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ien
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sb.eduAbstra
t. Given sequen
es X of length n and Y of length m withn � m, let LAt� and NLAt� denote the maximum ordinary, and maxi-mum length normalized s
ores of lo
al alignments with length at least agiven threshold value t. The alignment length is de�ned as the sum ofthe lengths of the involved subsequen
es, and length normalized s
oreof an alignment is the quotient of the ordinary s
ore by the alignmentlength. We develop an algorithm whi
h �nds an alignment with ordi-nary s
ore � LAt�, and length � (1� 1r )t for a given r, in time O(rnm)and spa
e O(rm). The algorithm 
an be used to �nd an alignment withlength normalized s
ore > � for a given positive � with the same timeand spa
e 
omplexity and within the same approximation bounds. Thusthis algorithm provides a length-approximate answer to a query su
h as\Do X and Y share a (suÆ
iently long) fragment with more than 70%of similarity?" We also show that our approa
h gives improved approx-imation algorithms for the normalized lo
al alignment problem. In this
ase we 
an eÆ
iently �nd an alignment with length � (1� 1r )t whi
hhas a length normalized s
ore � NLAt�.Keywords: Lo
al alignment, normalized lo
al alignment, approximationalgorithm, dynami
 programming, ratio maximization.1 Introdu
tionLo
al sequen
e alignment aims to reveal similar regions in a given pair of se-quen
es X and Y . The 
ommon notion of lo
al similarity su�ers from somewell-known anomalies resulting from not taking into a

ount the lengths of thesubsequen
es involved in the alignments. The so-
alledmosai
 e�e
t in an align-ment is observed when a very poor region is sandwi
hed between two regionswith high similarity s
ores. Shadow e�e
t is observed when a biologi
ally im-portant short alignment is not dete
ted be
ause it overlaps with a signi�
antlylonger yet biologi
ally inadequate alignment with higher overall s
ore. Sev-eral studies in the literature have aimed to des
ribe methods to redu
e theseanomalies (Arslan and E�ge
io�glu, 2002 [6℄, Arslan et al., 2001 [5℄, Zhang et al.,1999 [11℄, Zhang et al., 1998 [10℄, Alts
hul et al., 1997 [4℄).? Supported in part by NSF Grants No. CCR{9821038 and No. EIA{9818320.



It is well-known that the statisti
al signi�
an
e of lo
al alignment depends onboth its s
ore and length (Alts
hul and Eri
son, 1986 [2℄, 1988 [3℄). Alexandrovand Solovyev, 1998 [1℄ proposed to normalize the alignment s
ore by its lengthand demonstrated that this new approa
h leads to better protein 
lassi�
ation.Arslan et al., 2001 [5℄ de�ned the normalized lo
al alignment problem in whi
hthe goal is to �nd subsequen
es I and J that maximize s(I; J)=(jI j+ jJ j) amongall subsequen
es I and J with jI j+ jJ j � t, where s(I; J) is the s
ore, and t is athreshold for the overall length of I and J . The standard dynami
 programmingsolution to this problem requires 
ubi
 time. By dropping the length 
onstraintand 
hanging the obje
tive to the maximization of s(I; J)=(jI j + jJ j + L) forreal parameter L, it is possible to have some 
ontrol over the desired alignmentlengths while keeping the 
omputational 
omplexity small [5℄.In this paper we 
on
entrate on the length 
onstrained version of normalizedlo
al alignment. The problem is feasible if there is an alignment with positivenormalized s
ore and length at least t, where the length of an alignment is de-�ned as the sum of the lengths of the subsequen
es involved in the alignment.We develop an algorithm whi
h provides an approximate 
ontrol over the totallength of the resulting alignment while guaranteeing that the normalized s
ore ismaximum a
hievable by any alignment of length � t . The approximation ratio is
ontrolled by a parameter r. For a feasible problem, the algorithm returns subse-quen
es with total length � (1� 1r )t. The 
omputations take O(rnm) time andO(rm) spa
e (Theorem 1, se
tion 3). We subsequently revisit the two normalizedlo
al alignment algorithms proposed in [5℄. In these algorithms we 
hange thesubproblems involving ordinary lo
al alignments to those whi
h have a length
onstraint, and we use the approximation algorithm we present in this paperto solve them. We show that this way we 
an obtain an alignment whi
h has anormalized s
ore no smaller than the optimum s
ore of the original normalizedlo
al alignment problem with total length at least (1� 1r )t provided that theoriginal problem is feasible (Theorem 2, se
tion 4). In both resulting algorithmsthe spa
e 
omplexity is O(rm) . The number of subproblems that need to besolved is the same as in [5℄ : While one algorithm establishes that O(logn) in-vo
ations of our approximation algorithm is suÆ
ient, experiments suggest thatthe other algorithm requires only 3� 5 iterations, resulting in observed O(rnm)time 
omplexity.2 Ba
kgroundGiven two sequen
esX = x1x2 : : : xn and Y = y1y2 : : : ym with n � m, alignmentgraph GX;Y is used to represent all possible alignments between all subsequen
esof X and Y . It is a dire
ted a
y
li
 graph having (n + 1)(m + 1) latti
e points(u; v) as verti
es for 0 � u � n, and 0 � v � m (See for example, [9, 6℄). Analignment path for subsequen
es xi � � �xk, and yj � � � yl is a dire
ted path fromvertex (i � 1; j � 1) to (k; l) in GX;Y where i � k and j � l. We will use theterms alignment and alignment path inter
hangeably.



The obje
tive of sequen
e alignment is to quantify the similarity between twosequen
es. There are various s
oring s
hemes for this purpose. In the basi
 s
or-ing s
heme, the ar
s of GX;Y are assigned weights determined by non-negativereals Æ (mismat
h penalty) and � (indel or gap penalty). We assume that s(xi; yj)is the similarity s
ore between the symbols xi, and yj whi
h is 1 for a mat
h(xi = yj) and �Æ for a mismat
h (xi 6= yj). The following is the 
lassi
al dy-nami
 programming formulation ([9℄) to 
ompute the maximum lo
al alignments
ore Si;j ending at ea
h vertex (i; j):Si;j = maxf0; Si�1;j � �; Si�1;j�1 + s(xi; yj); Si;j�1 � �g (1)for 1 � i � n, 1 � j � m, with the boundary 
onditions Si;j = 0 whenever i = 0or j = 0.Let � indi
ate the subsequen
e relation. The lo
al alignment (LA) prob-lem seeks subsequen
es I � X and J � Y with the highest similarity s
ore.The optimum lo
al alignment s
ore LA�(X;Y ) is de�ned as LA�(X;Y ) =maxfs(I; J) j I � X; J � Y g = maxi;j Si;j , where s(I; J) > 0 , hereinafter, isthe best lo
al alignment s
ore between I and J . LA� 
an be 
omputed using theSmith-Waterman algorithm [8℄ in time O(nm) and spa
e O(m).In what follows, for any optimization problem P , we denote by P� its opti-mum value, and sometimes drop the parameters from the notation when theyare obvious from the 
ontext. We 
all P feasible if it has a solution with thegiven parameters.As in [5℄ the obje
tive of the normalized lo
al alignment problem (NLAt) 
anbe written asNLAt�(X;Y ) = maxfs(I; J)=(jI j+ jJ j) j I � X; J � Y; jI j+ jJ j � tg (2)In general optimal alignments for LA and NLAt are di�erent (see [5℄ for a detailedexample).3 Finding long alignments with high ordinary s
oreFor a given t, we de�ne the lo
al alignment with length threshold s
ore betweenX and Y asLAt�(X;Y ) = maxfs(I; J) j I � X; J � Y; and jI j+ jJ j � tg (3)To solve LAt we 
an extend the dynami
 programming formulation in (1) byadding another dimension. At ea
h entry of the dynami
 programming matrix westore optimum s
ores for all possible lengths up tom+n, in
reasing the time andspa
e 
omplexity to O(n2m) and O(nm), respe
tively, whi
h are una

eptablyhigh in pra
ti
e.We give an approximation algorithm APX-LAtwhi
h 
omputes a lo
al align-ment whose s
ore is at least LAt�, and whose length is at least (1� 1r )t providedthat the LAt problem is feasible, i.e. s(bI; bJ) � LAt� and jbI j + j bJ j � (1� 1r )t :



For simpli
ity, we assume a basi
 s
oring s
heme. Our approximation idea issimilar to that in Arslan and E�ge
io�glu, 2002 [6℄. Instead of a single s
ore, wemaintain at ea
h node (i; j) of GX;Y , a list of alignments with the property thatfor positive s where s is the optimum s
ore a
hievable over the set of alignmentswith length � t and ending at (i; j), at least one element of the list a
tives s
ores and length t�� where � is a positive integral parameter. We show that thedynami
 programming formulation 
an be extended to preserve this propertythrough the nodes. In parti
ular, an alignment with s
ore � LAt�, and length� t�� will be observed in one of the nodes (i; j) during the 
omputations.We imagine the verti
es of GX;Y as grouped into b(n+m)=�
 diagonal slabsat distan
e � from ea
h other as shown in Figure 1. The length of a diagonal ar
is 2 while the length of ea
h horizontal, or verti
al ar
 is 1 . Ea
h slab 
onsistsof b�=2
 + 1 diagonals. Two 
onse
utive slabs share a diagonal whi
h we 
alla boundary . The left and the right boundaries of slab b are respe
tively theboundaries shared by the left and right neighboring slabs of b. As a subgraph, aslab 
ontains all the edges in GX;Y in
ident to the verti
es in the slab ex
ept forthe horizontal and verti
al edges in
ident to the verti
es on the left boundary(whi
h belong to the pre
eding slab), and the diagonal edges in
ident to theverti
es on the �rst diagonal following the left boundary.Now to a given diagonal d in GX;Y , we asso
iate a number of slabs as follows.Let slab 0 with respe
t to diagonal d be the slab that 
ontains the diagonal d itself.The slabs to the left of slab 0 are then ordered 
onse
utively as slab 1, slab 2, : : :with respe
t to d. In other words, slab k with respe
t to diagonal d is the subgraphof GX;Y 
omposed of verti
es pla
ed in
lusively between diagonals bd=�
 and dif k = 0, and between diagonal (bd=�
 � k)� and (bd=�
 � k + 1)�, otherwise.Figure 1 in
ludes sample slabs with respe
t to diagonal d, and alignments endingat some node (i; j) on this diagonal.
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Fig. 1. Slabs with respe
t to diagonal d, and alignments ending at node (i; j) startingat di�erent slabs.



Let Si;j;k represent the optimum s
ore a
hievable at (i; j) by any alignmentstarting at slab k with respe
t to diagonal i + j for 0 � k < dt=�e . Fork = dt=�e, Si;j;k is slightly di�erent: It is the maximum of all a
hievable s
oresby an alignment starting in or before slab k . Also let Li;j;k be the length of anoptimal alignment starting at slab k, and a
hieving s
ore Si;j;k . A single slab
an 
ontribute at most � to the length of any alignment. We store at ea
h node(i; j) dt=�e+1 s
ore-length pairs (Si;j;k;Li;j;k) for 0 � k � dt=�e 
orrespondingto dt=�e+1 optimal alignments that end (i; j) . Figure 2 shows the steps of ourapproximation algorithm APX-LAt. The pro
essing is done row-by-row startingwith the top row (i = 0) of GX;Y .Step 1 of the algorithm performs the initialization of the lists of the nodesin the top row (i = 0). Step 2 implements 
omputation of s
ores as di
tatedby the dynami
 programming formulation in (1). Let maxp of a list of s
ore-length pairs be a pair with the maximum s
ore in the list. We obtain an optimalalignment with s
ore Si;j;k by extending an optimal alignment from one of thenodes (i�1; j), (i�1; j�1), or (i; j�1) . We note that extending an alignment at(i; j) from node (i�1; j�1) in
reases the length by 2 and the s
ore by s(xi; yj),whereas from nodes (i � 1; j) or (i; j � 1) adds 1 to the length and �� to thes
ore of the resulting alignment. There are two 
ases:(1) If the 
urrent node (i; j) is not on the �rst diagonal after a boundarythen nodes (i � 1; j), (i � 1; j � 1) and (i; j � 1) share the same slabs withnode (i; j) . In this 
ase (Si;j;k ;Li;j;k) is 
al
ulated by using (Si�1;j;k;Li�1;j;k),(Si�1;j�1;k ;Li�1;j�1;k), and (Si;j�1;k ;Li;j�1;k) as shown in Step 2:b where(Si�1;j�1;k ;Li�1;j�1;k) � (s(xi; yj); 2) = (Si�1;j�1;k + s(xi; yj);Li�1;j�1;k + 2)if Si�1;j�1;k > 0 or k = 0; and (0; 0) otherwise. This is be
ause, by de�nition,every lo
al alignment has a positive s
ore, and it is either a single mat
h, or it isan extension of an alignment whose s
ore is positive. Therefore we do not let analignment with no s
ore be extended unless the resulting alignment is a singlemat
h in the 
urrent slab.(2) If the 
urrent node is on the �rst diagonal following a boundary (i.e. i + jmod � = 1) then the slabs for the nodes involved in the 
omputations fornode (i; j) di�er as shown in Figure 3. In this 
ase slab k for node (i; j) is slabk � 1 for nodes (i � 1; j), (i � 1; j � 1) and (i; j � 1) . Moreover any alignmentending at (i; j) starting at slab 0 for (i; j) 
an only in
lude one of the edges((i � 1; j); (i; j)) or ((i � 1; j � 1); (i; j)) both of whi
h have negative weight�� . Therefore, (Si;j;0;Li;j;0) is set to (0; 0) . Steps 2:a:1 and 2:a:2 show the
al
ulation of (Si;j;k ;Li;j;k) respe
tively for 0 < k < dt=�e and for k = dt=�e .The running maximum s
ore dLAt is updated whenever a newly 
omputeds
ore for an alignment with length � t�� is larger than the 
urrent maximumwhi
h 
an only happen with alignments starting in or before slab dt=�e � 1 .The �nal value dLAt is returned in Step 3. The alignment position a
hieving thiss
ore may also be desired. This 
an be done by maintaining for ea
h optimalalignment a start and end position information besides its s
ore and length. Inthis 
ase in addition to the running maximum s
ore, the start and end positionsof a maximal alignment should be stored and updated.



Algorithm APX-LAt(Æ; �)1: Initialization:set dLAt = 0set (S0;j;k;L0;j;k) = (0; 0) for all j; k, 0 � j � m, and 0 � k � dt=�e2: Main 
omputations:for i = 1 to n dofset (Si;0;k;Li;0;k) = (0; 0) for all k, 0 � k � dt=�efor j = 1 to m dof if (i+ j mod � = 1) thenfset (Si;j;0;Li;j;0) = (0; 0)for k = 1 to dt=�e � 1 do2:a:1 set (Si;j;k;Li;j;k) = maxpf (0; 0); (Si�1;j;k�1;Li�1;j;k�1) + (��; 1);(Si�1;j�1;k�1;Li�1;j�1;k�1)� (s(xi; yj); 2);(Si;j�1;k�1;Li;j�1;k�1) + (��; 1) gfor k = dt=�e2:a:2 set (Si;j;k;Li;j;k) = maxpf (0; 0); (Si�1;j;k�1;Li�1;j;k�1) + (��; 1);(Si�1;j�1;k�1;Li�1;j�1;k�1)� (s(xi; yj); 2);(Si;j�1;k�1;Li;j�1;k�1) + (��; 1);(Si�1;j;k;Li�1;j;k) + (��; 1);(Si�1;j�1;k;Li�1;j�1;k)� (s(xi; yj); 2);(Si;j�1;k;Li;j�1;k) + (��; 1) gg elsef for k = 0 to dt=�e do2:b set (Si;j;k;Li;j;k) = maxpf (0; 0); (Si�1;j;k;Li�1;j;k) + (��; 1);(Si�1;j�1;k;Li�1;j�1;k)� (s(xi; yj); 2);(Si;j�1;k;Li;j�1;k) + (��; 1) ggfor k = dt=�e � 1 if Li;j;k � t�� then set dLAt = maxfdLAt;Si;j;kgfor k = dt=�e set dLAt = maxfdLAt;Si;j;kggg3: Return dLAt Fig. 2. Algorithm APX-LAt.
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Fig. 3. Relative numbering of the slabs with respe
t to (i; j), (i � 1; j), (i � 1; j � 1)and (i; j � 1) when node (i; j) is on the �rst diagonal following boundary b(i+ j)=�
 .We �rst show that Si;j;k 
al
ulated by the algorithm is the optimum s
orea
hievable and Li;j;k is the length of an alignment a
hieving this s
ore over theset of all alignments ending at node (i; j) and starting with respe
t to diagonali+ j: 1) at slab k for 0 � k < dt=�e, 2) in or before slab k for k = dt=�e . This
laim 
an be proved by indu
tion. If we assume that the 
laim is true for nodes(i� 1; j), (i� 1; j � 1) and (i; j � 1), and for their slabs, then we 
an easily seeby following Step 2 of the algorithm that the 
laim holds for node (i; j) and itsslabs.Let optimum s
ore LAt� for the alignments of length � t be a
hieved at node(i; j) . Consider the 
al
ulations of the algorithm at (i; j) at whi
h an optimalalignment ends. There are two possible orientations of an optimal alignment asshown in Figure 4: 1) It starts at some node (i0; j0) of slab k = dt=�e � 1 . Byour previous 
laim an alignment starting at slab k with s
ore Si;j;k � LAt� is
aptured in Step 2. The length of this alignment Li;j;k is at least t � � sin
ethe length of the optimal alignment is � t, and both start at the same slab andend at (i; j). 2) It starts at some node (i00; j00) in or before slab k = dt=�e .Again by the previous 
laim an alignment starting in or before slab k with s
oreSi;j;k � LAt� is 
aptured in Step 2. The length of this alignment Li;j;k is at leastt�� sin
e slab k is at distan
e � t�� from (i; j) . Therefore the �nal value dLAtreturned in Step 3 is � LAt� and it is a
hieved by an alignment whose length is� t�� . We summarize these results in the following theorem.Theorem 1. For a feasible LAt problem, Algorithm APX-LAt returns an align-ment (bI; bJ) su
h that s(bI; bJ) � LAt� and jbI j+ j bJ j � (1� 1r )t for any r > 1. Thealgorithm's 
omplexity is O(rnm) time and O(rm) spa
e.Proof. Algorithm APX-LAt is similar to the Smith-Waterman algorithm ex
eptthat at ea
h node instead of a single s
ore, dt=�e+1 entries for s
ore-length pairsare stored and manipulated. Therefore the resulting 
omplexity ex
eeds that
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tor of dt=�e + 1. That is, the time
omplexity of APX-LAt is O(nmt=�). The algorithm requires O(mt=�) spa
esin
e we need the entries in the previous and the 
urrent row to 
al
ulate theentries in the 
urrent row. When the LAt problem is feasible, it is guaranteed thatAlgorithm APX-LAt returns an alignment (bI; bJ) su
h that s(bI; bJ) � LAt� > 0and jbI j+ j bJ j � t�� for any positive � . Therefore setting � = bt=r
 for a 
hoi
eof r, 1 < r � t, and using Algorithm APX-LAtwe 
an a
hieve the approximationand 
omplexity results expressed in the theorem. We also note that for� = 1 thealgorithm be
omes a dynami
 programming algorithm extending the dimensionby storing all possible alignment lengths.4 Finding long alignments with high normalized s
oreWe 
onsider the problem Qt of �nding two subsequen
es with normalized s
orehigher than �, and total length at least t . More formallyQt : �nd (I; J) su
h that I � X; J � Y; s(I; J)jI j+ jJ j > � and jI j+ jJ j � t (4)We note that Qt is feasible i� NLAt� > � . We present an approximation al-gorithm whi
h provided that Qt is feasible �nds two subsequen
es bI � X , andbJ � Y with normalized s
ore higher than �, and jbI j+ j bJ j � (1� 1r )t .Let AVt denote the set of alignment ve
tors between X and Y where (x; y; z)is an alignment ve
tor if there is an alignment between subsequen
es I � X andJ � Y with x mat
hes, y mismat
hes, and z indels su
h that jI j+ jJ j � t . Thens(I; J) and length jI j + jJ j are linear fun
tions over AVt . Problems LAt andNLAt 
an be rewritten as follows :LAtÆ;� : maximize x� Æy � �z s.t. (x; y; z) 2 AVtNLAtÆ;� : maximize x�Æy��z2x+2y+z s.t. (x; y; z) 2 AVt



Also for a given �, we have the parametri
 lo
al alignment with length thresholdproblem LAt(�)LAtÆ;�(�) : maximize x� Æy � �z � �(2x + 2y + z) s.t. (x; y; z) 2 AVtA parametri
 lo
al alignment with length threshold problem 
an be des
ribedin terms of a lo
al alignment with length threshold problem.Proposition 1. For � 6= 12 , the optimum value LAt�(�) of the parametri
 LAtproblem 
an be formulated in terms of the optimum value LAt� of an LAt prob-lem.Proof. The optimum value of the parametri
 problem, when � 6= 12 , isLAt�(�) = (1� 2�)LAt�Æ0;�0 where Æ0 = Æ + 2�1� 2�; �0 = �+ �1� 2� : (5)Thus, 
omputing LAt�(�) involves solving the lo
al alignment problem LAtÆ0;�0 ,and performing some simple arithmeti
 afterward.We assume without loss of generality that for any alignment the s
ore doesnot ex
eed the number of mat
hes. Therefore for any alignment ve
tor, its nor-malized s
ore � � 12 . We 
onsider � = 12 as a spe
ial 
ase sin
e it 
an onlyhappen when the alignment is 
omposed of mat
hes only.An optimal solution to a ratio optimization problemNLAt 
an be a
hieved viaa series of optimal solutions of the parametri
 problem with di�erent parametersLAt(�). In fa
t � = NLAt� i� LAt�(�) = 0 . Details for a very similar result
an be found in [5℄.Proposition 2. When solving LAt(�), Algorithm APX-LAt returns an align-ment (bI; bJ) with normalized s
ore higher than �, and jbI j + j bJ j � (1� 1r )t ifProblem Qt is feasible.Proof. Assume that Problem Qt is feasible. Then NLAt� > �, and thereforeLAt�(�) > 0 whi
h implies that Algorithm APX-LAt with parameters Æ0 and �0(of Proposition 1) returns an alignment (bI; bJ) su
h that its s
ore is positive (i.e.s(bI; bJ)� �(jbI j+ j bJ j) > 0, or equivalently its normalized s
ore is higher than �)and jbI j+ j bJ j � (1� 1r )t by the approximation results of Algorithm APX-LAt .Theorem 2. If NLAt� > 0 then an alignment with normalized s
ore at leastNLAt�, and total length at least (1� 1r )t 
an be 
omputed for any r > 1 in timeO(rnm logn), and using O(rm) spa
e.Proof. Algorithm RationalNLAt given in Figure 5 a

omplishes this. The algo-rithm is based on a binary sear
h for optimum normalized s
ore over an intervalof integers. This takes O(logn) parametri
 problems to solve. The algorithm issimilar to the RationalNLA algorithm in [5℄, and the results are derived simi-larly.



Algorithm APX-RationalNLAtIf there is an exa
t mat
h of size (1� 1r )t then return( 12 ) and exit�  1qs(m+n)2 where Æ = pq , and � = rs[e; f ℄ [0; 12��1℄��  0While (e+ 1 < f) dok  d(e+ f)=2eIf APX-LAt(k�) > 0 then fe k, and ��  x�Æy��z2x+2y+z for (x; y; z) optimal gelse f  kEnd fwhilegReturn(��) Fig. 5. Algorithm APX-RationalNLAt for rational s
ores.If NLAt� > 0 then we 
an also a
hieve the same approximation guaranteeby using a Dinkelba
h algorithm given in [5℄ as the template. The details ofthe resulting algorithm are presented in Figure 6. Solutions of the parametri
problems through the iterations yield improved (higher) values to � ex
ept forthe last iteration. The resulting algorithm performs no more than 3�5 iterationson the average as experiments suggest.Algorithm Dinkelba
hIf APX-LAt(0) � 0 then return(0) and exit��  x�Æy��z2x+2y+z where (x; y; z) is optimal for APX-LAt(0)Repeat� ��if APX-LAt(�) > 0 then ��  x�Æy��z2x+2y+z for (x; y; z) optimalUntil �� � �Return(��) Fig. 6. Dinkelba
h algorithm for NLAt.Our approximation and 
omplexity results hold for two parti
ularly impor-tant 
ases of s
oring s
hemes: aÆne gap penalties, and arbitrary s
oring matri
es.We 
an develop variants of Algorithm APX-LAt for these s
oring s
hemes withsimple modi�
ations. In the 
ase of arbitrary s
oring matri
es, penalties dependon individual symbols involved in the operations. Varying penalties 
an easilybe in
orporated in the dynami
 programming formulation. In the 
ase of aÆnegap penalties, the total penalty of a gap (a blo
k of insertions, or a blo
k of dele-tions) of size k is � + k� where �, and � are the gap open penalty, and the gapextension penalty, respe
tively. AÆne gap penalties require a slightly di�erentdynami
 programming formulation than the one given for basi
 s
oring s
heme(1). It 
an be des
ribed as follows ([9℄) : Let Ei;j = Fi;j = Si;j = 0 when i or j



is 0 then de�ne Ei;j = maxfSi;j�1 � �; Ei;j�1 � �g;Fi;j = maxfSi�1;j � �; Fi�1;j � �g;Si;j = maxf0; Si�1;j�1 + s(xi; yj); Ei;j ; Fi;jg (6)AÆne gap penalties do not in
rease the 
omplexity of the lo
al alignmentproblem, i.e. the problem 
an be solved in time O(nm) and using O(m) spa
e.Figure 7 shows the variant of Algorithm APX-LAt for aÆne gap penalties. Theapproximation and 
omplexity results expressed in Theorem 1 
an be obtainedby Algorithm APX-LAt-AFFINE for aÆne gap penalties.We 
an verify that in both 
ases of these s
oring s
hemes a parametri
 LAtproblem 
an easily be formulated in terms of an LAt problem. We 
an developvariants of NLAt algorithms for them su
h that the same approximation and
omplexity results hold.5 Implementation and test resultsWe have implemented versions of Algorithm APX-LAt andDinkelba
h for aÆnegap penalties and tested ourDinkelba
h program on bli-4 lo
us in C. elegans andC.briggsae for various values of parameters t and r. We have observed that theprogram performs 3�5 invo
ations of APX-LAt implementation on the average.Therefore for reasonable 
hoi
e of r its time requirement is 3r to 5r times that of aSmith-Waterman implementation on the average. In Figure 9, we in
lude resultsfor optimal alignments obtained as t runs from 1; 000 to 22; 000 in in
rements of1; 000, and from 30; 000 to 90; 000 in in
rements of 10; 000, and for �xed r = 5 .On a Beowulf 
lass super-
omputer whi
h is 
omposed of a 
luster of 42 linux-based 400-500 Mhz workstations it took about 8 days to 
omplete the tests. Wenote that we 
ould use a fast heuristi
 algorithm to solve the parametri
 lo
alalignment problems and improve the running time by orders of magnitude, butthen the approximation guarantee of the results no longer holds.We have used a s
ore of 1 for a mat
h, �1 for a mismat
h, and �6 � 0:2kfor a gap of length k. In Figure 9, we have multiplied the normalized s
oresby 10; 000 to be able to display them on the same s
ale as the ordinary s
ores.As expe
ted in general, normalized s
ores steadily de
rease with the in
reasingalignment lengths. The alignments whose lengths ex
eed 32; 100 in
lude regionswith very poor s
ores.Test runs like this 
an generate important statisti
al information. For in-stan
e in this 
ase we 
an infer from our approximation results and from thenormalized s
ore 0:33 of the alignment with length 16; 048 that 0:33 
annot beobtained by any alignment whose length ex
eeds 16; 048=(1� 1=5) � 20; 000 .



Algorithm APX-LAt-AFFINE(Æ; �; �)1: Initialization:set dLAt = 0set (E0;j;k;LE0;j;k) = (F0;j;k;LF0;j;k) = (S0;j;k;LS0;j;k) = (0; 0)for all j; k, 0 � j � m, 0 � k � dt=�e2: Main 
omputations :for i = 1 to n do fset (Ei;0;k;LEi;0;k) = (Fi;0;k;LFi;0;k) = (Si;0;k;LSi;0;k) = (0; 0)for all k, 0 � k � dt=�efor j = 1 to m do fif (i+ j mod � = 1) then fset (Ei;j;0;LEi;j;0) = (Fi;j;0;LFi;j;0) = (Si;j;0;LSi;j;0) = (0; 0)for k = 1 to dt=�e � 1 do fset (Ei;j;k;LEi;j;k) = maxf (Si;j�1;k�1;LSi;j�1;k�1) + (��; 1);(Ei;j�1;k�1;LEi;j�1;k�1) + (��; 1) gset (Fi;j;k;LFi;j;k) = maxf (Si�1;j;k�1;LSi�1;j;k�1) + (��; 1);(Fi�1;j;k�1;LFi�1;j;k�1) + (��; 1) gset (Si;j;k;LSi;j;k) = maxf (0; 0);(Si�1;j�1;k�1;LSi�1;j�1;k�1)� (s(xi; yj); 2);(Ei;j;k;LEi;j;k); (Fi;j;k;LFi;j;k) ggfor k = dt=�e do fset (Ei;j;k;LEi;j;k) = maxf (Si;j�1;k�1;LSi;j�1;k�1) + (��; 1);(Ei;j�1;k�1;LEi;j�1;k�1) + (��; 1);(Si;j�1;k;LSi�1;j;k) + (��; 1);(Ei;j�1;k;LEi;j�1;k) + (��; 1) gset (Fi;j;k;LFi;j;k) = maxf (Si�1;j;k�1;LSi�1;j;k�1) + (��; 1);(Fi�1;j;k�1;LFi�1;j;k�1) + (��; 1);(Si�1;j;k;LSi�1;j;k) + (��; 1);(Fi�1;j;k;LFi�1;j;k) + (��; 1) gset (Si;j;k;LSi;j;k) = maxf (0; 0);(Si�1;j�1;k�1;LSi�1;j�1;k�1)� (s(xi; yj); 2);(Si�1;j�1;k;LSi�1;j�1;k)� (s(xi; yj); 2);(Ei;j;k;LEi;j;k); (Fi;j;k;LFi;j;k) ggg: : :Fig. 7. Algorithm APX-LAt-AFFINE . The algorithm 
ontinues in Figure 8 .



else ffor k = 0 to dt=�e do fset (Ei;j;k;LEi;j;k) = maxf (Si;j�1;k;LSi;j�1;k) + (��; 1);(Ei;j�1;k;LEi;j�1;k) + (��; 1) gset (Fi;j;k;LFi;j;k) = maxf (Si�1;j;k;LSi�1;j;k) + (��; 1);(Fi�1;j;k;LFi�1;j;k) + (��; 1) gset (Si;j;k;LSi;j;k) = maxf (0; 0); (Si�1;j�1;k;LSi�1;j�1;k)� (s(xi; yj); 2);(Ei;j;k;LEi;j;k); (Fi;j;k;LFi;j;k) gggfor k = dt=�e � 1 if LEi;j;k � t�� then setdLAt = maxfdLAt;Si;j;kgfor k = dt=�e setdLAt = maxfdLAt;Si;j;kggg3: Return LAt�Fig. 8. Continuation of Algorithm APX-LAt-AFFINE from Figure 7 .6 Con
lusionWe have developed an algorithm for �nding suÆ
iently long similar subsequen
esin two sequen
es of lengths n and m respe
tively, with n � m . Given thresholds� and t the proposed algorithm �nds an alignment with a normalized s
orehigher than � and with total length no smaller than (1� 1r )t, provided that the
orresponding normalized lo
al alignment problem is feasible. The length of theresult 
an be made arbitrarily 
lose to t by in
reasing r. This is done at theexpense of allo
ating more resour
es as the time and spa
e 
omplexities dependon the parameter r as O(rnm) and O(rm) respe
tively.Based on the te
hniques previously proposed in [5℄, and using the approxima-tion algorithm we present in this paper, we have further developed ways to �ndan alignment with normalized s
ore no smaller than the maximum normalizeds
ore a
hievable by alignments with length at least t. The alignment returned bythe algorithm is guaranteed to have total length � (1� 1r )t . In our experimentswe have observed that the time requirement of the Dinkelba
h implementationis O(rnm) on the average. This is better 
ompared to the worst-
ase time 
om-plexity O(n2m) of the naive algorithm.We believe that our approximation algorithms have made normalized s
ores aviable similarity measure in pairwise lo
al alignment as they provide approximate
ontrol over the desired alignment lengths. Sin
e the 
omputed normalized s
orefor a parti
ular value of t is an upper bound for the a
tual normalized s
oresa
hievable by sequen
es of length at least t, these algorithms 
an also be usedto 
olle
t statisti
s about s
ores of alignments versus length for a parti
ular pairof input sequen
es.



Fig. 9. Ordinary versus normalized s
ores on bli-4 lo
us in C. elegans and C.briggsaewhen s
ore of a mat
h is 1, mismat
h s
ore is �1, and s
ore for a gap of length k is�6� 0:2k .Referen
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