
Optimal Parallel Pre�x on Mesh Arhitetures�Omer E�geio�glu and Ashok SrinivasanDepartment of Computer SieneUniversity of CaliforniaSanta Barbara, CA 93106AbstratAlgorithms for eÆient implementation of omputation of pre�x produts on mesh-onnetedproessor arrays are presented. Assuming that an arithmeti operation takes unit time and om-muniation/omputation ratio for a single input item is � , we show that the pre�xes of n items anbe omputed in time 2 �pn + O(logn) on a square mesh with n proessors. If n proessors areon�gured as a dis with respet to the Manhattan metri, then the parallel time for the problembeomes p2 �pn+O(p� 4pn). We show that both of these algorithms are asymptotially optimal.Categories and Subjet Desriptors: C.1.2 [Proessor Arhitetures℄: Multiple Data Stream Ar-hitetures { parallel proessors; F.1.2 [Computation by Abstrat Devies℄: Modes of ompu-tation { parallelism; F.2.2 [Analysis of Algorithms and Problem Complexity℄: NonnumerialAlgorithms and Problems { omputations on disrete strutures.Keywords: Parallel pre�x, mesh-onneted proessor arrays, ommuniation omplexity.1 IntrodutionGiven an ordered n-tuple (x1; x2; : : : ; xn) of elements of a set X losed under an assoiative binaryoperation �, the pre�x problem is the omputation of the partial produts = x1 � x2 � � � � � xi for1 � i � n. Problems of this nature arise in various settings inluding iruit design where � is a simpleboolean operation, and numerial problems where � may be oating-point matrix multipliation. Asexamples, parallel algorithms for omputing the Newton and Hermite interpolating polynomials makeuse of parallel pre�x algorithms where the xi's are oating-point numbers and � is a oating-pointaddition or multipliation [5℄. Solution of kth order linear reurrenes an be obtained by a parallelpre�x algorithm where � is k � k matrix multipliation [10, 9, 8℄. Tridiagonal systems an be solvedwith Stone's reursive doubling algorithm by omputing the pre�xes of 2� 2 matries [17℄.Parallel pre�x iruits have appliations in the design of optimal-area adders [2℄ and the simulationof sequential iruits by ombinational iruits [12℄. Fih's paper [7℄ ontains a review of the literatureon parallel pre�x iruits along with further appliations. In a parallel pre�x iruit, the onern is toredue the depth and the size of the iruit. Size and depth bounds and trade-o�s for pre�x iruitsappear in [7℄ and [16℄.Pre�xes of n elements an be omputed trivially in n � 1 steps sequentially where at eah step asingle � operation is performed. There are several parallel pre�x algorithms [12, 2, 11, 13℄, given either1



in the arithmeti iruit or PRAM model of parallel omputation. Asynhronous algorithms [14℄ andimplementation on various ensemble arhitetures [15, 3, 4, 1, 6℄ have also been onsidered.We assume that we are given n idential proessors with a routing mehanism to send an operandfrom one proessor to any other proessor. An arithmeti step (or a multipliation step) is de�ned asthe time required to perform a � operation by a single proessor. A routing step is the time required totransfer an operand from one proessor to a neighboring one. We assume that a routing step requires� units of time and an arithmeti step takes unit time. In this paper, we fous on the performane ofparallel pre�x algorithms on mesh-onneted proessor arrays.In x2 we derive a lower bound for the time omplexity of pre�x omputations on a mesh-onnetedsystem with the assumption that initially exatly one data item is assigned to eah proessor. We �rstpresent a suboptimal parallel pre�x algorithm (Algorithm A) on a retangular mesh in x3 to motivatethe rest of the paper. In x4, we desribe an improved algorithm (Algorithm B) for pre�x omputationson a retangular mesh, whih is asymptotially optimal. Subsequently in x5 we onstrut an algorithm(Algorithm C) for the pre�x problem on the dis whih uses Algorithm B as a subproedure and whihis asymptotially optimal. This is followed by onlusions in x6.2 Lower boundsConsider the in�nite grid of lattie points in the plane where a point (a1; b1) is onneted to a point(a2; b2) i� ja1 � a2j+ jb1 � b2j = 1 :The Manhattan metri between the points P = (a1; b1) and Q = (a2; b2) is given byd(P;Q) = ja1 � a2j+ jb1 � b2j : (1)We say that a multiproessor network with N proessors forms a mesh if the proessors are arrangedas a onneted, indued subgraph of the lattie grid. The mesh is retangular if it onsists of all lattiepoints in some a � b retangle of lattie points as in Figure 1 (a). Figure 1 (b) shows dis of radiusr = 2. This latter mesh an be identi�ed with the set of points P with d(P;Q) � r for some �xedenter point Q.
(b)(a) Figure 1: Two meshes: (a): 3� 4 retangle (b) dis of radius 2.Consider the list X = (x1; x2; : : : ; xn) and suppose � is an assoiative binary operation on X. For1 � i � j � n, we denote the produt xi � xi+1 � � � � � xj by the symbol x[i : j℄. The pre�x problem on2



X is the omputation of the initial produtsx[1 : 1℄ = x1x[1 : 2℄ = x1 � x2...x[1 : n℄ = x1 � x2 � � � � � xn :We linearly order the pre�x produts by putting x[1 : i℄ to be smaller than x[1 : j℄ when i < j.A lower bound for the time required for the omputation of the pre�x produts of X on a meshwith n proessors is logn+ �(n) (2)where (n) is a lower bound on the number of routing steps. This an be proved by showing that (2)is a lower bound for the omputation of the single term x[1 : n℄. We assume that1. initially eah proessor is assigned a single item xi,2. the ommuniation distane between two proessors P and Q in the mesh is d(P;Q).A lower bound for (n) is given by minM maxP;Q d(P;Q) (3)where the minimum is taken over all possible meshes of n proessors. In other words (n) is theminimum diameter of all meshes with n points. We observe that the value of (3) is the diameter ofthe smallest dis (with respet to the Manhattan metri) whih ontains all n proessors. Next wedetermine the radius of this smallest dis as a funtion of n.Lemma 1 The number of lattie points at a distane k > 0 from a given lattie point is 4k.Proof Without loss of generality, we an assume that the lattie point we are onsidering is Q = (0; 0).Point P = (a1; b1) is at a distane ja1j+ jb1j from Q. Therefore, the number of points k away from Qis equal to four times the number of solutions ofa1 + b1 = k; a1 � 0; b1 > 0 :Sine this number is k, the total number of points at distane exatly k from Q is 4k. 2It follows that in any mesh, the total number of proessors at a distane at most r from Q isbounded from above by the number of lattie points in a dis of radius r. By Lemma 1 this number is1 + rXk=1 4k = 1 + 2r(r + 1) : (4)For example, the dis of radius 2 in Figure 1 (b) ontains 1 + 2 � 2 � (2 + 1) = 13 lattie points. If r isthe radius of the smallest dis that ontains n proessors, then from (4)n = 1 + 2r(r + 1) ) r = 12(�1 +p2n� 1) :3



For n � 1, 12p2n� 1 � r � rn2 ; (5)and therefore (n) � p2n� 2 :Consequently a lower bound on the ommuniation time required to ompute pre�xes of n items onany mesh with n proessors is �(p2n� 2). Sine logn is a lower bound for the omputation of x[1 : n℄we obtain that a lower bound for the omputation of the pre�xes of X on any mesh-onneted systemis �(p2n� 2) + logn :When we have an a � b retangular mesh with a total of n proessors, the lower bound for (n)beomes 2pn� 2, whih is ahieved for a = b = pn. ThusLemma 2 A lower bound for the omputation of pre�xes of (x1; x2; : : : ; xn) on(a) an arbitrary mesh with n proessors is p2�pn+ logn� 2� ,(b) on a retangular mesh with n proessors is 2�pn+ logn� 2� .3 A simple algorithmIn this setion we desribe a simple but suboptimal algorithm for the pre�x problem on a retangularmesh. For simpliity, we desribe the algorithm on the pn�pn square mesh. The generalization toan arbitrary retangular mesh is a straightforward extension of this ase.We number the proessors so that the proessor at the lower left orner is (1; 1), and the one at thetop right is (pn;pn). The initial assignment of x1; x2; : : : ; xn to the proessors is as follows: proessor(i; j) in row i and olumn j is assigned the item x(j�1)pn+i. An example is shown in Figure 2 (a) forn = 16.For i < j, eah proessor in olumn i will alulate a smaller pre�x than any proessor in olumnj. Also, if i < j, then for any given olumn, the proessor at row i will alulate a smaller pre�xthan the proessor at row j. This means that at the end of the algorithm, proessor (i; j) will ontainthe pre�x x[1 : (j � 1)pn+ i℄ . The algorithm (alled Algorithm A) onsists of the following four steps:ALGORITHM AInput: Items X = (x1; x2; : : : ; xn). Initially proessor (i; j) is assigned x(j�1)pn+i.Output: Pre�x produts of X. Proessor (i; j) ontains x[1 : (j � 1)pn+ i℄.1. Calulate the partial pre�xes over eah olumn using the logn arithmeti step algorithm (givenas proedure pre�x.independent) in Kruskal, Rudolph, and Snir [11℄. At the end of this step pro-essor (i; j) ontains the value x[(j � 1)pn+ 1 : (j � 1)pn+ i℄ . The ontents of the proessorsafter Step 1 is exeuted is shown in Figure 2 (b). The number of arithmeti steps required islogpn, and the number of routing steps required islog(pn)�1Xk=0 2k = pn� 1 :4



Therefore, the total time required for Step 1 is�(pn� 1) + logpn :2. Calulate the partial pre�xes for the top row using the log n algorithm as in Step 1. At the endof this step, proessor (pn; j) will have the value x[1 : jpn℄ . The time required is the same asin Step 1: �(pn� 1) + logpn :The ontents of the proessors immediately after the ompletion of Step 2 are shown in Figure 2().3. The value of x[1 : jpn℄, now available in (pn; j), is broadast to eah proessor in olumn j +1for 1 � j < pn . The dotted lines in Figure 2 (d) show these parallel routing steps. The timerequired required is �pn :4. Proessor (i; j) multiplies the value x[1 : (j � 1)pn℄ reeived in Step 3, along with the valuex[(j � 1)pn + 1 : (j � 1)pn + i℄ omputed in Step 1, to ompute its target produt x[1 :(j � 1)pn+ i℄ . Sine this requires a single parallel multipliation, the time required is1 :The �nal ontents of the proessors are shown in Figure 2 (d).END ALGORITHM AThe total time TA required by Algorithm A is the sum of the time required for eah step. This isfound to be TA = 3�pn+ log n� 2� + 1 :The parallel time TA exeeds the lower bound given in lemma 2 (b) by �pn+1. In the next setion wepresent an improved algorithm for the square mesh whih exeeds the lower bound only by a onstantamount.4 An optimal algorithm for the squareThe algorithm we present in this setion is based on Algorithm A, but has near optimal performaneahieved by reduing the ommuniation omplexity of Algorithm A. Here we imagine that the pn�pnsquare as made up of two 12pn�pn retangles, an upper retangle, and a lower retangle, as separatedby a dotted line in Figure 3 (a) for n = 16. The idea is to limit the ommuniation between theupper and the lower retangles to ommuniating aross the horizontal boundary only. As before, fori < j, the pre�x omputed in olumn i will be smaller than the one omputed in olumn j. In thelower retangle, the pre�xes will be omputed as in Algorithm A; however in the upper retangle, theomputation will proeed in the reverse order, so that the large produts will be omputed loser tothe boundary between the two retangles. 5
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() Step 2:Top row pre�xes. (d) Steps 3 & 4:Column broadast and single multipliation.Figure 2: (a)-(d): Algorithm A.
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The initial assignment of values are as shown in Figure 3 (a): proessor (i; j) in row i and olumnj is assigned the value x(j�1)pn+i if i � pn=2, i.e., the indies inrease as we go up a olumn in thelower retangle; proessor (i; j) has the value xjpn+pn=2+1�i if i > pn=2, i.e., the indies inrease aswe go down a olumn in the upper retangle. The algorithm (whih is alled Algorithm B) onsists ofseven basi steps as follows:ALGORITHM BInput: Items X = (x1; x2; : : : ; xn). Initially proessor (i; j) is assignedx(j�1)pn+i for i � pn=2;xjpn+pn=2+1�i for i > pn=2 :Output: Pre�x produts of X. Proessor (i; j) ontainsx[1 : (j � 1)pn+ i℄ for i � pn=2 ;x[1 : jpn+pn=2 + 1� i℄ for i > pn=2 :1. Calulate the partial pre�xes over eah half-olumn in parallel, using the same method as Step 1of Algorithm A. After this step, proessor (i; j) has the partial produtx[(j � 1)pn+ 1 : (j � 1)pn+ i℄; if i � pn=2x[(j � 1)pn+pn=2 + 1 : jpn+pn=2 + 1� i℄; if i > pn=2as indiated in Figure 3 (b). Similar to Step (1) of Algorithm A, the time taken for this ompu-tation is �(pn2 � 1) + log(pn=2) :2. Send the values omputed in Step (1) fromproessor (pn=2; j) to proessor (pn=2 + 1; j) diretly for 1 � j � pn,proessor (pn=2 + 1; j) to (pn=2; j + 1) through proessor (pn=2; j) in two steps for 1 �j < pn .The time required for this step of the algorithm is:2� :The ommuniation pattern used by the two entral rows in Step 2 is indiated as dotted linesin Figure 3 ().3. By a single multipliation,proessor (pn=2; j) alulatesx[(j � 2)pn+pn=2 + 1 : (j � 1)pn+pn=2℄ for 1 � j � pn ;proessor (pn=2 + 1; j) alulates x[(j � 1)pn+ 1 : jpn℄ for 1 � j < pn.7



After Step 3, the proessors ontain the partial produts in Figure 3 (d). The time required is1 :4. Now using the log n algorithm of Step 1 of Algorithm A, proessors in row pn=2 + 1 alulatetheir partial pre�x produts aross their row. In the same way, the proessors in row pn=2alulate their partial pre�x produts, arriving at the on�guration in Figure 3 (e). At the endof this step,proessor (pn=2; j) has x[1 : (j � 1)pn+pn=2℄, andproessor (pn=2 + 1; j) has x[1 : jpn℄.The time required for this step is �(pn� 1) + logpn :5. Send the values omputed in the previous step fromproessor (pn=2; j) to proessor (pn=2 + 1; j) diretly, and fromproessor (pn=2 + 1; j) to (pn=2; j + 1) through proessor (pn; j) for 1 � j < pn.These routing lines are shown in Figure 3 (f). The time required is2� :6. The proessors (pn=2; j) and (pn=2 + 1; j) now broadast the values reeived in the previousstep to all of the proessors in their side of olumn j. The parallel time required is�(pn=2� 1) :7. Eah proessor alulates its target pre�x produt by at most one more multipliation using thevalues reeived at the end of Step 5. The time required is1 :The �nal on�guration of values is shown in Figure 3 (f).END ALGORITHM BLet TB denote the total time required by algorithm B. TB is the sum of the seven individual stepsof the algorithm, whih is found to beTB = 2�pn+ logn+ � + 1 : (6)By lemma 2 (b), a lower bound on the time required for the pre�x omputation on a retangularmesh is 2�pn+log n�2� . From the expression in (6) for TB we see that the running time of AlgorithmB exeeds the lower bound only by the onstant amount 3� + 1.8
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() Step 2:Communiation pattern. (d) Step 3:Single multipliation.Figure 3: (a)-(d): Algorithm B.
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(e) Step 4:Parallel pre�x along entral rows. (f) Steps 5, 6 & 7:Communiation pattern and �nal on�guration.Figure 3: (e)-(f): Algorithm B.5 Pre�x on a disIn this setion we onsider the pre�x omputation on mesh of proessors arranged as a dis with respetto the metri in (1), as in Figure 1 (b). For simpliity, we assume that n is of the form n = 1+2r(r+1).The algorithm is as follows: we label the proessors by their lattie oordinates, the enter beingO = (0; 0). The dis is oneptually divided into four quadrants Q1; Q2; Q3, and Q4 as shown inFigure 4 (a), whereQ1 = f proessors (s; t) j s � 0; t � 0g,Q2 = f proessors (s; t) j s > 0; t � 0g,Q3 = f proessors (s; t) j s > 0; t < 0g,Q4 = f proessors (s; t) j s � 0; t < 0g.For any positive integer L, we an further divide the quadrants into ells of size L � L as shown inFigure 4 (b) for L = 2. For example, in Q1 proessors (s; t) with �L < s � 0, 0 � t < L are in one elldenoted by C0;0, proessors (s; t) with �2L < s � �L, L � t < 2L will be in one ell denoted by C�1;1.In general we label the ells in Q1 as Ci;j with �r=L � i � 0 and 0 � j � r=L where Ci;j onsists ofall proessors (s; t) with �(i+1)L < s � �iL and jL � t � (j+1)L. A similar notation is used in theother quadrants. For instane the ells in Q2 are labeled Ci;j with 0 < i � dr=Le, and 0 � j � (r�1)=L,with Ci;j onsisting of all proessors (s; t) with (i � 1)L < s � iL, and jL � t � (j + 1)L. See Figure4 (b) for an example of this deomposition with r = 4 and L = 2.The assignment of initial values to the proessors is as follows: �rst of all if i < j with xu 2 Qiand xv 2 Qj, then u < v. Within a quadrant, the items are assigned to ells so that xu 2 Ci;j andxv 2 Ck;l implies u < v, whenever jij > jkj, or i = k, and jjj > jlj. Thus essentially, in eah quadrantthe olumns of ells farther from the origin are assigned items with smaller indies, and within a given10
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the largest pre�x omputed in Ci;j at the ompletion of Algorithm B. Send pi;j to proessor i;j .Figure 7 (a) and Figure 7 (b) show the resulting values in the proessors in ell C0;1, and thevalues in eah of the speial proessors i;j over the entire mesh after this step, respetively.
dd d�1;0 0;0x[1 : 10℄ x[21 : 36℄x[11 : 20℄0;1

d dd1;11;0 2;0x[49 : 64℄ x[37 : 42℄x[43 : 48℄
dddx[86 : 91℄ x[98 : 113℄x[92 : 97℄0;�2 dd d1;�2x[71 : 85℄ x[65 : 67℄x[68 : 70℄

x[11:19℄x[11:20℄x[11:18℄x[11:17℄x[11:14℄x[11:15℄x[11:16℄
x[11:12℄x[11:13℄x[11:11℄ C0;1 x[11:20℄ = p0;1 �1;�1 0;�1 1;�1 2;�1

(a) (b)Figure 7: After Step 1 (a): Pre�xes in C0;1, (b) Contents of proessors i;j .The time required for this omputation is the time (6) required by Algorithm B on an L � Lsquare plus �L=2 units of ommuniation time required to send pi;j to proessor i;j. The totalis omputed to be 52�L+ 2 logL+ � + 12. In this step, pre�xes of the pi;j's themselves along eah olumn of ells in eah quadrant, as wellas the produt of all pi;j in a given quadrant will be omputed at the speial proessors i;j . Letq1; q2; q3; q4 denote the produt of all pi;j in the quadrants Q1; Q2; Q3; Q4, respetively. In eahquadrant, the omputation in this step of the algorithm is independent of the values omputedin the other quadrants, and is performed in parallel. Denote the pre�x omputed by i;j duringthis step by ai;j . Initially ai;j = pi;j for every proessor i;j. We will give a high level desriptionof this step of the algorithm on quadrant Q1. A sequene of operations similar to the ode inFigure 8 are exeuted in quadrants Q2, Q3, and Q4 also. In these quadrants indies of the odeFigure 8 need to be suitably modi�ed.In Q1 we perform the sequene of operations given in Figure 8:An example of this step with r=L = 2 is shown in parts (a), (b), and () of Figure 9. In (a), theinitial send operation together with the omputation of a�1;0 := p�1;1 �p�1;0 and a0;1 := p0;1 �p0;2are shown. The next two �gures in parts (b) and () orrespond to the exeution of the for loopin Figure 8 with k = 1 and k = 0, respetively. In (b), omputation of a�1;0 := a�2;0 � a�1;0 and13



for eah i; j with (j � i = r=L) and (j > 0) parallel do =� initial step �=beginsend ai;j from i;j to i;j�1; =� send down parallel �=ai;j�1 := pi;j�1 � ai;j; =� multiply parallel �=endfor k = r=L� 1 downto 0 do =� loop �=beginfor eah i; j with (j � i = k) parallel dobeginif j > 0 then send ai;j from i;j to i;j�1 =� send down parallel �=else send a�k�1;0 from �k�1;0 to �k;0; =� send right by one proessor �=if j > 0 then ai;j�1 := pi;j�1 � ai;j; =� multiply parallel �=else a�k;0 := a�k�1;0 � a�k;0; =� multiply by one proessor �=endend Figure 8: Step 2 of Algorithm C: Code for Q1.
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0;2�1;1 0;1�2;0 �1;0 0;0(b)a�1;0 � a�2;0 a0;1 � p0;0
0;2�1;1 0;1�2;0 �1;0 0;0() a0;0 � a�1;0

0;2�1;1�1;0 0;00;1a0;2 � p0;1a�1;1 � p�1;0(a)�2;0
Figure 9: Exeution of Step 2 in Q1 with r=L = 2: (a) initial, (b) k = 1, () k = 0.

14



a0;0 := a0;1 � p0;0 after the parallel send is shown. Finally in part (), the urrent a�1;0 is sent to0;0 and onsequently the �nal value of a0;0 := a�1;0 �a0;0 is omputed. Note that the �nal valuesof ai;j in Q1 area�2;0 = produt of items assigned to ell C�2;0(available at �2;0 and �1;0),a�1;0 = produt of items assigned to ells C�2;0, C�1;1, and C�1;0(available at �1;0 and 0;0),a0;0 = produt of items assigned to ells C�2;0, C�1;1, C�1;0, C0;2 , C0;1, and C0;0(available at 0;0).In partiular, after the exeution of the above ode proessor 0;0 ontains the produt of all itemsassigned to Q1, in other words a0;0 = q1. Similarly, at the end of Step 2, proessor 1;0 ontainsq2 = a1;0, proessor 1;�1 ontains q3 = a1;�1, and proessor 0;�1 ontains q4 = a0;�1. For theexample given in Figure 7 (b), these produts areq1 = x[1 : 36℄ ; q2 = x[37 : 64℄ ; q3 = x[65 : 85℄ ; q4 = x[86 : 113℄ :An individual send operation performed in the ode Figure 8 requires �L steps. The time takenfor the initial parallel do is �L + 1. The for loop takes (r=L)(�L + 1) units of time, giving atotal parallel time of (r=L+ 1)(�L + 1) for this step. Using the upper bound on r in terms of ngiven in (5) we �nd that the total time taken by Step 2 is at most�rn2 + 1L rn2 + �L+ 1 :3. Calulate and forward the pre�xes of (q1; q2; q3) using the available values at the four proessors0;0, 1;0, 1;�1, and 0;�1 in lokwise manner as shown in Figure 10: First send q1 to proessore
e e

e- ?�
0;0 1;0
0;�1 1;�1

q1 q1 � q2q1 � q2
q1 � q2 � q3q1 � q2 � q3Figure 10: Exeution of Step 3.1;0 and ompute q1 � q2. Next send q1 � q2 to proessor 1;�1 and ompute q1 � q2 � q3. Finallysend this last value to proessor 0;�1.The time required is: 2 + 3�Going bak to the example Figure 7 (b), at the end of Step 3, the pre�xes x[1; 36℄, x[1; 64℄, andx[1; 85℄ are available at proessors 1;0, 1;�1, and 0;�1, respetively.15



4. In Step 4 we ombine two types of broadast operations: broadast to speial proessors that liealong the horizontal axis in eah quadrant, and from eah suh proessor to all speial proessorsalong its olumn. Again, these operations are arried on independently and in parallel in eahquadrant. More preiselyIn Q1, broadast the value 1 from 0;0 to eah proessor i;0; i � 0.In Q2, broadast q1 (obtained in Step 3) from proessor 1;0 to proessors i;0; i > 0.In Q3, broadast q1 � q2 (omputed in Step 3) from proessor 1;�1 to proessors i;�1; i > 0.In Q4, broadast q1 � q2 � q3 (omputed in Step 3) from proessor 0;�1 to proessors i;�1; i � 0.The speial proessors that lie along the horizontal axis ompute the smallest pre�x that isneeded in eah ell in its olumn (we an all this the smallest pre�x for the olumn) by a singlemultipliation as soon as they reeive the horizontally broadast value. Consequently they initiatea broadast to the speial proessors in eah ell that lie in their olumn. For example, in Q1,proessor i;0; i < 0,1. reeives 1 from i+1;0,2. sends 1 to i�1;0,3. omputes 1�ai�1;0 and initiates a broadast to the speial proessors in olumn i by sendingthis value to i;1.Similarly, in quadrant Q2, eah i;0; i > 1,1. reeives q1 from i�1;0,2. sends q1 to i+1;0,3. omputes q1�ai+1;0 and initiates a broadast to the speial proessors in olumn i by sendingthis value to i;1.This step is shown in Figure 11 in quadrant Q2.
dd
d

dd d1;0 2;12;0 3;0
1;21;1dd

d
dd d1;0 2;12;0 3;0

1;21;1 - (a)q1 � a2;0q1 dd
d

dd d
6 6

()
q1 � a2;0 q1 � a3;01;0 2;12;0 3;0

1;21;1-6
(b)q1 � a3;0q1q1 � a2;0

Figure 11: Exeution of Step 4 in Q2 with r=L = 2.
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Eah speial proessor reeives the smallest pre�x for its olumn omputed above in no morethan r ommuniation steps and a single multipliation. Therefore the total time required is:� rn2 + 1 :5. In eah ell Ci;j, ompute the produt of the smallest olumn pre�x (whih is available in i;jafter Step 4) and the value obtained in Step 2 from the losest ell in the same olumn. Forexample, in the �rst quadrant, the proessor i;j omputes the produt of the smallest olumnpre�x and ai;j+1, and in Q3 proessor i;j omputes the produt of the smallest olumn pre�xit reeived in Step 4 with ai;j�1 that it obtained in Step 2. Eah i;j broadasts this produt toeah proessor in the ell as shown in Figure 12.
ff ff ff

fffffff f f f���6 6 6 666666 6 6 6

x[49 : 61℄x[49 : 49℄ x[49 : 53℄ x[49 : 57℄x[49 : 50℄ x[49 : 54℄ x[49 : 58℄ x[49 : 62℄x[49 : 52℄ x[49 : 56℄ x[49 : 60℄ x[49 : 64℄x[49 : 51℄ x[49 : 55℄ x[49 : 59℄

x[43 : 48℄ = a1;1x[1 : 42℄ = a0;0 � a2;0x[1 : 48℄ = a1;1 � a0;0 � a2;0

x[49 : 63℄

Figure 12: Step 5 in C1;0 with r = 7, n = 117, and L = 4: Broadast x[1 : 48℄.The time required for this step is 1 + 2�L :6. Calulate the atual pre�x in eah proessor, using the value obtained in Step 5. The timerequired is 1 :END ALGORITHM CThe total time TC required by Algorithm C is the sum of the time required for Steps 1 through 6.This is found to be 2 �rn2 + 1Lrn2 + 112 �L+ 2 logL+ 4� + 7 : (7)17



To minimize time, we di�erentiate equation (7) with respet to L and equate it to 0. This gives11p2 � L2 + 4p2L� 2pn = 0 :Therefore, L = �2 +q4 + 11p2 � pn11� ;and for large n L � 4p2np11� : (8)Substituting this value in (8) into the expression (7) givesTC � p2 � pn+ p444p8 p� 4pn+ 2 log 4p2np11� + 4� + 7 :Therefore the running time of Algorithm C isTC = p2�pn+O(p� 4pn) : (9)By the lower bound given in part (a) of Lemma 2, algorithm C is asymptotially optimal.6 RemarksUnder the assumptions that eah proessor is assigned a single item xi, and the ommuniation ost ofsending a single input item between proessors P and Q is �d(P;Q) , algorithms for the omputationof pre�x produts of a list X of n items on mesh-onneted multiproessor systems are onstruted.Initial loading of the items to the proessors is not taken into aount. For retangular meshes twoalgorithms are provided: Algorithm A is simple to implement but suboptimal, whereas Algorithm Bis asymptotially optimal but harder to implement. By partitioning the dis into variable size squaremeshes and using Algorithm B as a subproedure on these squares, it is possible to onstrut an asymp-totially optimal algorithm (Algorithm C) for the pre�x problem on a dis with n proessors. Thislatter algorithm assumes that n is of the form n = 1 + 2r(r + 1). If this is not the ase, then list Xan be augmented by adding neessary number of 1's to make it so. This new list an not be longerthan the original by more than O(pn), therefore the asymptoti omplexity of Algorithm C given in(9) remains valid.Referenes[1℄ S. G. Akl. The Design and Analysis of Parallel Algorithms. Englewood Cli�s, NJ: Prentie-Hall,1989.[2℄ R. P. Brent and H. T. Kung. A regular layout for parallel adders. IEEE Transations on Com-puters, 31(3):260{264, Marh 1982.[3℄ D. A. Carlson. Modi�ed mesh-onneted parallel omputers. IEEE Transations on Computers,37(10):1315{1321, Otober 1988. 18
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