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Abstract—We introduce a matrix decomposition method and
prove that multiplication in GF(2k) with a Type 1 optimal normal
basis for can be performed using k

2
−1 XOR gates irrespective of

the choice of the irreducible polynomial generating the field. The
previous results achieved this bound only with special irreducible
polynomials. Furthermore, the decomposition method performs
the multiplication operation using 1.5k(k − 1) XOR gates for
Type 2a and 2b optimal normal bases, which matches previous
bounds.

I. INTRODUCTION

The subject of the paper is the multiplication operation

in the field GF(2k) whose elements are represented using a

normal basis. Parallel multipliers for GF(2k) have applications

in error-correcting codes [1] for smaller values of k, usually

from 16 to 32. Applications in cryptography, for example,

elliptic curve cryptographic functions EC-DSA, EC-IES and

EC-based random number generators [2], require hardware

and software implementations of GF(2k), but for much larger

values of k. Polynomial basis multiplication is probably more

suitable for such implementations, though standards (such as

ANSI X9.62) suggest normal bases as well [3]. Since optimal

normal bases exist only for a smaller subset of k values sug-

gested by cryptographic standards, often sub-optimal Gaussian

normal bases are used. For example, the standard ANSI X9.62

suggests selecting a Type 2 basis for GF(2k), and if this does

not exist, then and a Type 1 basis, and if neither exists, then

a Type T basis with the smallest value of T .

Furthermore, the new research in elliptic curve cryptogra-

phy, particularly, Edward curves and its derived versions based

on binary fields [4], [5], has shown that GF(2k) fields coupled

with binary Edward curves are highly efficient and secure [5].

II. PRELIMINARIES

All symbols and terms used in this paper are given in Table

1. An element β of the field GF(2k) is called a normal element

if any element a ∈ GF(2k) can be uniquely written as a linear

sum of the powers of 2 powers of β as

a =

k−1
∑

i=0

aiβ
2i = a0β + a1β

2 + a2β
4 + · · ·+ ak−1β

2k−1

such that ai ∈ {0, 1}. For the brevity of the notation, we

will interchangeably use βi = β2i for i = 0, 1, . . . , k − 1,

and the denote the basis set by B = {β0, β1, . . . , βk−1}. Also
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we will use 1 (boldface 1) to represent the identity element

expressed in normal basis, which is equal to the sum of all

basis elements:

1 = β + β2 + β4 + · · ·+ β2k−1

= β0 + β1 + β2 + · · ·+ βk−1

The normal representation of an element in GF(2k) is par-

ticularly useful for squaring; the normal expression of a2 is

obtained by left-rotating the digits of the normal expression

of a. The ease of squaring in normal basis is remarkable, but

the multiplication is more complicated.

In order to describe the normal basis multiplication, we

refer to the Massey-Omura algorithm [6], which follows the

following steps: Given the bits ai and bi of the input operands

a and b, the Massey-Omura multiplier first generates all partial

product terms aibj for 0 ≤ i, j ≤ k−1 using AND gates, and

then sums the subsets of these partial product terms using XOR

gates to obtain the bits cr of the product for r = 0, 1, . . . , k−1.

For uniformity of the analysis throughout this paper we

assume that AND and XOR gates have 2 inputs, and we denote

the individual gate delays by TA and TX .

There are k2 partial product terms aibj , which can be

computed using k2 2-input AND gates in a single TA delay.

This computation is space-optimal; k2 is both upper and lower

bound on the number of partial product terms, because all of

them need to be computed.

In the computation of each product term cr for 0 ≤ r ≤
k − 1, we need only a subset of the k2 partial product terms

aibj . According to the optimality theorem of the normal basis

multiplication [7], the number of aibj terms needed to compute

any of cr is at least 2k − 1. If there exists a normal basis in

GF(2k) for which the number of aibj terms for computing

cr is exactly 2k− 1, then this normal basis is called optimal.

In this case, a cr term can be computed using 2k − 2 XOR

gates, while all cr terms for r = 0, 1, . . . , k− 1 would require

k(2k−2) XOR gates for optimal normal bases. However, this

is an upper bound as there are common aibj terms among the

computations of cr terms for different r values. It is shown that

certain subsets of GF(2k) fields, for example, those generated

by irreducible all-one-polynomials [8], [9], require only k2−1
XOR gates. This paper introduces a matrix decomposition

method which requires k2 − 1 XOR gates for the Type 1

optimal normal basis, irrespective of the choice the irreducible

polynomial. Moreover the method is applicable to Type 2a and

2b bases as well, requiring 1.5k(k − 1) XOR gates, which

matches certain previous bounds [10], [11].



Symbol or Term Meaning

k A nonzero positive integer

GF(2k) Galois field of 2k elements

a, b, c Arbitrary elements of GF(2k)
ai, bi, ci Binary coefficients of a, b, c

β A normal element of GF(2k)

βi Equals to β2i

B The basis set {β0, . . . , βk−1}
Zk+1 The set of integers {0, 1, . . . , k}
p A prime number

Z∗
p The set of integers {1, 2, . . . , p− 1}
γ The primitive pth root of identity

γ + γ−1 Equals to the normal element β
λ The k × k matrix; sum subsets of B
λ λ = λ0β0 + λ1β1 + · · ·+ λk−1βk−1

λij The (i, j) entry of the matrix λ

λij Equals to β2i+2j = β2iβ2j = βiβj

λi The k × k matrices with entries {0, 1}
Qp The set of quadratic residues mod p
Q′

p The set of quadratic nonresidues mod p
TA and TX Delays of 2-input AND or XOR gates

Table 1: All symbols and terms used in this paper.

III. OPTIMAL NORMAL BASES

The constructions of optimal normal bases are described in

[7], [12], [13], and summarized in the following theorem:

Theorem 1: An optimal normal basis for GF(2k) exists in

either of the following cases, and can be constructed as:

1) If k + 1 is prime and 2 is a primitive element in Zk+1.

Each of the k nonunit (k + 1)th root of identity forms

an optimal normal basis in GF(2k).
2) If p = 2k + 1 is prime and

2a: Either, 2 is primitive in Z∗
p ;

2b: Or, 2k+1 = 3 (mod 4) and 2 generates quadratic

residues in Z∗
p .

In this case, β = γ + γ−1 generates an optimal normal

basis in GF(2k), where γ is a primitive pth root of

identity.

The optimal normal bases that are derived from the first part of

the theorem are named Type 1, while the ones that follow from

the second part are named Type 2 bases, or more specifically,

as Type 2a and Type 2b bases. For k ≤ 30, the optimal normal

bases are listed in Table 2.

k values

Type 1 2, 4, 10, 12, 18, 28
Type 2a 2, 5, 6, 9, 14, 18, 26, 29, 30
Type 2b 3, 11, 23

Table 2: The optimal normal bases for k ≤ 30.

IV. NORMAL BASIS MULTIPLICATION ALGORITHM

Given the input operands a and b as

a =

k−1
∑

i=0

aiβi , b =

k−1
∑

i=0

biβi ,

the multiplication algorithm computes each bit of the product

c, which can be written as a double summation as

c =

k−1
∑

i=0

k−1
∑

j=0

aibjβiβj .

This in turn can be written as a vector-matrix product
[

a0 a1 · · · ak−1

]

λ
[

b0 b1 · · · bk−1

]T
,

such that every element of the k × k matrix λ is the sum

of a subset of the normal elements {β0, β1, β2, . . . , βk−1}.

Furthermore, the λ matrix can be expressed in terms of the

k×k matrices λi for i = 0, 1, . . . , k−1 with entries in {0, 1}
such that

λ = λ0β0 + λ1β1 + λ2β2 + · · ·+ λk−1βk−1 .

V. DIRECT MULTIPLICATION IN GF(22)

Consider the smallest extension field GF(22), which has

both Type 1 and Type 2 of optimal normal bases. We will use

the Type 1 optimal normal element β = x and the irreducible

polynomial p(x) = x2+x+1, and derive the λ matrix. Given

the normal representations of two elements of the field a =
a0β0 + a1β1 and b = b0β0 + b1β1, their product c is given as

c = a0b0β
2
0 + a0b1β0β1 + a1b0β0β1 + a1b1β

2
1

= a0b0β1 + a0b1(β0 + β1) + a1b0(β0 + β1) + a1b1β0 ,

where the equalities β2
0 = β1, β0β1 = β0 + β1, and β2

1 =
β0 are obtained using the normal element β = x and the

irreducible polynomial p(x) = x2 + x+ 1. The vector-matrix

expansion of the product can be written as

c =
[

a0 a1
]

[

β1 β0 + β1

β0 + β1 β0

] [

b0
b1

]

,

which gives us the λ matrix as

λ =

[

β1 β0 + β1

β0 + β1 β0

]

.

Furthermore, we obtain the λ0 and λ1 matrices for GF(22) as

λ = λ0β0 + λ1β1 =

[

β1 β0 + β1

β0 + β1 β0

]

=

[

0 1
1 1

]

β0 +

[

1 1
1 0

]

β1 .

Once all partial products aibj for 0 ≤ i, j ≤ k − 1 are

computed using k2 AND gates, the λi matrices determine

which subsets of the partial products aibj are to be summed

to obtain a particular product term cr. For GF(22), we have

c0 =
[

a0 a1
]

[

0 1
1 1

] [

b0
b1

]

= a0b1 + a1b0 + a1b1 (1)

c1 =
[

a0 a1
]

[

1 1
1 0

] [

b0
b1

]

= a0b0 + a0b1 + a1b0 (2)

There are 3 1s in each of the λ0 and λ1 matrices, and

therefore, there 3 terms partial product terms aibj in the

expressions for c0 or c1. The total number of XOR gates to

compute both of c0 and c1 is 2 · 2 = 4.
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VI. MATRIX DECOMPOSITION METHOD FOR GF(22)

However, we observe a certain similarity in the λ0 and λ1

matrices: each can be written as the sum of two matrices such

that the first matrix is the same for both, in other words,

λ0 =

[

0 1
1 1

]

=

[

0 1
1 0

]

+

[

0 0
0 1

]

, (3)

λ1 =

[

1 1
1 0

]

=

[

0 1
1 0

]

+

[

1 0
0 0

]

. (4)

This matrix decomposition implies that the computation of c0
and c1 can be performed in two steps: the first step involves

a common matrix for both c0 and c1, and while the second

steps involve two different matrices.

c0 =
[

a0 a1
]

([

0 1
1 0

]

+

[

0 0
0 1

])[

b0
b1

]

=
[

a0 a1
]

[

0 1
1 0

] [

b0
b1

]

+
[

a0 a1
]

[

0 0
0 1

] [

b0
b1

]

,

c1 =
[

a0 a1
]

([

0 1
1 0

]

+

[

1 0
0 0

])[

b0
b1

]

=
[

a0 a1
]

[

0 1
1 0

] [

b0
b1

]

+
[

a0 a1
]

[

1 0
0 0

] [

b0
b1

]

.

The first vector-matrix product needs to be performed only

once for both c0 and c1, followed by the second vector-matrix

products which need to performed separately for each c0 and

c1. After these steps, we need add the partial sums to get

c0 and c1. Therefore, our algorithm for GF(22) follows the

following steps:

• Step 1: First, we compute the common partial product

term, which requires one XOR gate and one TX delay:

s =
[

a0 a1
]

[

0 1
1 0

] [

b0
b1

]

= a0b1 + a1b0 . (5)

• Step 2: Now, we use the decomposition of λ0 and λ1 to

compute t0 and t1; this step does not require any XOR

gates and any delay:

t0 =
[

a0 a1
]

[

0 0
0 1

] [

b0
b1

]

= a1b1 , (6)

t1 =
[

a0 a1
]

[

1 0
0 0

] [

b0
b1

]

= a0b0 . (7)

• Step 3: Finally we compute c0 and c1 using c0 = s+ t0
and c1 = s + t1. This step requires one XOR gate and

one TX delay.

The matrix decomposition method for GF(22) reduces the

number of XOR gates to 3, while the direct computation using

the formulae (1) and (2) imply 4 XOR gates. The total gate

delay is TA + 2TX .

VII. MATRIX DECOMPOSITION METHOD FOR GF(24)

The success of the decomposition method in GF(2k) de-

pends on the the additive components the λi matrices, i.e.,

whether they have common terms among the expressions

for cr. We now consider the field GF(24) with the Type 1

optimal normal basis β = x3 and the irreducible polynomial

p(x) = x4 + x+ 1. The normal representations of the powers

of β can be obtained by powering β and reducing the resulting

polynomials mod p(x), as shown in [14]. The resulting λ

matrix is

λ =









β2 β3 β5 β9

β3 β4 β6 β10

β5 β6 β8 β12

β9 β10 β12 β16









=









β1 β3 1 β2

β3 β2 β0 1

1 β0 β3 β1

β2 1 β1 β0









.

The number of terms in the λ matrix for the optimal basis

β ∈ GF(24) is equal to 4 · (2 · 4 − 1) = 28. This implies

4 · (2 · 4 − 2) = 24 XOR gates in direct computation of the

normal basis multiplication. To apply the matrix decomposi-

tion method, similar to the case of GF(22), we first derive the

4× 4 λr matrices for r = 0, 1, 2, 3 from the 4 × 4 λ matrix.

Furthermore, using exhaustive search we have obtained the

decomposition of the λi matrices as follows:

λ0 =









0 0 1 0
0 0 1 1
1 1 0 0
0 1 0 1









=









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









+









0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









λ1 =









1 0 1 0
0 0 0 1
1 0 0 1
0 1 1 0









=









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









+









1 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0









λ2 =









0 0 1 1
0 1 0 1
1 0 0 1
1 1 1 0









=









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









+









0 0 0 1
0 1 0 0
0 0 0 0
1 0 0 0









λ3 =









0 1 1 0
1 0 0 1
1 0 1 0
0 1 0 0









=









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









+









0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 0









The steps of our algorithm for the normal basis multiplication

in GF(24) are:

• Step 1: First, we compute the common partial product

term using 3 XOR gates. This step requires 2TX gate

delays, by arranging the sum computation as a binary

tree with 4 leaves, with depth 2TX .

s =
[

a0 a1 a2 a3
]









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

















b0
b1
b2
b3









= a0b2 + a1b3 + a2b0 + a3b1 .

• Step 2: Then, we use the decomposition of λi to compute

all 4 tr terms 4×2 = 8 XOR gates. This step also requires

2TX gate delays.

t0 =
[

a0 a1 a2 a3
]









0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

















b0
b1
b2
b3









= a2b1 + a1b2 + a3b3 ,
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t1 =
[

a0 a1 a2 a3
]









1 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

















b0
b1
b2
b3









= a0b0 + a3b2 + a2b3 ,

t2 =
[

a0 a1 a2 a3
]









0 0 0 1
0 1 0 0
0 0 0 0
1 0 0 0

















b0
b1
b2
b3









= a3b0 + a1b1 + a0b3 ,

t3 =
[

a0 a1 a2 a3
]









0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 0

















b0
b1
b2
b3









= a1b0 + a0b1 + a2b2 .

• Step 3: Finally, we compute cr for r = 0, 1, 2, 3 using 4

XOR gates: cr = s + tr. This will require a single TX

gate delay.

The computation of c0, c1, c2, c3 using the matrix decomposi-

tion method requires 3 + 8 + 4 = 15 XOR gates, instead 24

XOR gates required by the direct method. Since Steps 1 and

2 are independent of one another, the total gate delay is equal

to TA + 3TX .

VIII. DECOMPOSITION METHOD FOR TYPE 1 BASES IN

GF(2k)

The decomposition method reduces the number of XOR

gates due to the common partial product terms aibj among

the computation of cr terms. We define the intersection of

two or more λr matrices as the matrix whose (i, j) element is

1 if all input matrices λr has a 1 in their (i, j) location, and

0 otherwise. The intersection of all λr matrices is the matrix

used the computation of the partial product term s. We will

denote this matrix by µ; for GF(22) we obtained it as

µ = λ0

⋂

λ1 =

[

0 1
1 1

]

⋂

[

1 1
1 0

]

=

[

0 1
1 0

]

,

Also, we obtained µ =
⋂3

r=0 λr for the field GF(24) as

µ =









0 0 1 0
0 0 1 1
1 1 0 0
0 1 0 1









⋂









1 0 1 0
0 0 0 1
1 0 0 1
0 1 1 0









⋂









0 0 1 1
0 1 0 1
1 0 0 1
1 1 1 0









⋂









0 1 1 0
1 0 0 1
1 0 1 0
0 1 0 0









=









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









.

Once the µ matrix is available, any of λr matrices for

r = 0, 1, . . . , k − 1 can be written in terms of µ and a

second matrix. Let us denote the second matrix with νr in the

computation of tr for GF(2k). Thus, we have µ =
⋂k−1

r=0 λr

and λr = µ+ νr for r = 0, 1, . . . , k − 1.

Of course, it is possible that the µ matrix can be a zero

matrix, implying that there are no common 1s among all λr

matrices. In this case, our method would reduce to the direct

method, not offering any savings in the number of XOR gates:

λr = νr.

However, we will prove in this section that µ matrix for

Type 1 optimal normal bases in GF(2k) is a nonzero matrix,

in fact it has exactly k 1s in it. The construction of the µ

matrix and the νr matrices for GF(2k) can be accomplished

using the following steps:

1) First, we construct the λ matrix. The (i, j) entry of λ

matrix is equal to β2i+2j for 0 ≤ i, j ≤ k− 1, where β
is the normal element.

2) We express β2i+2j in the normal basis, i.e., express

it as a linear sum of power of two powers of β.

Thus, we obtain the λ matrix expressed in the normal

basis. This can be accomplished using the polynomial

representation of β and the irreducible polynomial of

the field to obtain all non-power of 2 powers of β in the

normal basis.

3) We obtain the λr matrices for r = 0, 1, . . . , k − 1 by

expanding the λ matrix as a linear sum of the basis

elements βr.

4) We obtain the intersection matrix µ =
⋂k−1

r=0 λr.

5) Each νr matrix is then obtained using νr = λr −µ for

i = 0, 1, . . . , k − 1.

The construction of µ and νr matrices depend on the number

common 1s in the λr matrices, which in turn depend on the

structure and entries of the λ matrix. In order to analyze the

complexity of the new multiplication algorithm, we need to

look into the properties of the λ matrix.

Let us assume that GF(2k) has a Type 1 optimal normal

basis; this implies that k + 1 is prime and 2 is primitive in

Z∗
k+1. Moreover, the optimal normal element β is a primitive

(k + 1)st root of 1 in GF (2k). We write k = 2m and use B
to represent the basis set B = {β0, β1, . . . , βk−1}. The (i, j)
entry of the matrix λ for 0 ≤ i, j ≤ k − 1 is given as

λij = β2i+2j = β2iβ2j = βiβj .

Now we refer to Lemmas 1 and 2 in [14] about the structure

of the λ matrix. The proofs are also given in the same article;

we note that the proofs do not assume a particular type of

irreducible polynomial generating the field GF(2k).
Lemma 1: The elements of λ with the indices (i, i+m mod

k) for i = 0, 1, . . . , k − 1 are all 1s, where 1 = β0 + β1 +
· · ·+ βk−1 and m = k/2.

Lemma 2: The row r for 0 ≤ r ≤ k−1 of λ is a permutation

of B−{βr} with 1 appearing in the column index m+r mod

k.

We will denote the set of indices for which the elements of λ

are all 1s by L as

L = {(i, i+m mod k) | i = 0, 1, 2, . . . , k − 1} .
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Note that L has k elements. As an example, for k = 10, L is

obtained as

L = {(0, 5), (1, 6), (2, 7), (3, 8), (4, 9), (5, 0), (6, 1),

(7, 2), (8, 3), (9, 4)} ,

which is seen in the λ matrix for GF(210) below:

λ =

































β1 β8 β4 β6 β9 1 β5 β3 β2 β7

β8 β2 β9 β5 β7 β0 1 β6 β4 β3

β4 β9 β3 β0 β6 β8 β1 1 β7 β5

β6 β5 β0 β4 β1 β7 β9 β2 1 β8

β9 β7 β6 β1 β5 β2 β8 β0 β3 1

1 β0 β8 β7 β2 β6 β3 β9 β1 β4

β5 1 β1 β9 β8 β3 β7 β4 β0 β2

β3 β6 1 β2 β0 β9 β4 β8 β5 β1

β2 β4 β7 1 β3 β1 β0 β5 β9 β6

β7 β3 β5 β8 1 β4 β2 β1 β6 β0

































.

Using Lemmas 1 and 2, we will prove the following theorem.

Theorem 2: The λr matrix of the field GF(2k) with a Type

1 basis can be written as the sum of two matrices µ and νr

such that elements of the µ matrix with indices in the set

L = {(i, i + m mod k) | i = 0, 1, 2, . . . , k − 1} are 1s. All

other entries of µ are zero. Furthermore, the νr matrix has

k − 1 1s such that the row r is all zero and every other row

has a single 1.

Proof: Since the entries of λ with indices in set L are all 1

(which is equal to the sum of all k basis elements), the entries

of all λr matrices with indices in the set L will be 1. Since

the µ matrix is equal to the intersection of λr matrices, such

entries of µ will be equal to 1 as well. Furthermore, consider

an entry of λ matrix with index (i, j) 6∈ L. This entry would

not be equal to 1, thus, missing at least one basis element.

This implies a zero in the (i, j) 6∈ L location of one of the

λr matrices, and therefore, a zero in the intersection of all of

them, which is the µ matrix. Therefore, the (i, j) entry of the

µ matrix will be 1 iff (i, j) ∈ L and 0 otherwise.

On the other hand we obtained νr matrices by subtracting

µ from λr, however, equivalently they can be computed from

the λ matrix by first removing 1s, and then expanding the

resulting matrix (which will be denoted by λ′) in terms of

all basis elements. For example, for GF(24) we can obtain νr

matrices from the λ′ matrix by expanding it into a sum of all

basis elements

λ′ = ν0β0 + ν1β1 + ν2β2 + ν3β3

such that








β1 β3 0 β2

β3 β2 β0 0
0 β0 β3 β1

β2 0 β1 β0









=









0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









β0 +









1 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0









β1 +









0 0 0 1
0 1 0 0
0 0 0 0
1 0 0 0









β2 +









0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 0









β3

Due to Lemma 2, the row r of the λ′ matrix is a permutation

of all basis elements except βr. Since the row r does not

contain βr, the entire rth row of the νr matrix will be zero.

Furthermore, βr will be present in all other rows of the λ′

matrix except in the row r, there will be a single 1 in all other

rows of the νr matrix, giving k − 1 1s in the νr matrix. �

Before we analyze the space requirements of our decompo-

sition method, we should state that the matrix decomposition

algorithm given in [8] has essentially the same properties

as the one in this paper for Type 1 optimal normal bases,

however there are some differences. The method in [8] uses

irreducible all-one-polynomials to develop the properties of

the λ matrix and the decomposition of the λr matrices.

Specifically, our Lemma 1 describes the same property as

the one in Equation (8) in [8], and our Theorem 2 describes

the same decomposition as the one in Equation 7 in [8].

However, the analysis in [8] is limited to the irreducible all-

one-polynomials. Since an all-one-polynomial of degree k is

irreducible if k + 1 is prime and 2 is a primitive element in

Zk+1, which are also the existence conditions of the Type

1 optimal normal basis, every optimal normal basis Type 1

can be derived by selecting an irreducible all-one-polynomial

[15]. However, optimal normal bases Type 1 can also be

derived using other irreducible polynomials, for example, for

GF(24) in Section VII, we used the irreducible polynomial

p(x) = x4+x+1. Our decomposition method does not depend

on specific irreducible polynomials, and is derived irrespective

of the choice of the irreducible polynomial, and furthermore,

it is applicable to the Type 2 optimal normal bases for which

there are no irreducible all-one-polynomials.

Theorem 3: The decomposition method for the Type 1

optimal normal basis in GF(2k) computes all product terms

cr for r = 0, 1, . . . , k − 1 using k2 AND gates, k2 − 1 XOR

gates, and TA + [1 + log2(k)]TX delay.

Proof: The common term s is computed using

s =
[

a0 a1 · · · ak−1

]

µ











b0
b1
...

bk−1











.

According to Theorem 2, the µ matrix has exactly k 1s with

the indices in L, and all other terms are zero. This implies

that we compute s using a linear sum which contains k terms:

s =

k−1
∑

i=0

aibi+m mod k .

The computation of s is accomplished using a binary tree

of XOR gates with k leaves; the number of XOR gates to

compute s is k − 1, while the delay (the depth of tree) is

log2(k)TX . The s-tree is illustrated in Figure 1.

On the other hand, a single tr term is computed using

tr =
[

a0 a1 · · · ak−1

]

νr











b0
b1
...

bk−1











.
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Also according to Theorem 2, the row r of the νr matrix is

zero, while every other row has a single 1 in it. This implies

that we compute tr using a sum which contains k − 1 terms:

k−1
∑

i=0

i6=r

aπi
bi = aπ0

b0+· · ·+aπr−1
br−1+aπr+1

br+1+· · ·aπk−1
bk−1

where π is a permutation of the indices {0, 1, . . . , r − 1, r +
1, . . . , k−1}. We create k identical binary trees of XOR gates,

each of which has k− 1 leaves, as shown in Figure 1, named

as tr-trees. The computation of a single tr term requires k−2
XOR gates and log2(k−1)TX delay. The parallel computation

of all tr terms for r = 0, 1, . . . , k− 1 requires k(k− 2) XOR

gates.

Once s and tr for all i = 0, 1, . . . , k− 1 are computed, the

computation of a single product term cr requires one XOR

gate and all product terms cr for i = 0, 1, . . . , k− 1 require k
XOR gates. However we only need one TX delay for this

computation. Therefore, the total number of gates and the

required delay are found as:

1) The computation of s requires k − 1 XOR gates and

log2(k)TX delay.

2) The computation of tr for all r = 0, 1, . . . , k−1 requires

k(k − 2) XOR gates and log2(k − 1)TX delay.

3) However, we should note that, as illustrated in Figure

1, the computation of s and tr values are independent

of one another. By arranging the s-tree and tr-trees in

parallel, we find the critical path length as log2(k)TX .

4) The computation of cr for all r = 0, 1, . . . , k−1 requires

k XOR gates and a single TX delay.

Thus we find that the total number of the XOR gates required

by the matrix decomposition method as k−1+k(k−2)+k =
k2 − 1, while the total delay is TA + [1 + log2(k)]TX . �

IX. DECOMPOSITION FOR TYPE 2A BASES IN GF(2k)

We now analyze the complexity of the decomposition

algorithm for Type 2a bases. We will first derive the λ

matrix for the field GF(25), which has Type 2a basis since

p = 2k+1 = 11 is prime and 2 is primitive mod 11. Theorem 1

states that the basis element β can be written as β = γ+ γ−1

such that γ is the 11th root of identity. Our objective is to

discover how the λr matrices can be additively decomposed.

The λ matrix is given as

λ =













β2 β3 β5 β9 β17

β3 β4 β6 β10 β18

β5 β6 β8 β12 β20

β9 β10 β12 β16 β24

β17 β18 β20 β24 β32













.

In order to obtain the λr matrices we need to express all

powers of β in the λ matrix in terms of the powers of 2

powers of β. First we start with the diagonal entries of the λ

matrix which already contains powers of 2 powers of β. We

have βr = β2r for r = 0, 1, 2, 3, 4, and also β32 = β = β0.

Moreover we should also note that β0 = β = γ + γ−1, and

βr = β2r = (γ + γ−1)2
r

= γ2r + γ−2r

for r = 0, 1, 2, 3, 4. Next we obtain the normal expansions

of the off-diagonal entries which contain the products of two

basis elements β2i · β2j for i, j = 0, 1, 2, 3, 4 and i 6= j. For

example, the term β21 · β23 = β10 is written

β2 · β8 = (γ2 + γ−2)(γ8 + γ−8)

= γ10 + γ−10 + γ6 + γ−6

which contains 10,−10, 6,−6 powers of γ. We need to

express these powers of γ in terms of the powers of 2 powers

of γ, and thus obtain a normal expansion for β10. In order to

accomplish this, we will use Theorem 1. The general form an

off-diagonal product term is written as

β2i+2j = γ2i+2j + γ−2i−2j + γ2i−2j + γ−2i+2j

for 0 ≤ i, j ≤ 4 and i 6= j. By enumerating i and j, we obtain

the set of integers of the form ±2i ± 2j as

±{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 17, 18, 20, 24} .

In other words, we need the above powers of γ in order to

express all β powers found in the λ matrix in the normal basis.

Referring to the properties of the Type 2a basis in Theorem

1, we make the following observations:

• p = 2k + 1 = 11 is prime.

• γ is 11th root of identity, implying that if u = v
(mod 11) then γu = γv. Therefore, the above set is

reduced mod 11, and we only need the powers of γ from

the set Z∗
11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

• 2 is primitive mod 11, that is, the powers of 2 generates

the set Z∗
11. Since 210 = 1 (mod 11) and 25 = −1

(mod 11), which implies that 2u with u > 5 can be

written as 2u = 2v+5 = 2v · 25 = −2v.

Thus, we can list elements of Z∗
11 as

20 21 22 23 24 25 26 27 28 29

1 2 4 8 5 10 9 7 3 6

20 21 22 23 24 −1 −21 −22 −23 −24

Thus, any u ∈ Z∗
11 can be written as u = ±2v (mod 11) for

a v ∈ {0, 1, 2, 3, 4}. This implies that we can write γu = γ±2v

for any u ∈ Z∗
11 and v ∈ {0, 1, 2, 3, 4}. All γ equalities needed

in the λ matrix are listed in Table 3 below.

u u (mod 11) u = ±2v (mod 11) γ expansion

3 3 3 = −23 γ3 = γ−23

5 5 5 = 24 γ5 = γ24

6 6 6 = −24 γ6 = γ−24

7 7 7 = −22 γ7 = γ−22

9 9 9 = −21 γ9 = γ−2

10 10 10 = −20 γ10 = γ−1

12 1 1 = 20 γ12 = γ

14 3 3 = −23 γ14 = γ−23

15 4 4 = 22 γ15 = γ22

17 6 6 = −24 γ17 = γ−24

18 7 7 = −22 γ7 = γ−22

20 9 9 = −21 γ20 = γ−2

24 2 2 = 21 γ24 = γ2

Table 3: The powers of γ equalities.
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Fig. 1. The matrix decomposition method for Type 1 basis.

Thus, given the equalities γ10 = γ−1 and γ6 = γ−24 , we

obtain the normal expansion of the product β10 as

β2 · β8 = γ10 + γ−10 + γ6 + γ−6

= γ−1 + γ + γ−24 + γ24

= β0 + β4 .

The other powers of β can be obtained using similar deriva-

tions. We omit these derivations, and write the λ matrix for

GF(25) below.

λ =













β2 β3 β5 β9 β17

β3 β4 β6 β10 β18

β5 β6 β8 β12 β20

β9 β10 β12 β16 β24

β17 β18 β20 β24 β32













(8)

=













β1 β0 + β3 β4 + β3 β1 + β2 β4 + β2

β0 + β3 β2 β4 + β1 β0 + β4 β2 + β3

β4 + β3 β4 + β1 β3 β0 + β2 β0 + β1

β1 + β2 β0 + β4 β0 + β2 β4 β1 + β3

β4 + β2 β2 + β3 β0 + β1 β1 + β3 β0













We observe that the λ matrix for GF(25) does not have any

1 entries, and therefore, the intersection of all λr matrices is

a zero matrix. Unfortunately, a decomposition as in the Type

1 case (which was of the form λr = µ+ νr) is not possible.

However, we will show that another decomposition exists.

Theorem 4: The diagonal entries of the λ matrix for the

field GF(2k) with a Type 2a basis contain one basis element,

while all other entries are the sum of two basis elements.

Proof: The normal element β of the field GF(2k) with a

Type 2a basis is given as β = γ + γ−1 where p = 2k + 1 is

prime, 2 is primitive mod p, and γ is the primitive pth root of

identity.

First we observe that all diagonal elements are of the form

β2r for r = 0, 1, . . . , k − 1, therefore, each contains a single

basis element β2r = βr for r = 1, 2, . . . , k − 1 and β2k =
β = β0 for r = k. Moreover βr = β2r = γ2r + γ−2r for

r = 0, 1, . . . , k − 1.

Now consider the (i, j) element of the λ for 0 ≤ i, j ≤ k−1

and i 6= j. This element β2i+2j is a product and can be written

as

β2i · β2j = (γ2i + γ−2i)(γ2j + γ−2j )

= γ2i+2j + γ−(2i+2j) + γ2i−2j + γ−(2i−2j) ,

Since γp is the identity, the powers of γ above can be reduced

mod p, and therefore, we can write

β2i+2j = γu1 + γ−u1 + γu2 + γ−u2 , (9)

such that u1 = 2i + 2j (mod p) and u2 = 2i − 2j (mod p),
where 0 ≤ i, j ≤ k−1 and i 6= j. Now we will prove that any

integer u ∈ Z∗
p = {1, 2, . . . , p−1} can be uniquely written as

u = ±2v (mod p) for some v ∈ Zk = {0, 1, . . . , k−1}. Since

p = 2k+1 prime and 2 is primitive mod p, we have 22k = 1
(mod p) and 2k = −1 (mod p). Thus, we can generate all

elements of Z∗
p using powers of 2, and furthermore, using the

identity 2k = −1 (mod p) we obtain

Z∗
p = {20, 21, 22, . . . , 2k−1, 2k, 2k+1, 2k+2, . . . , 22k−1}

= {20, 21, 22, . . . , 2k−1,−1,−21,−22, . . . ,−2k−1}

This implies that any u ∈ Z∗
p can be written as u = ±2v

(mod p) with v ∈ Zk. Thus, we conclude that γu = γ±2v ,

and write Eqn. (9) as

β2i+2j = γ2v1 + γ−2v1 + γ2v2 + γ−2v2 ,

Therefore, every off-diagonal element of the λ matrix con-

structed using Type 2a normal basis of the field GF(2k)
contains the sum of 2 basis elements. �
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In order to decompose λr matrices, we will first separate the

diagonal entries and place each of them in different matrices

for each r, which we denote as µr. As the off-diagonal entries

are concerned, we notice that the λ matrix is symmetric,

implying these pairs of elements appear in two different (and

symmetrical) locations. For example, β0+β1 is in the locations

(2, 4) and (4, 2) of the λ matrix for GF(25). Since λ0 and

λ1 matrices respectively hold the coefficients of the basis

elements β0 and β1, these matrices would have 1s in the same

locations (2, 4) and (4, 2), and thus, their intersection would

be a nonzero matrix. Furthermore, β0 is coupled with every

other βr, the intersection of λ0 with λr for r = 1, 2, . . . , k−1
would all be nonzero matrices. These observations suggest

a decomposition of the λr matrices, as expressed in the

following theorem.

Theorem 5: The λr matrix for the field GF(2k) with a Type

2a basis can be written as the sum of k matrices such that

λr = µr +

k−1
∑

i=0

i6=r

νri ,

where each µr matrix has a single 1 in location (k− 1, k− 1)
for r = 0 and (r−1, r−1) for r = 1, 2, . . . , k−1. Furthermore,

each νri matrix is symmetric and contains only two 1s.

Proof: The µr matrix contains only the diagonal entries of

λr matrix. As illustrated for GF(25) in Eqn. (8) the diagonal

entries of the λ matrix has the basis elements βr for r =
1, 2, . . . , k − 1, 0.













β1 β0 + β3 β4 + β3 β1 + β2 β4 + β2

β0 + β3 β2 β4 + β1 β0 + β4 β2 + β3

β4 + β3 β4 + β1 β3 β0 + β2 β0 + β1

β1 + β2 β0 + β4 β0 + β2 β4 β1 + β3

β4 + β2 β2 + β3 β0 + β1 β1 + β3 β0













.

Therefore, the diagonal of the λr matrix has a single 1, and

thus, the entire µr matrix has only 1 in it; all remaining

elements are 0. The µ0 matrix has a 1 in the location

(k − 1, k− 1) while µr has a 1 in the location (r − 1, r− 1)
for r = 1, 2, . . . , k − 1. We obtain the λr matrices as

λ0 λ1 λ2












0 1 0 0 0
1 0 0 1 0
0 0 0 1 1
0 1 1 0 0
0 0 1 0 1

























1 0 0 1 0
0 0 1 0 0
0 1 0 0 1
1 0 0 0 1
0 0 1 1 0

























0 0 0 1 1
0 1 0 0 1
0 0 0 1 0
1 0 1 0 0
1 1 0 0 0













λ3 λ4












0 1 1 0 0
1 0 0 0 1
1 0 1 0 0
0 0 0 0 1
0 1 0 1 0

























0 0 1 0 1
0 0 1 1 0
1 1 0 0 0
0 1 0 1 0
1 0 0 0 0













Furthermore, we obtain the µr matrices as follows:

µ0 µ1 µ2












0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

























1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

























0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













µ3 µ4












0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

























0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0













We denote the matrix as νri as the intersection of the λr and

λi matrices as

νri = λr

⋂

λi for r 6= i .

The sum βu + βv of a pair of basis elements βu and βv

appears in exactly two locations in the λ matrix, and thus,

the intersection of λr and λi, i.e., the νri matrix contains

only two 1s, and all other elements are zero. For example, ν0i

matrices for GF(25) are obtained as

ν01 ν02












0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 1 0 0

























0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 0













ν03 ν04












0 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

























0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0













Therefore, the λr matrix of GF(2k) decomposes into k matri-

ces µr and νri for i = 0, 1, . . . , r − 1, r + 1, . . . , k − 1 such

that the µr matrix contains a single 1, and all νri matrices

contain 2 1s. �

The space complexity of the multiplication using decompo-

sition method is analyzed in the following theorem.

Theorem 6: The decomposition method for the Type 2a

optimal normal basis in GF(2k) computes all product terms

cr for r = 0, 1, . . . , k − 1 using k2 AND gates, 1.5k(k − 1)
XOR gates, and a total delay of TA + [1 + log2(k)]TX .

Proof: According to Theorem 5, the λr matrix can be

written as the sum of k matrices as

λr = µr +
k−1
∑

i=0

i6=r

νri .
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The computation of the product term cr is accomplished using

cr =
[

a0 a1 · · · ak−1

]






µr +

k−1
∑

i=0

i6=r

νri

















b0
b1
...

bk−1











.

For brevity, we will denote the input vectors by aT and b,

and break the above product computation into the sum of k
matrix-vector products as

cr = aT µr b+

k−1
∑

i=0

i6=r

(

aT νri b
)

= sr +

k−1
∑

i=0

i6=r

tri . (10)

The individual components of the above sum, sr and tri, are

defined as

sr = aT µr b ,

tri = aT νri b ,

for 0 ≤ i ≤ k − 1 and i 6= r. Once the terms sr and tri are

computed we can obtain the product cr using Eqn. (10). Steps

of the computation of all cr terms are described below and

illustrated in Figure 2.

1) The computation of sr does not require any XOR gates.

The matrix µr has a single 1 in it; the location is (k −
1, k − 1) for r = 0 and (r − 1, r − 1) for all other

r = 1, 2, . . . , k−1. Therefore, s0 = ak−1bk−1 and sr =
ar−1br−1 for r = 1, 2, . . . , k − 1. There is no delay

involved, either, the selection logic works by routing the

logic signals.

2) The νri has only two 1s and it is also symmetric. If

the (u, v) element of the νri matrix is 1, then so is

(v, u) element, while all the other elements are zero.

This gives the value of tri as aubv + avbu. Therefore,

the computation of a single tri requires 1 XOR gate and

TX delay. Furthermore, we have νri = νir, and thus,

tri = tir . This implies that we only need to compute

half of the tir terms due to the symmetry. For example,

for k = 5 the following terms need to be computed: t0i
for i = 1, 2, 3, 4; t1i for i = 2, 3, 4; t2i for i = 3, 4;

finally t34. For GF(2k) the number of terms that need

to be computed is

(k − 1) + (k − 2) + · · ·+ 1 = k(k − 1)/2 ,

which gives the total number of XOR gates for comput-

ing all tri terms as 0.5k(k − 1), while the delay is still

equal to one TX .

3) Having obtained all sr and tri values, we compute cr
using the summation Eqn. (10) which has k terms. We

arrange this summation using a binary tree of XOR

gates, which has k leaves. There is a separate binary

for each value of r = 0, 1, . . . , k − 1; there are k
inputs for each tree such that sr, tri except trr term.

The computation of a single cr term requires k−1 XOR

gates and log2(k)TX units of delay, while all cr terms

would require a total of k(k − 1) XOR gates.

Therefore the total number of XOR gates is found as 1.5k(k−
1), and the total delay is TA + [1 + log2(k)]TX . �

X. DECOMPOSITION FOR TYPE 2B BASES IN GF(2k)

The smallest field with the Type 2b basis is GF(23). For

k = 3, we have p = 2k + 1 = 7 prime, p = 3 (mod 4), and

2 generates the quadratic residues in Z∗
7 . Furthermore, a basis

element βi = β2i is equal to γ2i + γ−2i for i = 0, 1, 2, where

γ is the 7th root of identity according to Theorem 1. We can

write γ3 = γ−4, γ5 = γ−2, and γ6 = γ−1, and obtain the

products of the basis elements as

ββ2 = β3 = γ3 + γ−3 + γ + γ−1

= γ−4 + γ4 + γ + γ−1

= β0 + β2

ββ4 = β5 = γ5 + γ−5 + γ3 + γ−3

= γ−2 + γ2 + γ4 + γ−4

= β1 + β2

β2β4 = β6 = γ6 + γ−6 + γ2 + γ−2

= γ−1 + γ + γ2 + γ−2

= β0 + β1

Therefore, the λ matrix is obtained as

λ =





β2 β3 β5

β3 β4 β6

β5 β6 β8



 =





β1 β0 + β2 β1 + β2

β0 + β2 β2 β0 + β1

β1 + β2 β0 + β1 β0



 .

Similar to the Type 2a case, we see that the λ matrix for

GF(23) contains a single basis on the diagonal, while all off-

diagonal elements are equal to and the sum of two bases. We

prove that this property holds true for any k.

Theorem 7: The diagonal entries of the λ matrix for the

field GF(2k) with a Type 2b basis contain one basis element,

while all other entries are the sum of two basis elements.

Proof: All diagonal elements of the λ matrix are of the

form β2r , and therefore, each contains a single basis element

β2r = βr for 0 = 1, 2, . . . , k − 1. Furthermore, we have β =
γ + γ−1 where γ is the p = 2k+ 1 primitive root of identity.

A diagonal element is of the form β2r = γ2r + γ−2r for

r = 0, 1, . . . , k − 1.

Similar to the Type 2a case, an off-diagonal element is given

as β2i+2j for i = 1, 2, . . . , j − 1, j + 1, . . . , k − 1, which is

equal to

β2i · β2j = γ2i+2j + γ−(2i+2j) + γ2i−2j + γ−(2i−2j) .

Since γp is the identity, the powers of γ above are reduced

mod p, and therefore, we can write

β2i+2j = γu1 + γ−u1 + γu2 + γ−u2 , (11)

such that u1 = 2i + 2j (mod p) and u2 = 2i − 2j (mod p),
where 0 ≤ i, j ≤ k−1 and i 6= j. Next we will prove that any

integer u ∈ Z∗
p = {1, 2, . . . , p − 1} can be uniquely written

as u = ±2v (mod p) for some v ∈ Zk = {0, 1, . . . , k − 1}.

Theorem 1 states that for Type 2b basis, p = 3 (mod 4) and

2 generates quadratic residues mod p. We use Qp to denote

the set of quadratic residues, which has (p − 1)/2 elements.

An element u ∈ Z∗
p is in Qp if there is a solution x for

the equation x2 = u (mod p), otherwise u is a quadratic

nonresidue. The set of quadratic nonresidues, denoted by Q′
p,

9
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Fig. 2. The matrix decomposition method for Type 2a and 2b bases.

consists of the remaining (p − 1)/2 elements of Z∗
p . For

example, for k = 11, p = 23, these two sets are given as

Q23 = {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18} ,

Q′
23 = {5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22} .

The Euler criterion determines if u ∈ Qp or u ∈ Q′
p:

u(p−1)/2 =

{

1 if u ∈ Qp ,
−1 if u ∈ Q′

p .

An important observation is that −1 ∈ Q′
p if p = 3 (mod 4),

since

(−1)(p−1)/2 =

{

1 if p = 1 (mod 4) ,
−1 if p = 3 (mod 4) .

Another relevant property of quadratic residues is that if u ∈
Qp and v ∈ Q′

p then the product uv ∈ Q′
p. Particularly, in our

case, we can write −u ∈ Q′
p if u ∈ Qp, since −1 ∈ Q′

p. Since

Qp is generated by powers of 2, it follows that

Qp = {2v (mod p) | v ∈ Zk} .

We can generate Q′
p by multiplying every element of Qp by

−1, in other words,

Q′
p = {−2v (mod p) | v ∈ Zk} .

Since Z∗
p = Qp

⋃

Q′
p, we can write

Z∗
p = {±2v (mod p) | v ∈ Zk} .

This implies that any u ∈ Z∗
p can be written as u = ±2v

(mod p) with v ∈ Zk. Thus, we conclude that γu = γ±2v ,

and write Eqn. (11) as

β2i+2j = γ2v1 + γ−2v1 + γ2v2 + γ−2v2 ,

Therefore, every off-diagonal element of the λ matrix con-

structed using Type 2a normal basis of the field GF(2k)
contains the sum of 2 basis elements. �

Therefore, the same complexity analysis for Type 2a applies

for Type 2b as well. The complexity of the multiplication using

decomposition method for the Type 2b bases is the same as

that of Type 2a bases.

Theorem 8: The matrix decomposition method for the Type

2b optimal normal basis in GF(2k) computes all product terms

cr for r = 0, 1, . . . , k − 1 using k2 AND gates, 1.5k(k − 1)
XOR gates, and a total delay of TA + [1 + log2(k)]TX .

XI. CONCLUSIONS

We introduced a matrix decomposition method and de-

scribed the underlying algorithms for normal basis multipli-

cation in the field GF(2k) with Type 1 and Type 2 bases.

We developed the matrix decomposition method explicitly

on small fields; for k = 2 and k = 4 for Type 1 basis, and

k = 5 for Type 2a basis, k = 3 for Type 2b basis. However,

we derived the space complexity results for general values of

k for all three types of bases, as given in Theorems 3, 6, and

8, respectively.

The decomposition algorithm computes all product terms

for the Type 1 basis using k2 − 1 XOR gates, irrespec-

tive of the irreducible polynomial generating the field. The

previous Massey-Omura multiplication algorithms [16], [9],

[11] accomplished the same bound using all-one-polynomials.

Furthermore, our matrix decomposition algorithm computes all

product terms for the Type 2a and 2b bases using 1.5k(k− 1)
XOR gates, which matches previous bounds [10], [11].

The Type 1 normal basis multiplication algorithm given

in [11] is also based on a matrix decomposition in which

the λ matrix is decomposed into upper and lower triangular

matrices and a diagonal matrix. The XOR complexity of this

algorithm is given for all-one-polynomials as k2−1, however,

an analysis for a general irreducible polynomial is not given.

Instead, it was shown that the algorithm for GF(25) requires

10



8 XOR gates. However, one has to note that this is a straight-

forward decomposition which follows directly the definition

of symmetric matrices, and separates the multiplication terms

into three groups. Their algorithm then rearranges the terms

of this sum. In our approach however, we find an optimal

decomposition with respect to the chosen normal basis and the

corresponding multiplication matrix. After creating the optimal

decomposition we are able to create the circuit without any

intermediate steps. For the optimal normal basis, our results

match the results in [11], but we do not restrict our algorithm

to all-one polynomials, and we extend to arbitrary normal

bases without additional effort.

It is also interesting to note that the Mastrovito algorithms,

which work only for the polynomial basis, achieve the k2 − 1
space complexity with irreducible trinomials [17], [18], [19],

[20]. Furthermore, the space complexity falls to k2 − ∆ for

equally-spaced polynomials [21], [22], where ∆ is the distance

factor; in other words, the irreducible polynomial is of the form

p(x) = xm∆ + x(m−1)∆ + · · ·+ x∆ + 1 .

In a highly special case of equally-spaced-trinomial xk +
xk/2 + 1, the space complexity becomes k2 − k/2 [21]. This

implies that the bound k2 − 1 is not very tight and there may

be more special cases in which the space complexity falls

further from that. However, it is highly likely that the result of

this paper provides the lower bound for optimal normal bases,

irrespective of the irreducible polynomial. This remains to be

proven.

Another promising direction for future work is to investigate

if we can reduce the space complexity for Gaussian normal

basis multiplication using our matrix decomposition approach.

Optimal normal bases do not exist for all k, however, non-

optimal but still low complexity normal bases do exist, and

are called Gaussian normal bases [23], [24]. The Type T
of a Gaussian normal basis in GF(2k) is a positive integer

describing the structure and measuring the complexity of the

multiplication in the basis [3].

For a given k and T , there exists at most one Gaussian

normal basis of Type T . A Type T Gaussian normal basis

for a given field GF(2k) exists if and only if p = Tk + 1 is

prime and gcd(Tk/m, k) = 1 where m is the multiplicative

order of 2 in Z∗
p . When T = 1, the Gaussian normal basis

Type 1 is the same as the optimal normal basis Type 1, since

Part 1 conditions of Theorem 1 are satisfied: p = k + 1 is

prime, the multiplicative order of 2 in Z∗
p is k = p − 1, that

is 2 is primitive, and thus gcd(Tk/m, k) = gcd(k/k, k) =
gcd(1, k) = 1. Similarly, when T = 2, the Gaussian normal

basis Type 2 is the same as the optimal normal basis Type 2a:

p = 2k + 1 is prime, the multiplicative order of 2 in Z∗
p is

p− 1 = 2k, that is 2 is primitive, and thus gcd(Tk/m, k) =
gcd(2k/(2k), k) = gcd(1, k) = 1.

Our analysis of Type 2a basis in Section IX showed that

for T = 2, all rows of the λr (except row 0) has two

nonzero entries. This fact was also stated in Remark 1 of [25].

Both the Remark 1 in [25] and our analysis in Section IX

address Type 2a only. However, we were also able to show in

this paper (in Section X) that Type 2b bases have the same

complexity as Type 2a bases. We believe it is worthwhile to

investigate the complexity of the Gaussian normal basis with

even T = 2N with properties p = Tk + 1 = 2N + 1 prime,

the multiplicative order of 2 in Z∗
p is m, and gcd(Tk/m, k) =

gcd(2Nk/m, k) = 1. It was shown in [26] that the Gaussian

normal basis multipliers for GF(2k) for odd k can be more

efficient in terms of space complexity. The multiplication

algorithms described in [26] require 16% or 27% fewer XOR

gates than the standard parallel-input parallel-output multiplier

for k = 163 and k = 409, respectively. These fields have

important applications in the Elliptic Curve Digital Signature

Algorithm (ECDSA) of the NIST standard FIPS 186-3 [27].

Moreover the algorithms in [26] yield new elliptic curve point

addition and doubling formulations [28] which utilize a novel

digit-level hybrid-double Gaussian normal basis multiplier

[29]. This shows the importance of the Gaussian normal

basis multipliers; its applications in elliptic curve cryptography

make them highly useful and new research in this direction

highly worthwhile.
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[9] Ç. K. Koç and B. Sunar, “Low-complexity bit-parallel canonical and

normal basis multipliers for a class of finite fields,” IEEE Transactions

on Computers, vol. 47, no. 3, pp. 353–356, Mar. 1998.
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