal d itself.
The slabs to the left of slab 0 are then ordered consecutively as slab 1, slab 2, ...
with respect to d. In other words, slab k with respect to diagonal d is the subgraph
of Gx,y composed of vertices placed inclusively between diagonals |d/A] and d
if £ =0, and between diagonal (|d/A] — k)A and (|d/A| — k + 1) A, otherwise.
Figure 1 includes sample slabs with respect to diagonal d, and alignments ending
at some node (7, j) on this diagonal.

an 2a (lil-[t/a])a (lin-1)n |jms

[(n+m)/ A] A

(nm)

Fig. 1. Slabs with respect to diagonal d, and alignments ending at node (i, j) starting
at different slabs.

Let S; ;. represent the optimum score achievable at (i, j) by any alignment
starting at slab k with respect to diagonal i + j for 0 < k < [t/A] . For
k= [t/A], Sk is slightly different: It is the maximum of all achievable scores
by an alignment starting in or before slab k . Also let £; ; x be the length of an
optimal alignment starting at slab k, and achieving score S; ;1 . A single slab
can contribute at most A to the length of any alignment. We store at each node
(,7) [t/A]+1 score-length pairs (S; &, £ j k) for 0 < k < [t/A] corresponding
to [t/A] + 1 optimal alignments that end (i, 7) . Figure 2 shows the steps of our
approximation algorithm AP X-LAt. The processing is done row-by-row starting
with the top row (i = 0) of Gx,y.

Step 1 of the algorithm performs the initialization of the lists of the nodes
in the top row (i = 0). Step 2 implements computation of scores as dictated
by the dynamic programming formulation in (1). Let maxp of a list of score-
length pairs be a pair with the maximum score in the list. We obtain an optimal
alignment with score S; ; by extending an optimal alignment from one of the
nodes (i—1,j), (i—1,7—1),0or (i,j—1) . We note that extending an alignment at
(4,7) from node (i —1,j — 1) increases the length by 2 and the score by s(z;,y;),
whereas from nodes (i — 1,5) or (4,5 — 1) adds 1 to the length and —pu to the
score of the resulting alignment. There are two cases:

(1) If the current node (i,j) is not on the first diagonal after a boundary
then nodes (i — 1,7), (i — 1,7 — 1) and (i,j — 1) share the same slabs with
node (i,7) . In this case (S; jx, Li k) is calculated by using (Si—1 .k, Li—1,j.k)
(Sifl,jfl,k;ﬁifl,jfl,k), and (Sivjflﬁk,ﬁivjflﬁk) as shown in Step 2.b where
(Sicrj-1m, Licrj—1k) © (5(w4,95),2) = (Sic1j-1k +5(Ti,y5), Lic1j16 +2)
if S;_1,j-1.k > 0or k =0; and (0,0) otherwise. This is because, by definition,
every local alignment has a positive score, and it is either a single match, or it is
an extension of an alignment whose score is positive. Therefore we do not let an
alignment with no score be extended unless the resulting alignment is a single
match in the current slab.

(2) If the current node is on the first diagonal following a boundary (i.e. i + j
mod A = 1) then the slabs for the nodes involved in the computations for
node (i, j) differ as shown in Figure 3. In this case slab & for node (i, j) is slab
k — 1 for nodes (i — 1,7), (i — 1,7 — 1) and (i, — 1) . Moreover any alignment
ending at (i,j) starting at slab 0 for (i,j) can only include one of the edges
((i — 1,5),(i,4)) or ((i — 1,5 — 1),(4,7)) both of which have negative weight
—p . Therefore, (S; .0, Lij0) is set to (0,0) . Steps 2.a.1 and 2.a.2 show the

calculation of (S; ;x, Li j 1) respectively for 0 < k < [t/A] and for k = [t/A] .

The running maximum score LAt is updated whenever a newly computed
score for an alignment with length > ¢t — A is larger than the current maximum
which can only happen with alignments starting in or before slab [t/A] — 1 .
The final value LAt is returned in Step 3. The alignment position achieving this
score may also be desired. This can be done by maintaining for each optimal
alignment a start and end position information besides its score and length. In
this case in addition to the running maximum score, the start and end positions
of a maximal alignment should be stored and updated.

Algorithm APX-LAt(4, p)
1. Initialization:

set LAt=0

set (So,jk;Lojk) =(0,0) for all j,k, 0<j<m, and 0 <k < [t/A]
2. Main computations:

for 1 =1 to n do

{

set (Si0.k, Liok) =(0,0) for all k, 0 <k < [t/A]

for =1 to m do

{

if (i+j mod A=1) then

set (Si,j,n,ﬁi,]‘,o) = (0, 0)
for k=1 to [t/A] -1 do
2.a.1 set (Sijk, Lijk) =maxp{ (0,0), (Si—1jk-1,Li-1jk-1)+ (—=p1),
(Sicij-1 k-1, Lic1j-1,6—1) B (s(zi,y;),2),
(Sij—1k-1:Lij—1k-1)+ (—p, 1) }

for k= [t/A]
2.a.2 set (Si,j,k7£i,j,k) = maxp{ (0,0), (Si—1,j,k—17£i—1,j,k—1) + (*u, 1),
(Sicij-1 k-1, Lic1j-1,6—1) B (s(zi,y;),2),
(Sij—1k—1,Lij—1,k—1) + (—p, 1),
(Si—14,ks Lim1jk) + (—p1, 1),
(Si—1j-1k Liz1j—1.6) & (s(zi,95),2),
(Sij—1k: Lij—1.6) + (=p, 1) }
} else
{
for k=0 to [t/A] do
2.b set (Sijk. Lijw) =maxp{ (0,0), (Si—1,jk:Li-15x)+ (—p,1),
(Si—1i-1,k Liz1,j-1.6) ® ((Ti,5), 2),
(Sivi-1.ks Lij—1,6) + (=p, 1) }
}

for k=[t/A] -1 if L;;r >t — A then set LAt = max{[///Tt, Siik}
for k= [t/A] set LAt= max{LAt S}
}
}

3. Return [//E‘

Fig. 2. Algorithm APX-LAt.

(Lifm]+)a Ljiala

.~ dlabk o dabl ’'dab0
O for (i) O far () or (i)
. dabk-1 7 .~ dab0
* for others - .+~ forothers

//(i/-l,j-l). (i/1jj)

GO

(+i)/a]

L(n+j)//Aj A

Fig. 3. Relative numbering of the slabs with respect to (i,7), (i — 1,7), (i — 1,5 — 1)
and (4,7 — 1) when node (4, 7) is on the first diagonal following boundary [(i + j)/A] .

We first show that S; ;1 calculated by the algorithm is the optimum score
achievable and £, ;; is the length of an alignment achieving this score over the
set of all alignments ending at node (7, j) and starting with respect to diagonal
i+j: 1) at slab k for 0 < k < [t/A], 2) in or before slab k for k = [t/A] . This
claim can be proved by induction. If we assume that the claim is true for nodes
(i—1,7), (i—1,7—1)and (4,5 — 1), and for their slabs, then we can easily see
by following Step 2 of the algorithm that the claim holds for node (7, j) and its
slabs.

Let optimum score LAt" for the alignments of length > ¢ be achieved at node
(i,7) . Consider the calculations of the algorithm at (i,7) at which an optimal
alignment ends. There are two possible orientations of an optimal alignment as
shown in Figure 4: 1) It starts at some node (i’,j') of slab k = [t/A] — 1 . By
our previous claim an alignment starting at slab k with score S; j x > LAt" is
captured in Step 2. The length of this alignment £; ;; is at least ¢ — A since
the length of the optimal alignment is > ¢, and both start at the same slab and
end at (i,7). 2) It starts at some node (i",;") in or before slab k = [t/A] .
Again by the previous claim an alignment starting in or before slab k with score
Sijk > LAt is captured in Step 2. The length of this alignment £; ; ;. is at least
t — A since slab k is at distance > ¢ — A from (4, j) . Therefore the final value LAt
returned in Step 3 is > LAt" and it is achieved by an alignment whose length is
>t — A . We summarize these results in the following theorem.

Theorem 1. For a feasible LAt problem, Algorithm AP X -LAt returns an align-
ment (I,.J) such that s(I,.J) > LAt and |I|+|J| > (1= 1)t for any r > 1. The

algorithm’s complexity is O(rnm) time and O(rm) space.

Proof. Algorithm AP X-LAtis similar to the Smith-Waterman algorithm except
that at each node instead of a single score, [t/A]+1 entries for score-length pairs
are stored and manipulated. Therefore the resulting complexity exceeds that

i)- [t/ a]+1) A I
()

inor before zn [tiA]- dab0 .-
dab [t/A

@)

Fig. 4. Two possible orientations of an optimal alignment of length > ¢ ending at (7, 5):
it starts either at some (i',5') at slab [t/A] — 1, or (i",5") in or before slab [t/A] .

of the Smith-Waterman algorithm by a factor of [t/A] 4+ 1. That is, the time
complexity of APX-LAtis O(nmt/A). The algorithm requires O(mt/A) space
since we need the entries in the previous and the current row to calculate the
entries in the current row. When the LAt problem is feasible, it is guaranteed that
Algorlthm APX-LAt returns an alignment (I, J) such that s([7 J) > LAt >0
A for any positive A . Therefore setting A = |t/r] for a choice
ofr,1<r g f, and using Algorithm AP X-LAtwe can achieve the approximation
and complexity results expressed in the theorem. We also note that for A = 1 the
algorithm becomes a dynamic programming algorithm extending the dimension
by storing all possible alignment lengths.

4 Finding long alignments with high normalized score

We consider the problem @t of finding two subsequences with normalized score
higher than A, and total length at least ¢ . More formally

s, J)
1]+ 1]

We note that Qt is feasible iff NLA#* > X\ . We present an approximation al-
gorlthm Wthh pr0v1ded that Qt is feasible finds two subsequences T C X, and
> (1- 1)t

Let AVt denote ‘rhe set of alignment 1)€Cf07’9 between X ‘and Y where (z,y,2)
is an alignment vector if there is an alignment between subsequences I C X and
J CY with 2 matches, y mismatches, and z indels such that |I|+|J| >t . Then
s(I,J) . Problems LAt and
NLAt can be rewritten as follows :

Qt: find (Z,J) such that I C X,J CY, >Xand |I|+|[J| >t (4)

LAt;, :mazimize x — 0y — pz st. (z,y,2) € AVt

NLAts,, : mazimize %ﬁ‘j s.t. (z,y,2) € AVt

Also for a given A, we have the parametric local alignment with length threshold
problem LAt(X)

LAt; ,(X) : mazimize — dy — pz — A2z + 2y +2) s.t. (z,y,2) € AVt
A parametric local alignment with length threshold problem can be described
in terms of a local alignment with length threshold problem.

Proposition 1. For A # 3, the optimum value LAt*(X) of the parametric LAt
problem can be formulated in terms of the optimum value LAt" of an LAt prob-
lem.

Proof. The optimum value of the parametric problem, when A # %, is

6+ 2\ n+ A
LAt = (1 -2\ LAt . wh "= ' = .
t*(A) = (A) LAt o Where § T oy 1 T X (5)

Thus, computing LA¢* () involves solving the local alignment problem LAty
and performing some simple arithmetic afterward.

We assume without loss of generality that for any alignment the score does
not exceed the number of matches. Therefore for any alignment vector, its nor-
malized score A < % . We consider A\ = % as a special case since it can only
happen when the alignment is composed of matches only.

An optimal solution to a ratio optimization problem NLAt can be achieved via
a series of optimal solutions of the parametric problem with different parameters
LAYN). In fact A = NLAt" iff LAt*(\) = 0 . Details for a very similar result

can be found in [5].

Proposition 2. When solving LAY\), Algorithm APX-LAt returns an align-
ment (I,J) with normalized score higher than X, and |I| + |J| > (1 - 1)t if
Problem Qt is feasible.

Proof. Assume that Problem Qt is feasible. Then NLAt* >), and therefore
LAt (X) > 0 which implies that Algorithm AP X-LAt with parameters ¢’ and p'
(of Proposition 1) returns an alignment (I,.J) such that its score is positive (i.e.
s(I,J) — A(II| +|J]) > 0, or equivalently its normalized score is higher than \)
and I +|J| > (1 — 1)t by the approximation results of Algorithm APX-LAt .

Theorem 2. If NLAt" > 0 then an alignment with normalized score at least
NLAt, and total length at least (1 —];)f can be computed for any r > 1 in time
O(rnmlogn), and using O(rm) space.

Proof. Algorithm Rational NLAt given in Figure 5 accomplishes this. The algo-
rithm is based on a binary search for optimum normalized score over an interval
of integers. This takes O(logn) parametric problems to solve. The algorithm is
similar to the Rational NLA algorithm in [5], and the results are derived simi-
larly.

Algorithm APX-Rational NLAt
If there is an exact match of size (1 — 2)¢ then return(

1) _r
O ommz Where 0= L, and p=3

e, /] - [0, 2]

A0

While (e+1< f) do
E e T(e+)2
If APX-LAt(koc)> 0 then {e <+ k, and * ’;;‘zg;ﬁj for (z,y,z) optimal }
else f+ k

End {while}

Return(A™)

1

5) and exit

Fig. 5. Algorithm AP X-Rational NLAt for rational scores.

If NLAt > 0 then we can also achieve the same approximation guarantee
by using a Dinkelbach algorithm given in [5] as the template. The details of
the resulting algorithm are presented in Figure 6. Solutions of the parametric
problems through the iterations yield improved (higher) values to A except for
the last iteration. The resulting algorithm performs no more than 3 —5 iterations
on the average as experiments suggest.

Algorithm Dinkelbach
If APX-LA#0) <0 then return(0) and exit
A % where (z,y,z) is optimal for APX-LAt(0)
Repeat

A XN

if APX-LA#A) >0 then * « g;ig;ﬁj for (z,y,z) optimal
Until A* < A
Return(A™)

Fig. 6. Dinkelbach algorithm for NLA{.

Our approximation and complexity results hold for two particularly impor-
tant cases of scoring schemes: affine gap penalties, and arbitrary scoring matrices.
We can develop variants of Algorithm AP X-LAt for these scoring schemes with
simple modifications. In the case of arbitrary scoring matrices, penalties depend
on individual symbols involved in the operations. Varying penalties can easily
be incorporated in the dynamic programming formulation. In the case of affine
gap penalties, the total penalty of a gap (a block of insertions, or a block of dele-
tions) of size k is a + k8 where «, and § are the gap open penalty, and the gap
extension penalty, respectively. Affine gap penalties require a slightly different
dynamic programming formulation than the one given for basic scoring scheme
(1). It can be described as follows ([9]) : Let & ; = F;; = Si;j = 0 when i or j

is 0 then define

Eij=max{S;; 1 —a, & ;1 — B},
.7:1'7]‘ = max{S,;,Lj — @, .7:7;717]‘ — 6},
Si; =max{0, Si—1j-1 + s(xi,y;), &y, Fij} (6)

Affine gap penalties do not increase the complexity of the local alignment
problem, i.e. the problem can be solved in time O(nm) and using O(m) space.
Figure 7 shows the variant of Algorithm AP X-LAt for affine gap penalties. The
approximation and complexity results expressed in Theorem 1 can be obtained
by Algorithm APX-LA+AFFINE for affine gap penalties.

We can verify that in both cases of these scoring schemes a parametric LAt
problem can easily be formulated in terms of an LAt problem. We can develop
variants of NLAt algorithms for them such that the same approximation and
complexity results hold.

5 Implementation and test results

We have implemented versions of Algorithm AP X-LAtand Dinkelbach for affine
gap penalties and tested our Dinkelbach program on bli-4 locus in C. elegans and
C.briggsae for various values of parameters ¢t and r. We have observed that the
program performs 3 —5 invocations of APX-LAtimplementation on the average.
Therefore for reasonable choice of r its time requirement is 3r to 5r times that of a
Smith-Waterman implementation on the average. In Figure 9, we include results
for optimal alignments obtained as ¢ runs from 1,000 to 22,000 in increments of
1,000, and from 30,000 to 90,000 in increments of 10,000, and for fixed r =5 .
On a Beowulf class super-computer which is composed of a cluster of 42 linux-
based 400-500 Mhz workstations it took about 8 days to complete the tests. We
note that we could use a fast heuristic algorithm to solve the parametric local
alignment problems and improve the running time by orders of magnitude, but
then the approximation guarantee of the results no longer holds.

We have used a score of 1 for a match, —1 for a mismatch, and —6 — 0.2k
for a gap of length k. In Figure 9, we have multiplied the normalized scores
by 10,000 to be able to display them on the same scale as the ordinary scores.
As expected in general, normalized scores steadily decrease with the increasing
alignment lengths. The alignments whose lengths exceed 32,100 include regions
with very poor scores.

Test runs like this can generate important statistical information. For in-
stance in this case we can infer from our approximation results and from the
normalized score 0.33 of the alignment with length 16,048 that 0.33 cannot be
obtained by any alignment whose length exceeds 16,048/(1 — 1/5) = 20,000 .

Algorithm APX-LAt-AFFINE (4,a,(3)
1. Initi/al\ization:
set LAt=0
set (£o,jk: L6jk) = (Foks L8 50) = (Soj.k: L55.1) = (0,0)
for all j,k, 0<j<m, 0<k<[t/A]
2. Main computations :
for i=1 to n do {
set (i, Lo0s) = (Fiok, LLo4) = (Sijok, LEok) = (0,0)
for all k, 0<k<[t/A]
for j=1 to m do {
if (i 4+ j mod A =1) then {
set (giaj507£'i€,j,0) (-7:1 7 Uv‘cz] 0) (Sia.iaUaE;S,j,O) = (07 0)
for k=1 to [t/A] -1 do {
set (Eijn, £5;5) =max{ (Sij 14 1,L5; 14 1)+ (—a,1),
(Eig—rb-1, L5 1 k) +(=B,1) }
set (Fijn L5 5) =max{ (Si-1jn1,L5 1 5 1)+ (-, 1),
(Fizrjk—1, Eif—l,j,k—” +(=5,1) }
set (Si,j,ky E;S,j,k) = max{ (0, 0),
(Sic1j1k—1,L5 1i-1k-1) @ (s(xi,95),2),
(giq]}kaﬁf,j,k)a (fz,],k, zyk) }

lor k=[t/A] do {

set (Eik, L5 5) = max{ (Sij-1k-1,L5; 15-1) + (—a,1),

(Eij—1,k— 1a£f;‘71 k1) + (=6,1),
(i,j— 1k’ z 17k)+(707)7
(511 11«, 17 lk) (*ﬂal) }

(1*1,J,k*17£;s—1,],k71)+ *0471)7
(-8

set (fi,j,k,ﬁzii,k) = max{
1),

1

(
(Fictgh, L5 1)+ (=
(Si1gk, L5 1 58) + (—o, 1),
(Fictgm L1 j0) +(=B,1) }

set (Sijx, L£7;;) = max{ (0,0),
(Sic1j-1h-1,L5 15 15 1) & (5(xi,y5),2),
(Sivg10 L3 o1 k) @ (s(xi,95),2),
(gl7k: z]k) (1,5,k z]k)}

Fig. 7. Algorithm APX-LAt+AFFINE . The algorithm continues in Figure 8 .

else {
for k =0 to [t/A] do {

set (giqjqu‘cg,yk)*max{(i,)— 1k7 17 1k)+(0’11)1
(Eij—1,6: L 17 i)+ (=8,1) }

set (Fijk, £754) = max{ (Si—1 6, L5 1 ;) + (. 1),
(Ficrgm, L1 j0) + (=B8,1) }

set (S gk, £554) = max{ (0,0), (Si—1; 1k, L5 bis 1,6) @ (s(wi,95),2),
(giqjqu‘cig,j,k)v (-7:1',],10 i, k) }

}
} o —
for k= [t/A] —1if Ef,j,k >t — A then set LAt = max{LAt S i}
for k = [t/A] set LAt = max{l///Tt, Sijk}
}
}

3. Return LAt

Fig. 8. Continuation of Algorithm APX-LAt-AFFINE from Figure 7 .

6 Conclusion

We have developed an algorithm for finding sufficiently long similar subsequences
in two sequences of lengths n and m respectively, with n > m . Given thresholds
A and t the proposed algorithm finds an alignment with a normalized score
higher than A and with total length no smaller than (1 — 1), provided that the
corresponding normalized local alignment problem is feasible. The length of the
result can be made arbitrarily close to ¢ by increasing r. This is done at the
expense of allocating more resources as the time and space complexities depend
on the parameter r as O(rnm) and O(rm) respectively.

Based on the techniques previously proposed in [5], and using the approxima-
tion algorithm we present in this paper, we have further developed ways to find
an alignment with normalized score no smaller than the maximum normalized
score achievable by alignments with length at least t. The alignment returned by
the algorithm is guaranteed to have total length > (1 — 1)¢ . In our experiments
we have observed that the time requirement of the Dinkelbach implementation
is O(rnm) on the average. This is better compared to the worst-case time com-
plexity O(n?m) of the naive algorithm.

We believe that our approximation algorithms have made normalized scores a
viable similarity measure in pairwise local alignment as they provide approximate
control over the desired alignment lengths. Since the computed normalized score
for a particular value of ¢ is an upper bound for the actual normalized scores
achievable by sequences of length at least ¢, these algorithms can also be used
to collect statistics about scores of alignments versus length for a particular pair
of input sequences.

14000
12000 -
10000 -
8000 -
W ordinary
6000 + scores
Onormalized
4000 - scores
2000 -
0,
O D o> DN D PN O R DD OO
S P L DA P IS DS XS D
R S \\v \,g:; \,g\ \(,;o \QQ \éb \Q;\ q’,\b‘ f§> @Q ‘;bo g@

Fig. 9. Ordinary versus normalized scores on bli-4 locus in C. elegans and C.briggsae
when score of a match is 1, mismatch score is —1, and score for a gap of length k is
—6 — 0.2k .

References

1.

11.

N. N. Alexandrov and V. V. Solovyev. (1998) Statistical significance of ungapped
alignments. Pacific Symposium on Biocomputing (PSB-98), (eds. R. Altman, A.
Dunker, L. Hunter, T. Klein), pp. 463 472.

. S. F. Altschul and B. W. Erickson. (1986) Locally optimal subalignments using

nonlinear similarity functions. Bull. of Math. Biology, 48:633—-660.
S. F. Altschul and B. W. Erickson. (1988) Significance levels for biological sequence
comparison using nonlinear similarity functions. Bull. of Math. Biology, 50:77-92.

. S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and

D. J. Lipman. (1997) Gapped Blast and Psi-Blast: a new generation of protein
database search programs. Nucleic Acids Research, 25:3389-3402.

A, N. Arslan, O. Egecioglu, and P. A. Pevzner. (2001) A new approach to sequence
comparison: Normalized local alignment. Bioinformatics, 17(4):327 337.

A N. Arslan and O. Egecioglu. (2001) Algorithms for local alignments with length
constraints. Technical Report TRCS2001-17, Department of Computer Science,
University of California at Santa Barbara.

. N. Megiddo. (1979) Combinatorial optimization with rational objective functions.

Mathematics of Operations Research, 4:414 424.

T.F. Smith and M.S. Waterman. (1981) The identification of common molecular
subsequences. J. Mol. Biol., 147, 195-197.

M. S. Waterman. (1995) Introduction to computational biology. Chapman & Hall.

. Z. Zhang, P. Berman, and W. Miller. (1998) Alignments without low-scoring re-

gions. J. Comput. Biol., 5:197-200.
Z. Zhang, P. Berman, T. Wiehe, and W. Miller. (1999) Post-processing long pair-
wise alignments. Bioinformatics, 15:1012-1019.

