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Abstract—We introduce a matrix decomposition method and
prove that multiplication in GF(2*) with a Type 1 optimal normal
basis for can be performed using k> —1 XOR gates irrespective of
the choice of the irreducible polynomial generating the field. The
previous results achieved this bound only with special irreducible
polynomials. Furthermore, the decomposition method performs
the multiplication operation using 1.5k(k — 1) XOR gates for
Type 2a and 2b optimal normal bases, which matches previous
bounds.

I. INTRODUCTION

The subject of the paper is the multiplication operation
in the field GF(2¥) whose elements are represented using a
normal basis. Parallel multipliers for GF(2*) have applications
in error-correcting codes [1] for smaller values of k, usually
from 16 to 32. Applications in cryptography, for example,
elliptic curve cryptographic functions EC-DSA, EC-IES and
EC-based random number generators [2], require hardware
and software implementations of GF(2*), but for much larger
values of k. Polynomial basis multiplication is probably more
suitable for such implementations, though standards (such as
ANSI X9.62) suggest normal bases as well [3]. Since optimal
normal bases exist only for a smaller subset of k values sug-
gested by cryptographic standards, often sub-optimal Gaussian
normal bases are used. For example, the standard ANSI X9.62
suggests selecting a Type 2 basis for GF(2¥), and if this does
not exist, then and a Type 1 basis, and if neither exists, then
a Type T basis with the smallest value of T'.

Furthermore, the new research in elliptic curve cryptogra-
phy, particularly, Edward curves and its derived versions based
on binary fields [4], [5], has shown that GF(2¥) fields coupled
with binary Edward curves are highly efficient and secure [5].

II. PRELIMINARIES

All symbols and terms used in this paper are given in Table
1. An element 3 of the field GF(2) is called a normal element
if any element a € GF(2*) can be uniquely written as a linear
sum of the powers of 2 powers of (3 as

k—1 ‘
o - Y -
i=0

such that a; € {0,1}. For the brevity of the notation, we
will interchangeably use 3; = 32 for i = 0,1,...,k — 1,
and the denote the basis set by B = {80, 51, .., Bk—1} Also

k—1
aoB+ a1 + azB* + -+ ag_156°
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we will use 1 (boldface 1) to represent the identity element
expressed in normal basis, which is equal to the sum of all
basis elements:

1=B+B2 48"+ 45" =Bo+Bi+ Bt 4B

The normal representation of an element in GF(2*) is par-
ticularly useful for squaring; the normal expression of a? is
obtained by left-rotating the digits of the normal expression
of a. The ease of squaring in normal basis is remarkable, but
the multiplication is more complicated.

In order to describe the normal basis multiplication, we
refer to the Massey-Omura algorithm [6], which follows the
following steps: Given the bits a,; and b; of the input operands
a and b, the Massey-Omura multiplier first generates all partial
product terms a;b; for 0 < 4,5 < k—1 using AND gates, and
then sums the subsets of these partial product terms using XOR
gates to obtain the bits ¢, of the productforr =0,1,...,k—1.

For uniformity of the analysis throughout this paper we
assume that AND and XOR gates have 2 inputs, and we denote
the individual gate delays by T4 and T'x.

There are k? partial product terms a;b;, which can be
computed using k? 2-input AND gates in a single T4 delay.
This computation is space-optimal; k2 is both upper and lower
bound on the number of partial product terms, because all of
them need to be computed.

In the computation of each product term ¢, for 0 < r <
k — 1, we need only a subset of the k? partial product terms
a;b;. According to the optimality theorem of the normal basis
multiplication [7], the number of a;b; terms needed to compute
any of ¢, is at least 2k — 1. If there exists a normal basis in
GF(2%) for which the number of a;b; terms for computing
¢, is exactly 2k — 1, then this normal basis is called optimal.
In this case, a ¢, term can be computed using 2k — 2 XOR
gates, while all ¢, terms for r = 0,1, ...,k —1 would require
k(2k —2) XOR gates for optimal normal bases. However, this
is an upper bound as there are common a;b; terms among the
computations of ¢, terms for different r values. It is shown that
certain subsets of GF(2¥) fields, for example, those generated
by irreducible all-one-polynomials [8], [9], require only k% —1
XOR gates. This paper introduces a matrix decomposition
method which requires k2 — 1 XOR gates for the Type 1
optimal normal basis, irrespective of the choice the irreducible
polynomial. Moreover the method is applicable to Type 2a and
2b bases as well, requiring 1.5k(k — 1) XOR gates, which
matches certain previous bounds [10], [11].



Symbol or Term Meaning
k A nonzero positive integer
GF(2%) Galois field of 2* elements
a,b,c Arbitrary elements of GF(2%)
a;, bi,c; Binary coefficients of a, b, ¢
Jé; A normal element of GF(2*)
Bs Equals to 3%
B The basis set {8, ..., Bk—1}
Zra1 The set of integers {0,1,...,k}
P A prime number
zZ; The set of integers {1,2,...,p — 1}
vy The primitive pth root of identity
v+t Equals to the normal element /3
A The k x k matrix; sum subsets of B
A A=XoBo+ AP+ + Ae1Br1
Aij The (i, 7) entry of the matrix A
Aij Equals to 3% +2" = %' 8% = BiB;
A The k x k matrices with entries {0, 1}
Qp The set of quadratic residues mod p
; The set of quadratic nonresidues mod p
Ty and Tx Delays of 2-input AND or XOR gates

Table 1: All symbols and terms used in this paper.

III. OPTIMAL NORMAL BASES

The constructions of optimal normal bases are described in
[7], [12], [13], and summarized in the following theorem:

Theorem 1: An optimal normal basis for GF(2*) exists in
either of the following cases, and can be constructed as:

1) If £+ 1 is prime and 2 is a primitive element in 2.
Each of the k nonunit (k + 1)th root of identity forms
an optimal normal basis in GF(2%).

2) If p =2k + 1 is prime and

2a: Either, 2 is primitive in Z;
2b: Or, 2k+1 =3 (mod 4) and 2 generates quadratic
residues in Z.

In this case, 3 = v+ v~ ! generates an optimal normal
basis in GF(2"), where ~ is a primitive pth root of
identity.
The optimal normal bases that are derived from the first part of
the theorem are named Type 1, while the ones that follow from
the second part are named Type 2 bases, or more specifically,
as Type 2a and Type 2b bases. For & < 30, the optimal normal
bases are listed in Table 2.

k values
Type 1 2, 4, 10, 12, 18, 28
Type 2a 2, 5, 6,9, 14, 18, 26, 29, 30
Type 2b 3, 11, 23

Table 2: The optimal normal bases for k£ < 30.

IV. NORMAL BASIS MULTIPLICATION ALGORITHM

Given the input operands a and b as

k-1 k-1
a:Zazﬂi , bzzbzﬂi,
=0 i=0

the multiplication algorithm computes each bit of the product
¢, which can be written as a double summation as
E—1k—1
C = Z Zaibjﬂlﬂj .
i=0 j=0

This in turn can be written as a vector-matrix product

a0 @ ak—1] A [bo b bk—l]T

3

such that every element of the £ x k& matrix X is the sum
of a subset of the normal elements {fy, 81, B2, ..., Brk—-1}-
Furthermore, the A matrix can be expressed in terms of the
k x k matrices \; for i = 0,1,..., k—1 with entries in {0, 1}
such that

A= XoBo+ X181+ Xofo 4+ A1 Bk—1 -

V. DIRECT MULTIPLICATION IN GF(2?)

Consider the smallest extension field GF(22), which has
both Type 1 and Type 2 of optimal normal bases. We will use
the Type 1 optimal normal element 3 = x and the irreducible
polynomial p(x) = 22+ x + 1, and derive the A matrix. Given
the normal representations of two elements of the field a =
aofo + a181 and b = by Sy + b1 51, their product ¢ is given as

¢ = aobo35 + aobi1BoB1 + arboBoBr + arbi B}

= aoboB1 + aobi(Bo + B1) + a1bo(Bo + f1) + a1b1fo ,
where the equalities 82 = 31, Bof1 = Bo + Bi1, and B3 =
By are obtained using the normal element 5 = z and the

irreducible polynomial p(z) = 2% + z + 1. The vector-matrix
expansion of the product can be written as

b
CcC = [aO al] [ﬁolj_lﬂl ﬂo;oﬁlj| |:b?:| )

which gives us the A matrix as

2= { i Bo+ 51}
BotB1  Bo
Furthermore, we obtain the Ao and A; matrices for GF(22) as
i Bo+ ﬁl]
A=A A =
ofo + Aafr [ﬁo +5 Bo

0 1 11

[1 1]50 + [1 O:|ﬁl'
Once all partial products a;b; for 0 < 4,5 < k — 1 are
computed using k2 AND gates, the \; matrices determine

which subsets of the partial products a;b; are to be summed
to obtain a particular product term c,.. For GF(2?), we have

ot ! )

c1 = [aop a1 E (1)] [zﬂ

There are 3 1s in each of the Ay and A; matrices, and
therefore, there 3 terms partial product terms a;b; in the
expressions for ¢y or c¢;. The total number of XOR gates to
compute both of ¢y and ¢y is 2-2 = 4.

apby 4 ai1bo + a1b1 (1)

apbg + agby + a1bg (2)



VI. MATRIX DECOMPOSITION METHOD FOR GF(22)
However, we observe a certain similarity in the Ay and A;

matrices: each can be written as the sum of two matrices such
that the first matrix is the same for both, in other words,

D=l e

11 0 1 1 0
AL = L 0}—[1 0]4_{0 0}' “4)
This matrix decomposition implies that the computation of cq
and c; can be performed in two steps: the first step involves

a common matrix for both ¢y and ¢y, and while the second
steps involve two different matrices.

X =

o= ol ([ <1 D]

= ol [§ o )+l [y Y[
o =l al([D Il ]

~ ol [} ][]+l w5 O] 1]

The first vector-matrix product needs to be performed only
once for both ¢y and c;, followed by the second vector-matrix
products which need to performed separately for each ¢y and
c1. After these steps, we need add the partial sums to get
co and c1. Therefore, our algorithm for GF(22) follows the
following steps:

o Step 1: First, we compute the common partial product
term, which requires one XOR gate and one T'x delay:

s=[an al [(1’ (1)] [Zﬂ—aobl-i-mbo- )

o Step 2: Now, we use the decomposition of Ay and A; to
compute £y and t1; this step does not require any XOR
gates and any delay:

to = [ao ai] [8 ﬂ Eﬁj =aib , (6)

1 0] |bo
t1 = a0 a1 {O O} {bj = apbo - (7
« Step 3: Finally we compute ¢y and c; using cgp = s + £o
and ¢; = s+ t;. This step requires one XOR gate and
one T’y delay.

The matrix decomposition method for GF(22) reduces the
number of XOR gates to 3, while the direct computation using
the formulae (1) and (2) imply 4 XOR gates. The total gate
delay is T4 + 2T'x.

VII. MATRIX DECOMPOSITION METHOD FOR GF(2%)

The success of the decomposition method in GF(2F) de-
pends on the the additive components the A; matrices, i.e.,
whether they have common terms among the expressions
for ¢,. We now consider the field GF(2*%) with the Type 1

optimal normal basis 3 = 2% and the irreducible polynomial
p(z) = 2* + x + 1. The normal representations of the powers
of [ can be obtained by powering 8 and reducing the resulting
polynomials mod p(x), as shown in [14]. The resulting A
matrix is

p2op g B i Bz 1 [

\ = g gt g B _|Bs B2 fo 1
g g g B2 1 By B3 B
po pto pt2 pio B2 1 B1 Bo

The number of terms in the A matrix for the optimal basis
B € GF(2%) is equal to 4 - (2 -4 — 1) = 28. This implies
4-(2-4—2) =24 XOR gates in direct computation of the
normal basis multiplication. To apply the matrix decomposi-
tion method, similar to the case of GF(22), we first derive the
4 x 4 A\, matrices for » = 0,1, 2,3 from the 4 x 4 X matrix.
Furthermore, using exhaustive search we have obtained the
decomposition of the A; matrices as follows:

0 0 1 0] 0 0 1 0] [o 0 0 0]
00 1 1 00 0 1 001 0
M=11 100 ~ {1000/ Tlo1o0 o0
0 1 0 1] 0100 [0 0 0 1}
1 0 1 0] [0 0 1 0] 1 0 0 0]
00 0 1 00 0 1 00 0 0
M=11 001 — {1000 Tloo o1
0 1 1 0 0 1.0 0/ |00 1 0
0 0 1 1] 0 0o 1 0] [o o 0 1]
Ao |01 01 o0 0 1 0 1 0 0
2711 00 1| — |1 00O 00 0 0
11 1 0] 010 0/ |10 0 0
0 1 1 0] 0 0 1 0] [o 1 0 0]
A |1 OO0 I _ 000 1 41000
5711t 010/ — |1 00O 00 1 0
0 1 0 0 0 1.0 0/ |00 0 0

The steps of our algorithm for the normal basis multiplication
in GF(2%) are:

o Step 1: First, we compute the common partial product
term using 3 XOR gates. This step requires 27x gate
delays, by arranging the sum computation as a binary
tree with 4 leaves, with depth 27'x.

0 0 1 0] [bo
00 0 1||b
5= oo @ wowlly oo o) |,
0 1 0 0f |bs

= a0b2 + a1b3 + CLQbO + a3b1 .

o Step 2: Then, we use the decomposition of A; to compute
all 4 ¢, terms 4x2 = 8 XOR gates. This step also requires
2Tx gate delays.

0 0 0 0] [bo
0 0 1 0| |b
to = [CLQ a1 ag ag] O 1 O O b2
0 0 0 1| |bs

asby + a1ba + asbs ,



1 0 0 Of |bo
0 0 0 O] [b
tl = [ao aq a9 a3] 00 0 1 b;
0 0 1 0] |bs
= agbo + asbs + azbs ,
0 0 0 1] |bo
0 1 0 O] (b
tg = [CLQ a1 ag ag] O O O O b;
1 0 0 0f |bs
= asbo +aiby +aobs ,
0 1 0 0] |bo
1 0 0 0f |bs
t3 = [CLQ a1 ag ag] O O 1 O b2
0 0 0 0] |bs

= a1b0 + a0b1 + a2b2 .

o Step 3: Finally, we compute ¢, for r =0, 1,2, 3 using 4
XOR gates: ¢, = s + t,. This will require a single T'x
gate delay.

The computation of ¢y, c1, c2, c3 using the matrix decomposi-
tion method requires 3 4+ 8 + 4 = 15 XOR gates, instead 24
XOR gates required by the direct method. Since Steps 1 and
2 are independent of one another, the total gate delay is equal
to Ty + 3Tx.

VIII. DECOMPOSITION METHOD FOR TYPE 1 BASES IN
GF(2F)

The decomposition method reduces the number of XOR
gates due to the common partial product terms a;b; among
the computation of ¢, terms. We define the intersection of
two or more A, matrices as the matrix whose (4, j) element is
1 if all input matrices A, has a 1 in their (4, j) location, and
0 otherwise. The intersection of all A, matrices is the matrix
used the computation of the partial product term s. We will
denote this matrix by p; for GF(2%) we obtained it as

0 11~ 1 0 1
n=2o[ = | 1_ﬂ[1 o]_[l 0]’
Also, we obtained p = ﬂi:o A, for the field GF(2%) as
[0 0 1 0] [1 0 1 0]
001 1 000 1
k=111 0 o1 oo 1N
010 1] |01 1 0f
0 0 1 1] [0 1 1 0]
010 1 1 00 1
1001ﬂ1010
1110 |01 0 0f
[0 0 1 0]
oo o0 1
~ {1000
0 1 0 0]

Once the p matrix is available, any of A, matrices for
r = 0,1,...,k — 1 can be written in terms of p and a
second matrix. Let us denote the second matrix with v, in the
computation of ¢, for GF(2¥). Thus, we have pu = ﬂf;é Ar
and \, = p+v, forr=0,1,....k— 1.

Of course, it is possible that the g matrix can be a zero
matrix, implying that there are no common 1s among all A,
matrices. In this case, our method would reduce to the direct
method, not offering any savings in the number of XOR gates:
Ar = Uy,

However, we will prove in this section that g matrix for
Type 1 optimal normal bases in GF(2*) is a nonzero matrix,
in fact it has exactly k£ 1s in it. The construction of the g
matrix and the v, matrices for GF(2") can be accomplished
using the following steps:

1) First, we construct the A matrix. The (4, j) entry of A
matrix is equal to 32 T2’ for 0 <i,j < k — 1, where 3
is the normal element.

2) We express 3212’ in the normal basis, i.e., express
it as a linear sum of power of two powers of f.
Thus, we obtain the A matrix expressed in the normal
basis. This can be accomplished using the polynomial
representation of § and the irreducible polynomial of
the field to obtain all non-power of 2 powers of 3 in the
normal basis.

3) We obtain the A\, matrices for r = 0,1,...,k — 1 by
expanding the A matrix as a linear sum of the basis
elements 3,..

4) We obtain the intersection matrix p = ﬂf;ol A

5) Each v, matrix is then obtained using v, = A, — pu for
1=0,1,...,k— 1.

The construction of @ and v, matrices depend on the number
common 1s in the A, matrices, which in turn depend on the
structure and entries of the A matrix. In order to analyze the
complexity of the new multiplication algorithm, we need to
look into the properties of the A matrix.

Let us assume that GF(2*) has a Type 1 optimal normal
basis; this implies that £ + 1 is prime and 2 is primitive in
Z} - Moreover, the optimal normal element /3 is a primitive
(k + 1)st root of 1 in GF(2*). We write k = 2m and use B
to represent the basis set B = {fo, 51, - .., Bk—1}- The (4,7)
entry of the matrix A for 0 <i4,5 <k —1 is given as

Nj =0 =YY = pip;

Now we refer to Lemmas 1 and 2 in [14] about the structure
of the A matrix. The proofs are also given in the same article;
we note that the proofs do not assume a particular type of
irreducible polynomial generating the field GF(2%).

Lemma 1: The elements of A with the indices (7, i+m mod
k) fori =0,1,...,k — 1 are all 1s, where 1 = By + 51 +
oo+ Br_1 and m = k/2.

Lemma 2: The row r for 0 < r < k—1 of X is a permutation
of B—{5,} with 1 appearing in the column index m + r mod
k.

We will denote the set of indices for which the elements of A
are all 1s by L as

L={(i,i+mmodk)|i=0,1,2,...,k—1} .



Note that L has k elements. As an example, for k£ = 10, L is
obtained as

L = {(0,5),(1,6),(2,7),(3,8),(4,9),(5,0), (6, 1),

(7,2),(8,3),(9,4)} ,

which is seen in the A matrix for GF(2°) below:

Br Bs Ba Bs Bo 1 Bs Pz B2 Br
Bs B2 Bo Bs Br Bo 1 Bs Ba B3
Bas Bo Bz Bo Bs Bs B 1 Br Bs
Be Bs Bo Ba B1 Br Bo P2 1 Bs
Ao |Po Br Bs B Bs B2 Bs Bo Bz 1
1 Bo Bs Br B2 Bs B3 Bo B1 Ba
Bs 1 B1 Bo Bs B3 Br B1s Bo P
Bs Bs 1 B2 Bo Bo Ba Ps Bs Bi
Bo Ba Br 1 Bz B1 Bo Ps Bo Be
Br Bs Bs Bs 1 PBa B2 B Bs Dol

Using Lemmas 1 and 2, we will prove the following theorem.

Theorem 2: The A, matrix of the field GF(2*) with a Type
1 basis can be written as the sum of two matrices g and v,
such that elements of the g matrix with indices in the set
L={(,i+mmodk)|i=0,1,2,...,k— 1} are 1s. All
other entries of p are zero. Furthermore, the v, matrix has
k — 1 1s such that the row 7 is all zero and every other row
has a single 1.

Proof: Since the entries of A with indices in set L are all 1
(which is equal to the sum of all k basis elements), the entries
of all A\, matrices with indices in the set L will be 1. Since
the p matrix is equal to the intersection of A, matrices, such
entries of p will be equal to 1 as well. Furthermore, consider
an entry of A matrix with index (¢, ) ¢ L. This entry would
not be equal to 1, thus, missing at least one basis element.
This implies a zero in the (i,j) € L location of one of the
A, matrices, and therefore, a zero in the intersection of all of
them, which is the g matrix. Therefore, the (¢, j) entry of the
p matrix will be 1 iff (4, 7) € L and 0 otherwise.

On the other hand we obtained v,. matrices by subtracting
p from A, however, equivalently they can be computed from
the A matrix by first removing 1s, and then expanding the
resulting matrix (which will be denoted by \’) in terms of
all basis elements. For example, for GF(2*) we can obtain v,
matrices from the A’ matrix by expanding it into a sum of all
basis elements

X =vBy + 1181 + 2P + 1353

such that

1 B3 0 B 00 0O

5 B2 Bo O] |0 0 1 0

0 o B G| Jo 10 of0F

B2 0 B1 Bo 0 0 0 1
100 0 000 1 010 0
000 0 010 0 1000
000 1|t o0 o0 o®t|oo 1 o
0010 100 0 000 0

Due to Lemma 2, the row r of the A’ matrix is a permutation
of all basis elements except (3,. Since the row r does not

contain (3,, the entire rth row of the v, matrix will be zero.
Furthermore, G, will be present in all other rows of the A’
matrix except in the row r, there will be a single 1 in all other
rows of the v, matrix, giving £ — 1 s in the v, matrix. B

Before we analyze the space requirements of our decompo-
sition method, we should state that the matrix decomposition
algorithm given in [8] has essentially the same properties
as the one in this paper for Type 1 optimal normal bases,
however there are some differences. The method in [8] uses
irreducible all-one-polynomials to develop the properties of
the A matrix and the decomposition of the A, matrices.
Specifically, our Lemma 1 describes the same property as
the one in Equation (8) in [8], and our Theorem 2 describes
the same decomposition as the one in Equation 7 in [8].
However, the analysis in [8] is limited to the irreducible all-
one-polynomials. Since an all-one-polynomial of degree k is
irreducible if k + 1 is prime and 2 is a primitive element in
Zi41, which are also the existence conditions of the Type
1 optimal normal basis, every optimal normal basis Type 1
can be derived by selecting an irreducible all-one-polynomial
[15]. However, optimal normal bases Type 1 can also be
derived using other irreducible polynomials, for example, for
GF(2%) in Section VII, we used the irreducible polynomial
p(z) = 2*+2+1. Our decomposition method does not depend
on specific irreducible polynomials, and is derived irrespective
of the choice of the irreducible polynomial, and furthermore,
it is applicable to the Type 2 optimal normal bases for which
there are no irreducible all-one-polynomials.

Theorem 3: The decomposition method for the Type 1
optimal normal basis in GF(2*) computes all product terms
¢, forr=0,1,...,k — 1 using k? AND gates, k* — 1 XOR
gates, and T'4 + [1 + log, (k)| T'x delay.

Proof: The common term s is computed using

bo
by

s = [ao a1 ak,ﬂ 7

br—1

According to Theorem 2, the g matrix has exactly k£ 1s with
the indices in L, and all other terms are zero. This implies
that we compute s using a linear sum which contains & terms:

k—1
S = E aibi-i—m mod k -
=0

The computation of s is accomplished using a binary tree
of XOR gates with k leaves; the number of XOR gates to
compute s is k — 1, while the delay (the depth of tree) is
log,(k)Tx. The s-tree is illustrated in Figure 1.

On the other hand, a single ¢, term is computed using

bo
b1

t, = [GO ay ak—l] vy

br—1



Also according to Theorem 2, the row r of the v, matrix is
zero, while every other row has a single 1 in it. This implies
that we compute ¢, using a sum which contains k£ — 1 terms:

k—1

Z aﬂ'ibi = a/m)bO"" . '+a7rT,1 br—l+a7rT+1 br+1+' o amc,lbk—l
i

where 7 is a permutation of the indices {0,1,...,r — 1,r +
1,...,k—1}. We create k identical binary trees of XOR gates,
each of which has k£ — 1 leaves, as shown in Figure 1, named
as t,-trees. The computation of a single ¢,. term requires k — 2
XOR gates and log,(k—1)T'x delay. The parallel computation
of all ¢, terms for r = 0,1,...,k — 1 requires k(k —2) XOR
gates.

Once s and ¢, forall : =0,1,...,k — 1 are computed, the
computation of a single product term c¢, requires one XOR
gate and all product terms ¢, for i = 0,1,...,k — 1 require k
XOR gates. However we only need one T'x delay for this
computation. Therefore, the total number of gates and the
required delay are found as:

1) The computation of s requires £k — 1 XOR gates and
log, (k)Tx delay.

2) The computation of ¢, forall r = 0,1, ..., k—1 requires
k(k —2) XOR gates and log,(k — 1)Tx delay.

3) However, we should note that, as illustrated in Figure
1, the computation of s and ¢, values are independent
of one another. By arranging the s-tree and ¢,-trees in
parallel, we find the critical path length as log, (k)Tx.

4) The computation of ¢, forallr =0, 1,..., k—1 requires
k XOR gates and a single T'x delay.

Thus we find that the total number of the XOR gates required
by the matrix decomposition method as k—1+k(k—2)+k =
k? — 1, while the total delay is T4 + [1 + log, (k)] Tx. ®

IX. DECOMPOSITION FOR TYPE 2A BASES IN GF(2F)

We now analyze the complexity of the decomposition
algorithm for Type 2a bases. We will first derive the A
matrix for the field GF(2°), which has Type 2a basis since
p = 2k+1 = 11 is prime and 2 is primitive mod 11. Theorem 1
states that the basis element 3 can be written as 3 = v+~ !
such that « is the 11th root of identity. Our objective is to
discover how the A, matrices can be additively decomposed.
The A matrix is given as

ﬂ2 [‘33 55 ﬂ&) ﬂ”
ﬂB ﬂ4 BG BlO 18
A= 55 56 ﬁ8 ﬁ12 520
59 510 512 ﬁlﬁ 524
517 ﬂlS ﬂQO 524 ﬂ32

In order to obtain the A, matrices we need to express all
powers of 3 in the A matrix in terms of the powers of 2
powers of /3. First we start with the diagonal entries of the A
matrix which already contains powers of 2 powers of 5. We
have 3, = 82" for r = 0,1,2,3,4, and also £32 = 8 = f.
Moreover we should also note that 3g = 3 = v+~ !, and

Br=p" =(y+7v ) =4 +177

for r = 0,1,2,3,4. Next we obtain the normal expansions
of the off-diagonal entries which contain the products of two
basis elements 32" - 32’ for i,j = 0,1,2,3,4 and i # j. For
example, the term 82" - 82° = B0 is written

BB = (P+ryHP+7Y)
— 1010 6 6

which contains 10, —10,6,—6 powers of 7. We need to
express these powers of vy in terms of the powers of 2 powers
of 7, and thus obtain a normal expansion for B19. In order to
accomplish this, we will use Theorem 1. The general form an
off-diagonal product term is written as
52421' _ 72421 + 7721421 +72i72f + 7721421

for 0 <1i,j <4 and i # j. By enumerating ¢ and j, we obtain
the set of integers of the form £2% + 27 as

+{1,2,3,4,5,6,7,8,9,10,12,14,15,17, 18,20, 24} .

In other words, we need the above powers of v in order to
express all 8 powers found in the A matrix in the normal basis.
Referring to the properties of the Type 2a basis in Theorem
1, we make the following observations:

e p=2k+1=11is prime.

e v is 11th root of identity, implying that if v = v
(mod 11) then v* = ~". Therefore, the above set is
reduced mod 11, and we only need the powers of v from
the set 2}, ={1,2,3,4,5,6,7,8,9,10}.

e 2 is primitive mod 11, that is, the powers of 2 generates
the set Zj,. Since 2! = 1 (mod 11) and 2° = —1
(mod 11), which implies that 2% with v > 5 can be
written as 2% = 2°F% = 2v .25 = —2v,

Thus, we can list elements of Z]; as

20 21 92 93 24 95 96 o7 98 99

1 2 4 8 5 10 9 7 3 6

20 21 22 93 24 1 21 92 23 o4
Thus, any u € 27, can be written as v = £2¥ (mod 11) for
av € {0,1,2,3,4}. This implies that we can write v* = PyiQU

forany u € Z{; and v € {0,1,2,3,4}. All v equalities needed
in the A matrix are listed in Table 3 below.

u | uw (mod 11) | w=+2Y (mod 11) | ~ expansion
3 3 3=-2° P=y7
5 5 5= 21 7 =%
6 6 6=—21 NS =2
7 7 7= 22 N =
9 9 9=_29! 79 = 7_2
10 10 10 = —20 A0 = 41
12 1 1=20 V12 =y
14 3 3=-23 Y= 7*23
15 4 4 =22 A15 = A2
17 6 6= —2¢ AT = 42!
18 7 7=-22 AT =42
20 9 9=-2! ~20 =72
24 2 2=21 N2 =2

Table 3: The powers of ~ equalities.
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Fig. 1. The matrix decomposition method for Type 1 basis.

Thus, given the equalities v'° = ~! and ~%
obtain the normal expansion of the product 310 as
G288 = 4104410 N6
-1 —24 24
= v +ytyr " +tv
= Bo+fa-
The other powers of 3 can be obtained using similar deriva-

tions. We omit these derivations, and write the A matrix for
GF(2°) below.

6

r [‘32 53 55 [‘39 ﬂ”
ﬂ3 54 56 ﬂlO ﬂlS
A = [‘35 56 BS ﬂlQ ﬂQO (8)

59 510 ﬁ12 516 524
517 518 ﬁQO 524 532

b1 Bo+Bs Ba+Ps Bi+P2 Pat P

Bo + B3 B2 BatB1 Pot+PBas B2t P

= |Ba+Bs Pt B3 Bo+ B2 Bo+ B

Br+ B2 Bo+PBs Bo+ B2 Ba b1+ B3

(Ba+ B2 Bat B3 Bo+B1 Bi+Bs Bo

We observe that the A matrix for GF(2°) does not have any
1 entries, and therefore, the intersection of all A\, matrices is
a zero matrix. Unfortunately, a decomposition as in the Type
1 case (which was of the form A, = p + v,.) is not possible.
However, we will show that another decomposition exists.
Theorem 4: The diagonal entries of the A matrix for the
field GF(2*) with a Type 2a basis contain one basis element,
while all other entries are the sum of two basis elements.

Proof: The normal element 3 of the field GF(2¥) with a
Type 2a basis is given as 3 = v + v~ where p = 2k + 1 is
prime, 2 is primitive mod p, and ~ is the primitive pth root of
identity.

iTx

First we observe that all diagonal elements are of the form
B2 forr =0,1,...,k — 1, therefore, each contains a single
basis element 32 = B, for r = 1,2,...,k — 1 and 52" =
B = By for r = k. Moreover 3, = 32 = % +~2 for
r=0,1,...,k— 1.

Now consider the (7, j) element of the A for 0 < i,j < k—1
and i # j. This element 32 T2’ is a product and can be written
as

ﬁQi X BQj

(0 +T0T 407 -
721+2J +7—(21+2J)+721—2J +7—(21—2J)

)

Since ? is the identity, the powers of -y above can be reduced
mod p, and therefore, we can write

BEHY =y T gy ©

such that u; = 2° +27 (mod p) and uz = 2¢ — 27/ (mod p),
where 0 < 4,7 < k—1 and i # j. Now we will prove that any
integer u € Z5 = {1,2,...,p— 1} can be uniquely written as
u = £2" (mod p) forsomev € Z, = {0,1,...,k—1}. Since
p = 2k + 1 prime and 2 is primitive mod p, we have 22 =1
(mod p) and 2¥ = —1 (mod p). Thus, we can generate all
elements of Z using powers of 2, and furthermore, using the
identity 2 = —1 (mod p) we obtain

Zr = (20,2127, 2F 1 oF okl gkt2  g2kl)
= {20,28,22 . 2kl g ol 9% ok 1}
This implies that any v € Z; can be written as u = +2°
+2v

(mod p) with v € Zi. Thus, we conclude that v* = =2,
and write Eqn. (9) as

B2i+2ﬂ' _ 72”1 _’_7—2”1 +72”2 +7—2”2 ’
Therefore, every off-diagonal element of the A matrix con-
structed using Type 2a normal basis of the field GF(2%)
contains the sum of 2 basis elements. H



In order to decompose A, matrices, we will first separate the
diagonal entries and place each of them in different matrices
for each r, which we denote as u... As the off-diagonal entries
are concerned, we notice that the A matrix is symmetric,
implying these pairs of elements appear in two different (and
symmetrical) locations. For example, 3p+ /31 is in the locations
(2,4) and (4,2) of the A matrix for GF(2°). Since Ao and
A1 matrices respectively hold the coefficients of the basis
elements 3y and 3, these matrices would have 1s in the same
locations (2,4) and (4,2), and thus, their intersection would
be a nonzero matrix. Furthermore, 3y is coupled with every
other (3,., the intersection of Ay with A, forr =1,2,..., k—1
would all be nonzero matrices. These observations suggest
a decomposition of the A, matrices, as expressed in the
following theorem.

Theorem 5: The A, matrix for the field GF(2*) with a Type
2a basis can be written as the sum of k& matrices such that

k—1
A= Hr + Zuri ’

1=0

iFET

where each i, matrix has a single 1 in location (k — 1,k —1)
forr =0and (r—1,r—1) forr = 1,2,..., k—1. Furthermore,
each v,; matrix is symmetric and contains only two 1s.

Proof: The p, matrix contains only the diagonal entries of
A, matrix. As illustrated for GF(2°) in Eqn. (8) the diagonal
entries of the A matrix has the basis elements 3, for r =
1,2,...,k—1,0.

Furthermore, we obtain the p,- matrices as follows:

Ko K1 K2
(000 00O0] [tOOOO] [0OOOOO
000O0GO 000O0GO 01000
000O00O0 000O00O0 0 00O0O
000O00O0 000O00O0 0 00O0O
00001 [0000O0 |[000O00O0

K3 Ha
(00 000] [00O0O0 O]
000O0GO 000O0GO
00100 000O00QO0
000O00QO0 00010
00000 [00O0O0 0]

We denote the matrix as v,; as the intersection of the A\, and
A; matrices as

Vri:)\TﬂAi for r#£1i.

The sum S, + (B, of a pair of basis elements /3, and (3,
appears in exactly two locations in the A matrix, and thus,
the intersection of A, and \;, i.e., the v,; matrix contains
only two 1s, and all other elements are zero. For example, vg;
matrices for GF(2°) are obtained as

b1 Bo+Ps Ba+PB3 Bi+P Bat o
Bo + B3 B2 Ba+PB1 Bo+Bs B2+ B3
Ba+PBs Bat+ B B3 Bo+ B2 Bo+ B
Br+B2 Bo+Bs Bo+ B2 B4 B1+ B3
Ba+P2 Ba+pB3 Bo+PBr P+ 53 Bo

Therefore, the diagonal of the A, matrix has a single 1, and
thus, the entire g, matrix has only 1 in it; all remaining
elements are 0. The po matrix has a 1 in the location
(k—1,k—1) while p, has a 1 in the location (r — 1,7 — 1)

Vo1 Vo2
[0 0 0 0 O] [0 0 0 0 O]
0 0 0 0 0 0 0 0 0 O
00 0 01 00 0 1 0
00 0 0 O 001 00
_O 0 1 0 O_ _O 0 0 O O_
Vo3 Vo4
(0 1 0 0 0] [0 0 0 0 O]
1 0 0 0 O 00 0 1 0
00 0 0 O 00 0 0 O
00 0 0 O 01 0 0 O
_O 0 0 0 O_ _O 0 0 O O_

forr=1,2,...,k — 1. We obtain the A, matrices as

Ao A1 Ao

(0010 00l [1 00 1 0] 00011

10010 00100 01001

00011 01001 00010

01100 10001 10100

00101 [0011 0] 11000
)\3 >\4

(01100 [00 1 0 1]

10001 00110

10100 11000

000O01 01010

01010 [10O0O0 0f

Therefore, the A, matrix of GF(2¥) decomposes into k matri-
ces u, and v,; fori =0,1,...,r—1,r+1,...,k—1 such
that the p, matrix contains a single 1, and all v,; matrices
contain 2 1s. B

The space complexity of the multiplication using decompo-
sition method is analyzed in the following theorem.

Theorem 6: The decomposition method for the Type 2a
optimal normal basis in GF(2*) computes all product terms
¢, forr =0,1,...,k — 1 using k> AND gates, 1.5k(k — 1)
XOR gates, and a total delay of Ty + [1 + log, (k)] Tx.

Proof: According to Theorem 5, the A, matrix can be
written as the sum of k£ matrices as

k—1
Ar = Ur+ ZVTi .

i=0
iET



The computation of the product term ¢, is accomplished using

bo
k—1 bl
Cr = [ao ai akfl] M + Zl/m'
EaVa

For brevity, we will denote the input vectors by a’ and b,
and break the above product computation into the sum of k
matrix-vector products as

k—1 k—1

cr =a’ urb—i—Z(aT Vi b):sr—i—Ztm-. (10)
=0 =0
i#ET i#ET

The individual components of the above sum, s, and t,;, are
defined as

T
s = a wur b,

T
tri = @ Uy b )

for 0 < i < k —1 and ¢ # r. Once the terms s, and t,; are
computed we can obtain the product ¢, using Eqn. (10). Steps
of the computation of all ¢, terms are described below and
illustrated in Figure 2.

1) The computation of s, does not require any XOR gates.
The matrix p, has a single 1 in it; the location is (k —
1,k —1) for r = 0 and (r — 1, — 1) for all other
r=1,2,...,k—1. Therefore, so = ar_1br_1 and s, =
ap_1b,_1 for r = 1,2,...,k — 1. There is no delay
involved, either, the selection logic works by routing the
logic signals.

2) The v,; has only two 1s and it is also symmetric. If
the (u,v) element of the v,; matrix is 1, then so is
(v,u) element, while all the other elements are zero.
This gives the value of ¢,; as a,b, + a,b,. Therefore,
the computation of a single ¢,; requires 1 XOR gate and
T'x delay. Furthermore, we have v,; = v, and thus,
tr; = tir. This implies that we only need to compute
half of the ¢;, terms due to the symmetry. For example,
for k = 5 the following terms need to be computed: ¢o;
for i = 1,2,3,4; ty; for i = 2,3,4; ty; for ¢ = 3,4;
finally t34. For GF(2¥) the number of terms that need
to be computed is

k=1 +(k-2)+ - +1=kk-1)/2,

which gives the total number of XOR gates for comput-
ing all ¢,; terms as 0.5k(k — 1), while the delay is still
equal to one Tx.

3) Having obtained all s, and t,; values, we compute c,
using the summation Eqn. (10) which has & terms. We
arrange this summation using a binary tree of XOR
gates, which has k leaves. There is a separate binary
for each value of r = 0,1,...,k — 1; there are k
inputs for each tree such that s,,t,; except ¢, term.
The computation of a single ¢, term requires k—1 XOR
gates and log,(k)Tx units of delay, while all ¢, terms
would require a total of k(k — 1) XOR gates.

Therefore the total number of XOR gates is found as 1.5k(k—
1), and the total delay is T4 + [1 + log, (k)]Tx. B

X. DECOMPOSITION FOR TYPE 2B BASES IN GF(2F)

The smallest field with the Type 2b basis is GF(23). For
k =3, we have p = 2k + 1 = 7 prime, p = 3 (mod 4), and
2 generates the quadratic residues in Z7. Furthermore, a basis
element §3; = 32 is equal to 42" +~~2 for i =0, 1,2, where
v is the 7th root of identity according to Theorem 1. We can
write 72 = 474, 4> = 472, and 7% = y~!, and obtain the
products of the basis elements as

B =5 = Y+ 47+
= 7ty
= o+ P2
BB =8> = Y+ ++97°
B
= Bi1+ B
B2BY = 6 = oSy b2 2
= v+ 470
= Bo+5
Therefore, the A matrix is obtained as
g pEope b1 Bo+ B2 P11+ B2
A= |8 p* B = |Bo+ B B2 Bo + b1
B> s e 1+ B2 Bo+ b Bo

Similar to the Type 2a case, we see that the A matrix for
GF(23) contains a single basis on the diagonal, while all off-
diagonal elements are equal to and the sum of two bases. We
prove that this property holds true for any k.

Theorem 7: The diagonal entries of the A matrix for the
field GF(2*) with a Type 2b basis contain one basis element,
while all other entries are the sum of two basis elements.

Proof: All diagonal elements of the A matrix are of the
form BQT, and therefore, each contains a single basis element
B2 =B, for 0 =1,2,...,k — 1. Furthermore, we have 3 =
v+ ~~! where v is the p = 2k + 1 primitive root of identity.
A diagonal element is of the form 2" = 42" + 42" for
r=0,1,...,k— 1.

Similar to the Type 2a case, an off-diagonal element is given
as B2 1% fori=1,2,...,5—1,5+1,...,k — 1, which is
equal to

ﬁzi _ﬂQj _ 72i+2f +,yf(2i+2f) +72tzﬂ' —i—’y’(Qi’Qj) .

Since ~? is the identity, the powers of + above are reduced
mod p, and therefore, we can write

e o R R (11

such that u; = 2° +27 (mod p) and uz = 2¢ — 2/ (mod p),
where 0 < 4,5 < k—1 and i # j. Next we will prove that any
integer u € Z; = {1,2,...,p — 1} can be uniquely written
as u = £2¥ (mod p) for some v € Z, ={0,1,...,k —1}.
Theorem 1 states that for Type 2b basis, p = 3 (mod 4) and
2 generates quadratic residues mod p. We use (), to denote
the set of quadratic residues, which has (p — 1)/2 elements.
An element u € ZJ is in (), if there is a solution = for
the equation 22 = wu (mod p), otherwise u is a quadratic

nonresidue. The set of quadratic nonresidues, denoted by Q’,
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2
AND array (k gates)

Sk-1

S0

t. array

(k(k-1)/2 gates)

cO-tree

k-1 gates

0]

Fig. 2. The matrix decomposition method for Type 2a and 2b bases.

consists of the remaining (p — 1)/2 elements of Z;. For
example, for k = 11, p = 23, these two sets are given as

Q23 = {1,2,3,4,6,8,9,12,13,16,18} ,
Q5 = {5,7,10,11,14,15,17,19,20, 21,22} .
The Euler criterion determines if u € Q, or u € Q}:
u(p_l)/2 _ 1 if ue Qp y
-1 if ue@,.

An important observation is that —1 € @, if p = 3 (mod 4),
since

1
-1

(—1)P~1/2 = if p=1 (mod4),
if p=3 (mod4).

Another relevant property of quadratic residues is that if u €
Qp and v € @), then the product uv € @Q},. Particularly, in our
case, we can write —u € Q) if u € @), since —1 € @Q},. Since
QQp is generated by powers of 2, it follows that

Qp={2" (modp)|ve2Z}.

We can generate Q; by multiplying every element of @, by
—1, in other words,

Q,={-2" (modp)|veZ}.

Since Z; = Q, J Q),, we can write

Z, ={£2" (modp) |ve€ 2} .
This implies that any w € Z; can be written as u = £2"
(mod p) with v € Zj,. Thus, we conclude that y* = ~*2",

and write Eqn. (11) as
B2i+2f _ 72”1 + 7—2”1 +72”2 + 7—2”2

Therefore, every off-diagonal element of the A matrix con-

structed using Type 2a normal basis of the field GF(2%)

contains the sum of 2 basis elements. ll

¢

k-1 gates
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-tree

Cp.1-tree

k-1 gates 10g2 (k)TX

‘1 k-1

Therefore, the same complexity analysis for Type 2a applies
for Type 2b as well. The complexity of the multiplication using
decomposition method for the Type 2b bases is the same as
that of Type 2a bases.

Theorem 8: The matrix decomposition method for the Type
2b optimal normal basis in GF(2*) computes all product terms
¢, forr =0,1,...,k — 1 using k> AND gates, 1.5k(k — 1)
XOR gates, and a total delay of T4 + [1 + log, (k)] Tx.

XI. CONCLUSIONS

We introduced a matrix decomposition method and de-
scribed the underlying algorithms for normal basis multipli-
cation in the field GF(2¥) with Type 1 and Type 2 bases.

We developed the matrix decomposition method explicitly
on small fields; for £ = 2 and k = 4 for Type 1 basis, and
k = 5 for Type 2a basis, k = 3 for Type 2b basis. However,
we derived the space complexity results for general values of
k for all three types of bases, as given in Theorems 3, 6, and
8, respectively.

The decomposition algorithm computes all product terms
for the Type 1 basis using k2> — 1 XOR gates, irrespec-
tive of the irreducible polynomial generating the field. The
previous Massey-Omura multiplication algorithms [16], [9],
[11] accomplished the same bound using all-one-polynomials.
Furthermore, our matrix decomposition algorithm computes all
product terms for the Type 2a and 2b bases using 1.5k(k — 1)
XOR gates, which matches previous bounds [10], [11].

The Type 1 normal basis multiplication algorithm given
in [11] is also based on a matrix decomposition in which
the A matrix is decomposed into upper and lower triangular
matrices and a diagonal matrix. The XOR complexity of this
algorithm is given for all-one-polynomials as k2 — 1, however,
an analysis for a general irreducible polynomial is not given.
Instead, it was shown that the algorithm for GF(2°) requires



8 XOR gates. However, one has to note that this is a straight-
forward decomposition which follows directly the definition
of symmetric matrices, and separates the multiplication terms
into three groups. Their algorithm then rearranges the terms
of this sum. In our approach however, we find an optimal
decomposition with respect to the chosen normal basis and the
corresponding multiplication matrix. After creating the optimal
decomposition we are able to create the circuit without any
intermediate steps. For the optimal normal basis, our results
match the results in [11], but we do not restrict our algorithm
to all-one polynomials, and we extend to arbitrary normal
bases without additional effort.

It is also interesting to note that the Mastrovito algorithms,
which work only for the polynomial basis, achieve the k% — 1
space complexity with irreducible trinomials [17], [18], [19],
[20]. Furthermore, the space complexity falls to k% — A for
equally-spaced polynomials [21], [22], where A is the distance
factor; in other words, the irreducible polynomial is of the form

p(,fC):.I'mA—f—.I'(m_l)A—f——f—l'A-i-l i

In a highly special case of equally-spaced-trinomial z* +
x¥/2 41, the space complexity becomes k> — k/2 [21]. This
implies that the bound k2 — 1 is not very tight and there may
be more special cases in which the space complexity falls
further from that. However, it is highly likely that the result of
this paper provides the lower bound for optimal normal bases,
irrespective of the irreducible polynomial. This remains to be
proven.

Another promising direction for future work is to investigate
if we can reduce the space complexity for Gaussian normal
basis multiplication using our matrix decomposition approach.
Optimal normal bases do not exist for all k£, however, non-
optimal but still low complexity normal bases do exist, and
are called Gaussian normal bases [23], [24]. The Type T
of a Gaussian normal basis in GF(2¥) is a positive integer
describing the structure and measuring the complexity of the
multiplication in the basis [3].

For a given k and T, there exists at most one Gaussian
normal basis of Type T'. A Type T Gaussian normal basis
for a given field GF(2") exists if and only if p = Tk + 1 is
prime and ged(Tk/m, k) = 1 where m is the multiplicative
order of 2 in Z;. When T° = 1, the Gaussian normal basis
Type 1 is the same as the optimal normal basis Type 1, since
Part 1 conditions of Theorem 1 are satisfied: p = k + 1 is
prime, the multiplicative order of 2 in Z} is k = p — 1, that
is 2 is primitive, and thus ged(Tk/m, k) = ged(k/k, k) =
ged(1, k) = 1. Similarly, when T = 2, the Gaussian normal
basis Type 2 is the same as the optimal normal basis Type 2a:
p = 2k + 1 is prime, the multiplicative order of 2 in ZJ is
p — 1 = 2k, that is 2 is primitive, and thus ged(Tk/m, k) =
ged(2k/(2k), k) = ged(1, k) = 1.

Our analysis of Type 2a basis in Section IX showed that
for T = 2, all rows of the A, (except row 0) has two
nonzero entries. This fact was also stated in Remark 1 of [25].
Both the Remark 1 in [25] and our analysis in Section IX
address Type 2a only. However, we were also able to show in
this paper (in Section X) that Type 2b bases have the same
complexity as Type 2a bases. We believe it is worthwhile to
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investigate the complexity of the Gaussian normal basis with
even T = 2N with properties p = Tk + 1 = 2N + 1 prime,
the multiplicative order of 2 in Z is m, and ged(Tk/m, k) =
ged(2Nk/m, k) = 1. It was shown in [26] that the Gaussian
normal basis multipliers for GF(2*) for odd k can be more
efficient in terms of space complexity. The multiplication
algorithms described in [26] require 16% or 27% fewer XOR
gates than the standard parallel-input parallel-output multiplier
for £ = 163 and k£ = 409, respectively. These fields have
important applications in the Elliptic Curve Digital Signature
Algorithm (ECDSA) of the NIST standard FIPS 186-3 [27].
Moreover the algorithms in [26] yield new elliptic curve point
addition and doubling formulations [28] which utilize a novel
digit-level hybrid-double Gaussian normal basis multiplier
[29]. This shows the importance of the Gaussian normal
basis multipliers; its applications in elliptic curve cryptography
make them highly useful and new research in this direction
highly worthwhile.
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