
Optimal Parallel Pre�x on Mesh Ar
hite
tures�Omer E�ge
io�glu and Ashok SrinivasanDepartment of Computer S
ien
eUniversity of CaliforniaSanta Barbara, CA 93106Abstra
tAlgorithms for eÆ
ient implementation of
omputation of pre�x produ
ts on mesh-
onne
tedpro
essor arrays are presented. Assuming that an arithmeti
 operation takes unit time and
om-muni
ation/
omputation ratio for a single input item is � , we show that the pre�xes of n items
anbe
omputed in time 2 �pn + O(logn) on a square mesh with n pro
essors. If n pro
essors are
on�gured as a dis
 with respe
t to the Manhattan metri
, then the parallel time for the problembe
omes p2 �pn+O(p� 4pn). We show that both of these algorithms are asymptoti
ally optimal.Categories and Subje
t Des
riptors: C.1.2 [Pro
essor Ar
hite
tures℄: Multiple Data Stream Ar-
hite
tures { parallel pro
essors; F.1.2 [Computation by Abstra
t Devi
es℄: Modes of
ompu-tation { parallelism; F.2.2 [Analysis of Algorithms and Problem Complexity℄: Nonnumeri
alAlgorithms and Problems {
omputations on dis
rete stru
tures.Keywords: Parallel pre�x, mesh-
onne
ted pro
essor arrays,
ommuni
ation
omplexity.1 Introdu
tionGiven an ordered n-tuple (x1; x2; : : : ; xn) of elements of a set X
losed under an asso
iative binaryoperation �, the pre�x problem is the
omputation of the partial produ
ts = x1 � x2 � � � � � xi for1 � i � n. Problems of this nature arise in various settings in
luding
ir
uit design where � is a simpleboolean operation, and numeri
al problems where � may be
oating-point matrix multipli
ation. Asexamples, parallel algorithms for
omputing the Newton and Hermite interpolating polynomials makeuse of parallel pre�x algorithms where the xi's are
oating-point numbers and � is a
oating-pointaddition or multipli
ation [5℄. Solution of kth order linear re
urren
es
an be obtained by a parallelpre�x algorithm where � is k � k matrix multipli
ation [10, 9, 8℄. Tridiagonal systems
an be solvedwith Stone's re
ursive doubling algorithm by
omputing the pre�xes of 2� 2 matri
es [17℄.Parallel pre�x
ir
uits have appli
ations in the design of optimal-area adders [2℄ and the simulationof sequential
ir
uits by
ombinational
ir
uits [12℄. Fi
h's paper [7℄
ontains a review of the literatureon parallel pre�x
ir
uits along with further appli
ations. In a parallel pre�x
ir
uit, the
on
ern is toredu
e the depth and the size of the
ir
uit. Size and depth bounds and trade-o�s for pre�x
ir
uitsappear in [7℄ and [16℄.Pre�xes of n elements
an be
omputed trivially in n � 1 steps sequentially where at ea
h step asingle � operation is performed. There are several parallel pre�x algorithms [12, 2, 11, 13℄, given either1

in the arithmeti

ir
uit or PRAM model of parallel
omputation. Asyn
hronous algorithms [14℄ andimplementation on various ensemble ar
hite
tures [15, 3, 4, 1, 6℄ have also been
onsidered.We assume that we are given n identi
al pro
essors with a routing me
hanism to send an operandfrom one pro
essor to any other pro
essor. An arithmeti
 step (or a multipli
ation step) is de�ned asthe time required to perform a � operation by a single pro
essor. A routing step is the time required totransfer an operand from one pro
essor to a neighboring one. We assume that a routing step requires� units of time and an arithmeti
 step takes unit time. In this paper, we fo
us on the performan
e ofparallel pre�x algorithms on mesh-
onne
ted pro
essor arrays.In x2 we derive a lower bound for the time
omplexity of pre�x
omputations on a mesh-
onne
tedsystem with the assumption that initially exa
tly one data item is assigned to ea
h pro
essor. We �rstpresent a suboptimal parallel pre�x algorithm (Algorithm A) on a re
tangular mesh in x3 to motivatethe rest of the paper. In x4, we des
ribe an improved algorithm (Algorithm B) for pre�x
omputationson a re
tangular mesh, whi
h is asymptoti
ally optimal. Subsequently in x5 we
onstru
t an algorithm(Algorithm C) for the pre�x problem on the dis
 whi
h uses Algorithm B as a subpro
edure and whi
his asymptoti
ally optimal. This is followed by
on
lusions in x6.2 Lower boundsConsider the in�nite grid of latti
e points in the plane where a point (a1; b1) is
onne
ted to a point(a2; b2) i� ja1 � a2j+ jb1 � b2j = 1 :The Manhattan metri
 between the points P = (a1; b1) and Q = (a2; b2) is given byd(P;Q) = ja1 � a2j+ jb1 � b2j : (1)We say that a multipro
essor network with N pro
essors forms a mesh if the pro
essors are arrangedas a
onne
ted, indu
ed subgraph of the latti
e grid. The mesh is re
tangular if it
onsists of all latti
epoints in some a � b re
tangle of latti
e points as in Figure 1 (a). Figure 1 (b) shows dis
 of radiusr = 2. This latter mesh
an be identi�ed with the set of points P with d(P;Q) � r for some �xed
enter point Q.
(b)(a) Figure 1: Two meshes: (a): 3� 4 re
tangle (b) dis
 of radius 2.Consider the list X = (x1; x2; : : : ; xn) and suppose � is an asso
iative binary operation on X. For1 � i � j � n, we denote the produ
t xi � xi+1 � � � � � xj by the symbol x[i : j℄. The pre�x problem on2

X is the
omputation of the initial produ
tsx[1 : 1℄ = x1x[1 : 2℄ = x1 � x2...x[1 : n℄ = x1 � x2 � � � � � xn :We linearly order the pre�x produ
ts by putting x[1 : i℄ to be smaller than x[1 : j℄ when i < j.A lower bound for the time required for the
omputation of the pre�x produ
ts of X on a meshwith n pro
essors is logn+ �
(n) (2)where
(n) is a lower bound on the number of routing steps. This
an be proved by showing that (2)is a lower bound for the
omputation of the single term x[1 : n℄. We assume that1. initially ea
h pro
essor is assigned a single item xi,2. the
ommuni
ation distan
e between two pro
essors P and Q in the mesh is d(P;Q).A lower bound for
(n) is given by minM maxP;Q d(P;Q) (3)where the minimum is taken over all possible meshes of n pro
essors. In other words
(n) is theminimum diameter of all meshes with n points. We observe that the value of (3) is the diameter ofthe smallest dis
 (with respe
t to the Manhattan metri
) whi
h
ontains all n pro
essors. Next wedetermine the radius of this smallest dis
 as a fun
tion of n.Lemma 1 The number of latti
e points at a distan
e k > 0 from a given latti
e point is 4k.Proof Without loss of generality, we
an assume that the latti
e point we are
onsidering is Q = (0; 0).Point P = (a1; b1) is at a distan
e ja1j+ jb1j from Q. Therefore, the number of points k away from Qis equal to four times the number of solutions ofa1 + b1 = k; a1 � 0; b1 > 0 :Sin
e this number is k, the total number of points at distan
e exa
tly k from Q is 4k. 2It follows that in any mesh, the total number of pro
essors at a distan
e at most r from Q isbounded from above by the number of latti
e points in a dis
 of radius r. By Lemma 1 this number is1 + rXk=1 4k = 1 + 2r(r + 1) : (4)For example, the dis
 of radius 2 in Figure 1 (b)
ontains 1 + 2 � 2 � (2 + 1) = 13 latti
e points. If r isthe radius of the smallest dis
 that
ontains n pro
essors, then from (4)n = 1 + 2r(r + 1)) r = 12(�1 +p2n� 1) :3

For n � 1, 12p2n� 1 � r � rn2 ; (5)and therefore
(n) � p2n� 2 :Consequently a lower bound on the
ommuni
ation time required to
ompute pre�xes of n items onany mesh with n pro
essors is �(p2n� 2). Sin
e logn is a lower bound for the
omputation of x[1 : n℄we obtain that a lower bound for the
omputation of the pre�xes of X on any mesh-
onne
ted systemis �(p2n� 2) + logn :When we have an a � b re
tangular mesh with a total of n pro
essors, the lower bound for
(n)be
omes 2pn� 2, whi
h is a
hieved for a = b = pn. ThusLemma 2 A lower bound for the
omputation of pre�xes of (x1; x2; : : : ; xn) on(a) an arbitrary mesh with n pro
essors is p2�pn+ logn� 2� ,(b) on a re
tangular mesh with n pro
essors is 2�pn+ logn� 2� .3 A simple algorithmIn this se
tion we des
ribe a simple but suboptimal algorithm for the pre�x problem on a re
tangularmesh. For simpli
ity, we des
ribe the algorithm on the pn�pn square mesh. The generalization toan arbitrary re
tangular mesh is a straightforward extension of this
ase.We number the pro
essors so that the pro
essor at the lower left
orner is (1; 1), and the one at thetop right is (pn;pn). The initial assignment of x1; x2; : : : ; xn to the pro
essors is as follows: pro
essor(i; j) in row i and
olumn j is assigned the item x(j�1)pn+i. An example is shown in Figure 2 (a) forn = 16.For i < j, ea
h pro
essor in
olumn i will
al
ulate a smaller pre�x than any pro
essor in
olumnj. Also, if i < j, then for any given
olumn, the pro
essor at row i will
al
ulate a smaller pre�xthan the pro
essor at row j. This means that at the end of the algorithm, pro
essor (i; j) will
ontainthe pre�x x[1 : (j � 1)pn+ i℄ . The algorithm (
alled Algorithm A)
onsists of the following four steps:ALGORITHM AInput: Items X = (x1; x2; : : : ; xn). Initially pro
essor (i; j) is assigned x(j�1)pn+i.Output: Pre�x produ
ts of X. Pro
essor (i; j)
ontains x[1 : (j � 1)pn+ i℄.1. Cal
ulate the partial pre�xes over ea
h
olumn using the logn arithmeti
 step algorithm (givenas pro
edure pre�x.independent) in Kruskal, Rudolph, and Snir [11℄. At the end of this step pro-
essor (i; j)
ontains the value x[(j � 1)pn+ 1 : (j � 1)pn+ i℄ . The
ontents of the pro
essorsafter Step 1 is exe
uted is shown in Figure 2 (b). The number of arithmeti
 steps required islogpn, and the number of routing steps required islog(pn)�1Xk=0 2k = pn� 1 :4

Therefore, the total time required for Step 1 is�(pn� 1) + logpn :2. Cal
ulate the partial pre�xes for the top row using the log n algorithm as in Step 1. At the endof this step, pro
essor (pn; j) will have the value x[1 : jpn℄ . The time required is the same asin Step 1: �(pn� 1) + logpn :The
ontents of the pro
essors immediately after the
ompletion of Step 2 are shown in Figure 2(
).3. The value of x[1 : jpn℄, now available in (pn; j), is broad
ast to ea
h pro
essor in
olumn j +1for 1 � j < pn . The dotted lines in Figure 2 (d) show these parallel routing steps. The timerequired required is �pn :4. Pro
essor (i; j) multiplies the value x[1 : (j � 1)pn℄ re
eived in Step 3, along with the valuex[(j � 1)pn + 1 : (j � 1)pn + i℄
omputed in Step 1, to
ompute its target produ
t x[1 :(j � 1)pn+ i℄ . Sin
e this requires a single parallel multipli
ation, the time required is1 :The �nal
ontents of the pro
essors are shown in Figure 2 (d).END ALGORITHM AThe total time TA required by Algorithm A is the sum of the time required for ea
h step. This isfound to be TA = 3�pn+ log n� 2� + 1 :The parallel time TA ex
eeds the lower bound given in lemma 2 (b) by �pn+1. In the next se
tion wepresent an improved algorithm for the square mesh whi
h ex
eeds the lower bound only by a
onstantamount.4 An optimal algorithm for the squareThe algorithm we present in this se
tion is based on Algorithm A, but has near optimal performan
ea
hieved by redu
ing the
ommuni
ation
omplexity of Algorithm A. Here we imagine that the pn�pnsquare as made up of two 12pn�pn re
tangles, an upper re
tangle, and a lower re
tangle, as separatedby a dotted line in Figure 3 (a) for n = 16. The idea is to limit the
ommuni
ation between theupper and the lower re
tangles to
ommuni
ating a
ross the horizontal boundary only. As before, fori < j, the pre�x
omputed in
olumn i will be smaller than the one
omputed in
olumn j. In thelower re
tangle, the pre�xes will be
omputed as in Algorithm A; however in the upper re
tangle, the
omputation will pro
eed in the reverse order, so that the large produ
ts will be
omputed
loser tothe boundary between the two re
tangles. 5

x4x3x2x1

x8x7x6x5 x9x10
x11x12

x13x14x15x16 x[1 : 4℄x[1 : 3℄x[1 : 2℄x[1 : 1℄

x[5 : 8℄x[5 : 7℄x[5 : 6℄x[5 : 5℄ x[9 : 9℄x[9 : 10℄x[9 : 11℄x[9 : 12℄

x[13 : 13℄x[13 : 14℄x[13 : 15℄x[13 : 16℄

(a) Initial assignment. (b) Step 1:Parallel
olumnwise pre�xes.x[1 : 4℄x[1 : 3℄x[1 : 2℄x[1 : 1℄

x[1 : 8℄x[5 : 7℄x[5 : 6℄x[5 : 5℄ x[9 : 9℄x[9 : 10℄x[9 : 11℄x[1 : 12℄

x[13 : 13℄x[13 : 14℄x[13 : 15℄x[1 : 16℄?? ?
..........................???? ? ?

x[1 : 4℄x[1 : 3℄x[1 : 2℄x[1 : 1℄

x[1 : 8℄x[1 : 7℄x[1 : 6℄x[1 : 5℄ x[1 : 9℄x[1 : 10℄x[1 : 11℄x[1 : 12℄

x[1 : 13℄x[1 : 14℄x[1 : 15℄x[1 : 16℄

(
) Step 2:Top row pre�xes. (d) Steps 3 & 4:Column broad
ast and single multipli
ation.Figure 2: (a)-(d): Algorithm A.
6

The initial assignment of values are as shown in Figure 3 (a): pro
essor (i; j) in row i and
olumnj is assigned the value x(j�1)pn+i if i � pn=2, i.e., the indi
es in
rease as we go up a
olumn in thelower re
tangle; pro
essor (i; j) has the value xjpn+pn=2+1�i if i > pn=2, i.e., the indi
es in
rease aswe go down a
olumn in the upper re
tangle. The algorithm (whi
h is
alled Algorithm B)
onsists ofseven basi
 steps as follows:ALGORITHM BInput: Items X = (x1; x2; : : : ; xn). Initially pro
essor (i; j) is assignedx(j�1)pn+i for i � pn=2;xjpn+pn=2+1�i for i > pn=2 :Output: Pre�x produ
ts of X. Pro
essor (i; j)
ontainsx[1 : (j � 1)pn+ i℄ for i � pn=2 ;x[1 : jpn+pn=2 + 1� i℄ for i > pn=2 :1. Cal
ulate the partial pre�xes over ea
h half-
olumn in parallel, using the same method as Step 1of Algorithm A. After this step, pro
essor (i; j) has the partial produ
tx[(j � 1)pn+ 1 : (j � 1)pn+ i℄; if i � pn=2x[(j � 1)pn+pn=2 + 1 : jpn+pn=2 + 1� i℄; if i > pn=2as indi
ated in Figure 3 (b). Similar to Step (1) of Algorithm A, the time taken for this
ompu-tation is �(pn2 � 1) + log(pn=2) :2. Send the values
omputed in Step (1) frompro
essor (pn=2; j) to pro
essor (pn=2 + 1; j) dire
tly for 1 � j � pn,pro
essor (pn=2 + 1; j) to (pn=2; j + 1) through pro
essor (pn=2; j) in two steps for 1 �j < pn .The time required for this step of the algorithm is:2� :The
ommuni
ation pattern used by the two
entral rows in Step 2 is indi
ated as dotted linesin Figure 3 (
).3. By a single multipli
ation,pro
essor (pn=2; j)
al
ulatesx[(j � 2)pn+pn=2 + 1 : (j � 1)pn+pn=2℄ for 1 � j � pn ;pro
essor (pn=2 + 1; j)
al
ulates x[(j � 1)pn+ 1 : jpn℄ for 1 � j < pn.7

After Step 3, the pro
essors
ontain the partial produ
ts in Figure 3 (d). The time required is1 :4. Now using the log n algorithm of Step 1 of Algorithm A, pro
essors in row pn=2 + 1
al
ulatetheir partial pre�x produ
ts a
ross their row. In the same way, the pro
essors in row pn=2
al
ulate their partial pre�x produ
ts, arriving at the
on�guration in Figure 3 (e). At the endof this step,pro
essor (pn=2; j) has x[1 : (j � 1)pn+pn=2℄, andpro
essor (pn=2 + 1; j) has x[1 : jpn℄.The time required for this step is �(pn� 1) + logpn :5. Send the values
omputed in the previous step frompro
essor (pn=2; j) to pro
essor (pn=2 + 1; j) dire
tly, and frompro
essor (pn=2 + 1; j) to (pn=2; j + 1) through pro
essor (pn; j) for 1 � j < pn.These routing lines are shown in Figure 3 (f). The time required is2� :6. The pro
essors (pn=2; j) and (pn=2 + 1; j) now broad
ast the values re
eived in the previousstep to all of the pro
essors in their side of
olumn j. The parallel time required is�(pn=2� 1) :7. Ea
h pro
essor
al
ulates its target pre�x produ
t by at most one more multipli
ation using thevalues re
eived at the end of Step 5. The time required is1 :The �nal
on�guration of values is shown in Figure 3 (f).END ALGORITHM BLet TB denote the total time required by algorithm B. TB is the sum of the seven individual stepsof the algorithm, whi
h is found to beTB = 2�pn+ logn+ � + 1 : (6)By lemma 2 (b), a lower bound on the time required for the pre�x
omputation on a re
tangularmesh is 2�pn+log n�2� . From the expression in (6) for TB we see that the running time of AlgorithmB ex
eeds the lower bound only by the
onstant amount 3� + 1.8

. .. .
x3x4x2x1

x7x8x6x5 x9x10
x12x11

x13x14x16x15
. .. .
x[3 : 3℄x[3 : 4℄x[1 : 2℄x[1 : 1℄

x[7 : 7℄x[7 : 8℄x[5 : 6℄x[5 : 5℄ x[9 : 9℄x[9 : 10℄x[11 : 12℄x[11 : 11℄

x[13 : 13℄x[13 : 14℄x[15 : 16℄x[15 : 15℄

(a) Initial assignment. (b) Step 1:Parallel
olumnwise pre�xes.
..........................???. .. .6 66

x[3 : 3℄x[3 : 4℄x[1 : 2℄x[1 : 1℄

x[7 : 7℄x[7 : 8℄x[5 : 6℄x[5 : 5℄ x[9 : 9℄x[9 : 10℄x[11 : 12℄x[11 : 11℄

x[13 : 13℄x[13 : 14℄x[15 : 16℄x[15 : 15℄
. .. .
x[3 : 3℄x[1 : 4℄x[1 : 2℄x[1 : 1℄

x[7 : 7℄x[5 : 8℄x[3 : 6℄x[5 : 5℄ x[9 : 9℄x[7 : 10℄x[9 : 12℄x[11 : 11℄

x[13 : 13℄x[11 : 14℄x[13 : 16℄x[15 : 15℄

(
) Step 2:Communi
ation pattern. (d) Step 3:Single multipli
ation.Figure 3: (a)-(d): Algorithm B.
9

. .. .
x[3 : 3℄x[1 : 4℄x[1 : 2℄x[1 : 1℄

x[7 : 7℄x[1 : 8℄x[1 : 6℄x[1 : 5℄ x[9 : 9℄x[1 : 10℄x[1 : 12℄x[11 : 11℄

x[13 : 13℄x[1 : 14℄x[1 : 16℄x[15 : 15℄
..........................???. .. .6 66

x[1 : 3℄x[1 : 4℄x[1 : 2℄x[1 : 1℄

x[1 : 7℄x[1 : 8℄x[1 : 6℄x[1 : 5℄ x[1 : 9℄x[1 : 10℄x[1 : 12℄x[1 : 11℄

x[1 : 13℄x[1 : 14℄x[1 : 16℄x[1 : 15℄

(e) Step 4:Parallel pre�x along
entral rows. (f) Steps 5, 6 & 7:Communi
ation pattern and �nal
on�guration.Figure 3: (e)-(f): Algorithm B.5 Pre�x on a dis
In this se
tion we
onsider the pre�x
omputation on mesh of pro
essors arranged as a dis
 with respe
tto the metri
 in (1), as in Figure 1 (b). For simpli
ity, we assume that n is of the form n = 1+2r(r+1).The algorithm is as follows: we label the pro
essors by their latti
e
oordinates, the
enter beingO = (0; 0). The dis
 is
on
eptually divided into four quadrants Q1; Q2; Q3, and Q4 as shown inFigure 4 (a), whereQ1 = f pro
essors (s; t) j s � 0; t � 0g,Q2 = f pro
essors (s; t) j s > 0; t � 0g,Q3 = f pro
essors (s; t) j s > 0; t < 0g,Q4 = f pro
essors (s; t) j s � 0; t < 0g.For any positive integer L, we
an further divide the quadrants into
ells of size L � L as shown inFigure 4 (b) for L = 2. For example, in Q1 pro
essors (s; t) with �L < s � 0, 0 � t < L are in one
elldenoted by C0;0, pro
essors (s; t) with �2L < s � �L, L � t < 2L will be in one
ell denoted by C�1;1.In general we label the
ells in Q1 as Ci;j with �r=L � i � 0 and 0 � j � r=L where Ci;j
onsists ofall pro
essors (s; t) with �(i+1)L < s � �iL and jL � t � (j+1)L. A similar notation is used in theother quadrants. For instan
e the
ells in Q2 are labeled Ci;j with 0 < i � dr=Le, and 0 � j � (r�1)=L,with Ci;j
onsisting of all pro
essors (s; t) with (i � 1)L < s � iL, and jL � t � (j + 1)L. See Figure4 (b) for an example of this de
omposition with r = 4 and L = 2.The assignment of initial values to the pro
essors is as follows: �rst of all if i < j with xu 2 Qiand xv 2 Qj, then u < v. Within a quadrant, the items are assigned to
ells so that xu 2 Ci;j andxv 2 Ck;l implies u < v, whenever jij > jkj, or i = k, and jjj > jlj. Thus essentially, in ea
h quadrantthe
olumns of
ells farther from the origin are assigned items with smaller indi
es, and within a given10

0,1 1,1

C 2,01,0-1,0

0,2

-2,0

Q

O

3 QQ

Q1

3

Q1

(a) (b)

1,0

QQ4

QQ2Q2

Q4

0,-2

-1,-1

1,-2

1,-1 2,-10,-1

C

C

C

C

C

C

C

C

C

C C

C

C

0,0

C

-1,1Figure 4: (a) Quadrants Q1; Q2; Q3; Q4 on a dis
 D with
enter O and radius r = 4, (b) De
ompositionof D into
ells of size L = 2.
olumn in a quadrant, the indi
es of the items in
rease as we get
loser to the horizontal axis. Thisbulk assignment is shown in Figure 5 (
) for r = 7 and L = 4, in whi
h the of the list shown in ea
h
ell is the set of items that will be assigned to pro
essors in the
ell.Within a
ell, the items are assigned as in algorithm B, but with two provisos:1. The highest indexed item that appears in a
ell is assigned to the pro
essor on the verti
al sideof the
ell
loser to the
enter. Thus in Q1 and Q4 the items are assigned exa
tly as in algorithmB, whereas in Q2 and Q3 the assigned values are reversed along the verti
al axis of ea
h
ell.Consequently, in quadrants 2 and 3, the largest indexed item is on the left hand side of the
ell.2. The
ell may not be
omplete. In this
ase we respe
t the order given by the assignment ofalgorithm B in our assignment to the existing pro
essors in the in
omplete
ell.For r = 7 and L = 4, the assignments of items to individual pro
essors in ea
h of the
ells C0;1, C0;0,and C1;�1 are shown in Figure 6 (a), (b), and (
), respe
tively.ALGORITHM CInput: Items X = (x1; x2; : : : ; xn). Initially pro
essor (s; t) is assigned item xi, as des
ribed above.We assume that n = 1 + 2r(r + 1) for some r.Output: Pre�x produ
ts of X.1. Cal
ulate in parallel the pre�xes of the assigned items in ea
h
ell by using Algorithm B givenin the previous se
tion. Let
i;j denote the pro
essor in
ell Ci;j that is
losest to the origin andlet pi;j be the produ
t of all of the items assigned to pro
essors in Ci;j. The quantity pi;j is11

x1; ::; x10 x11; ::; x20x21; ::; x36 x43; ::; x48x49; ::; x64 x37; ::; x42x65; ::; x67x71; ::; x85x68; ::; x70x98; ::; x113x92; ::; x97x86; ::; x91
C0;1 C1;1C0;0 C1;0 C2;0C�1;0C�1;�1 C0;�1 C1;�1 C2;�1C0;�2 C1;�2

Q1 Q2

Q3Q4Figure 5: Bulk distribution of items to
ells: r = 7, n = 113, and L = 4.

x83
x84
x82
x85 x81x80

x79x78
x77x76
x75x74

x73x72
x71

C1;�1x21x22
x23x24

x25x26
x27x28

x29x30
x31x32

x33x34
x35x36

C0;0
x19x20x18x17x14x15x16

x12x13x11 C0;1Figure 6: Assignment of items to pro
essors in
ells C0;1, C0;0, and C1;�1: r = 7, L = 4.
12

the largest pre�x
omputed in Ci;j at the
ompletion of Algorithm B. Send pi;j to pro
essor
i;j .Figure 7 (a) and Figure 7 (b) show the resulting values in the pro
essors in
ell C0;1, and thevalues in ea
h of the spe
ial pro
essors
i;j over the entire mesh after this step, respe
tively.
dd d
�1;0
0;0x[1 : 10℄ x[21 : 36℄x[11 : 20℄
0;1

d dd
1;1
1;0
2;0x[49 : 64℄ x[37 : 42℄x[43 : 48℄
dddx[86 : 91℄ x[98 : 113℄x[92 : 97℄
0;�2 dd d
1;�2x[71 : 85℄ x[65 : 67℄x[68 : 70℄

x[11:19℄x[11:20℄x[11:18℄x[11:17℄x[11:14℄x[11:15℄x[11:16℄
x[11:12℄x[11:13℄x[11:11℄ C0;1 x[11:20℄ = p0;1
�1;�1
0;�1
1;�1
2;�1

(a) (b)Figure 7: After Step 1 (a): Pre�xes in C0;1, (b) Contents of pro
essors
i;j .The time required for this
omputation is the time (6) required by Algorithm B on an L � Lsquare plus �L=2 units of
ommuni
ation time required to send pi;j to pro
essor
i;j. The totalis
omputed to be 52�L+ 2 logL+ � + 12. In this step, pre�xes of the pi;j's themselves along ea
h
olumn of
ells in ea
h quadrant, as wellas the produ
t of all pi;j in a given quadrant will be
omputed at the spe
ial pro
essors
i;j . Letq1; q2; q3; q4 denote the produ
t of all pi;j in the quadrants Q1; Q2; Q3; Q4, respe
tively. In ea
hquadrant, the
omputation in this step of the algorithm is independent of the values
omputedin the other quadrants, and is performed in parallel. Denote the pre�x
omputed by
i;j duringthis step by ai;j . Initially ai;j = pi;j for every pro
essor
i;j. We will give a high level des
riptionof this step of the algorithm on quadrant Q1. A sequen
e of operations similar to the
ode inFigure 8 are exe
uted in quadrants Q2, Q3, and Q4 also. In these quadrants indi
es of the
odeFigure 8 need to be suitably modi�ed.In Q1 we perform the sequen
e of operations given in Figure 8:An example of this step with r=L = 2 is shown in parts (a), (b), and (
) of Figure 9. In (a), theinitial send operation together with the
omputation of a�1;0 := p�1;1 �p�1;0 and a0;1 := p0;1 �p0;2are shown. The next two �gures in parts (b) and (
)
orrespond to the exe
ution of the for loopin Figure 8 with k = 1 and k = 0, respe
tively. In (b),
omputation of a�1;0 := a�2;0 � a�1;0 and13

for ea
h i; j with (j � i = r=L) and (j > 0) parallel do =� initial step �=beginsend ai;j from
i;j to
i;j�1; =� send down parallel �=ai;j�1 := pi;j�1 � ai;j; =� multiply parallel �=endfor k = r=L� 1 downto 0 do =� loop �=beginfor ea
h i; j with (j � i = k) parallel dobeginif j > 0 then send ai;j from
i;j to
i;j�1 =� send down parallel �=else send a�k�1;0 from
�k�1;0 to
�k;0; =� send right by one pro
essor �=if j > 0 then ai;j�1 := pi;j�1 � ai;j; =� multiply parallel �=else a�k;0 := a�k�1;0 � a�k;0; =� multiply by one pro
essor �=endend Figure 8: Step 2 of Algorithm C: Code for Q1.

ee
eeee ee

eeeeee
eeee - -???

0;2
�1;1
0;1
�2;0
�1;0
0;0(b)a�1;0 � a�2;0 a0;1 � p0;0

0;2
�1;1
0;1
�2;0
�1;0
0;0(
) a0;0 � a�1;0

0;2
�1;1
�1;0
0;0
0;1a0;2 � p0;1a�1;1 � p�1;0(a)
�2;0
Figure 9: Exe
ution of Step 2 in Q1 with r=L = 2: (a) initial, (b) k = 1, (
) k = 0.

14

a0;0 := a0;1 � p0;0 after the parallel send is shown. Finally in part (
), the
urrent a�1;0 is sent to
0;0 and
onsequently the �nal value of a0;0 := a�1;0 �a0;0 is
omputed. Note that the �nal valuesof ai;j in Q1 area�2;0 = produ
t of items assigned to
ell C�2;0(available at
�2;0 and
�1;0),a�1;0 = produ
t of items assigned to
ells C�2;0, C�1;1, and C�1;0(available at
�1;0 and
0;0),a0;0 = produ
t of items assigned to
ells C�2;0, C�1;1, C�1;0, C0;2 , C0;1, and C0;0(available at
0;0).In parti
ular, after the exe
ution of the above
ode pro
essor
0;0
ontains the produ
t of all itemsassigned to Q1, in other words a0;0 = q1. Similarly, at the end of Step 2, pro
essor
1;0
ontainsq2 = a1;0, pro
essor
1;�1
ontains q3 = a1;�1, and pro
essor
0;�1
ontains q4 = a0;�1. For theexample given in Figure 7 (b), these produ
ts areq1 = x[1 : 36℄ ; q2 = x[37 : 64℄ ; q3 = x[65 : 85℄ ; q4 = x[86 : 113℄ :An individual send operation performed in the
ode Figure 8 requires �L steps. The time takenfor the initial parallel do is �L + 1. The for loop takes (r=L)(�L + 1) units of time, giving atotal parallel time of (r=L+ 1)(�L + 1) for this step. Using the upper bound on r in terms of ngiven in (5) we �nd that the total time taken by Step 2 is at most�rn2 + 1L rn2 + �L+ 1 :3. Cal
ulate and forward the pre�xes of (q1; q2; q3) using the available values at the four pro
essors
0;0,
1;0,
1;�1, and
0;�1 in
lo
kwise manner as shown in Figure 10: First send q1 to pro
essore
e e

e- ?�

0;0
1;0

0;�1
1;�1

q1 q1 � q2q1 � q2
q1 � q2 � q3q1 � q2 � q3Figure 10: Exe
ution of Step 3.
1;0 and
ompute q1 � q2. Next send q1 � q2 to pro
essor
1;�1 and
ompute q1 � q2 � q3. Finallysend this last value to pro
essor
0;�1.The time required is: 2 + 3�Going ba
k to the example Figure 7 (b), at the end of Step 3, the pre�xes x[1; 36℄, x[1; 64℄, andx[1; 85℄ are available at pro
essors
1;0,
1;�1, and
0;�1, respe
tively.15

4. In Step 4 we
ombine two types of broad
ast operations: broad
ast to spe
ial pro
essors that liealong the horizontal axis in ea
h quadrant, and from ea
h su
h pro
essor to all spe
ial pro
essorsalong its
olumn. Again, these operations are
arried on independently and in parallel in ea
hquadrant. More pre
iselyIn Q1, broad
ast the value 1 from
0;0 to ea
h pro
essor
i;0; i � 0.In Q2, broad
ast q1 (obtained in Step 3) from pro
essor
1;0 to pro
essors
i;0; i > 0.In Q3, broad
ast q1 � q2 (
omputed in Step 3) from pro
essor
1;�1 to pro
essors
i;�1; i > 0.In Q4, broad
ast q1 � q2 � q3 (
omputed in Step 3) from pro
essor
0;�1 to pro
essors
i;�1; i � 0.The spe
ial pro
essors that lie along the horizontal axis
ompute the smallest pre�x that isneeded in ea
h
ell in its
olumn (we
an
all this the smallest pre�x for the
olumn) by a singlemultipli
ation as soon as they re
eive the horizontally broad
ast value. Consequently they initiatea broad
ast to the spe
ial pro
essors in ea
h
ell that lie in their
olumn. For example, in Q1,pro
essor
i;0; i < 0,1. re
eives 1 from
i+1;0,2. sends 1 to
i�1;0,3.
omputes 1�ai�1;0 and initiates a broad
ast to the spe
ial pro
essors in
olumn i by sendingthis value to
i;1.Similarly, in quadrant Q2, ea
h
i;0; i > 1,1. re
eives q1 from
i�1;0,2. sends q1 to
i+1;0,3.
omputes q1�ai+1;0 and initiates a broad
ast to the spe
ial pro
essors in
olumn i by sendingthis value to
i;1.This step is shown in Figure 11 in quadrant Q2.
dd
d

dd d
1;0
2;1
2;0
3;0

1;2
1;1dd

d
dd d
1;0
2;1
2;0
3;0

1;2
1;1 - (a)q1 � a2;0q1 dd
d

dd d
6 6

(
)
q1 � a2;0 q1 � a3;0
1;0
2;1
2;0
3;0

1;2
1;1-6
(b)q1 � a3;0q1q1 � a2;0

Figure 11: Exe
ution of Step 4 in Q2 with r=L = 2.
16

Ea
h spe
ial pro
essor re
eives the smallest pre�x for its
olumn
omputed above in no morethan r
ommuni
ation steps and a single multipli
ation. Therefore the total time required is:� rn2 + 1 :5. In ea
h
ell Ci;j,
ompute the produ
t of the smallest
olumn pre�x (whi
h is available in
i;jafter Step 4) and the value obtained in Step 2 from the
losest
ell in the same
olumn. Forexample, in the �rst quadrant, the pro
essor
i;j
omputes the produ
t of the smallest
olumnpre�x and ai;j+1, and in Q3 pro
essor
i;j
omputes the produ
t of the smallest
olumn pre�xit re
eived in Step 4 with ai;j�1 that it obtained in Step 2. Ea
h
i;j broad
asts this produ
t toea
h pro
essor in the
ell as shown in Figure 12.
ff ff ff

fffffff f f f���6 6 6 666666 6 6 6

x[49 : 61℄x[49 : 49℄ x[49 : 53℄ x[49 : 57℄x[49 : 50℄ x[49 : 54℄ x[49 : 58℄ x[49 : 62℄x[49 : 52℄ x[49 : 56℄ x[49 : 60℄ x[49 : 64℄x[49 : 51℄ x[49 : 55℄ x[49 : 59℄

x[43 : 48℄ = a1;1x[1 : 42℄ = a0;0 � a2;0x[1 : 48℄ = a1;1 � a0;0 � a2;0

x[49 : 63℄

Figure 12: Step 5 in C1;0 with r = 7, n = 117, and L = 4: Broad
ast x[1 : 48℄.The time required for this step is 1 + 2�L :6. Cal
ulate the a
tual pre�x in ea
h pro
essor, using the value obtained in Step 5. The timerequired is 1 :END ALGORITHM CThe total time TC required by Algorithm C is the sum of the time required for Steps 1 through 6.This is found to be 2 �rn2 + 1Lrn2 + 112 �L+ 2 logL+ 4� + 7 : (7)17

To minimize time, we di�erentiate equation (7) with respe
t to L and equate it to 0. This gives11p2 � L2 + 4p2L� 2pn = 0 :Therefore, L = �2 +q4 + 11p2 � pn11� ;and for large n L � 4p2np11� : (8)Substituting this value in (8) into the expression (7) givesTC � p2 � pn+ p444p8 p� 4pn+ 2 log 4p2np11� + 4� + 7 :Therefore the running time of Algorithm C isTC = p2�pn+O(p� 4pn) : (9)By the lower bound given in part (a) of Lemma 2, algorithm C is asymptoti
ally optimal.6 RemarksUnder the assumptions that ea
h pro
essor is assigned a single item xi, and the
ommuni
ation
ost ofsending a single input item between pro
essors P and Q is �d(P;Q) , algorithms for the
omputationof pre�x produ
ts of a list X of n items on mesh-
onne
ted multipro
essor systems are
onstru
ted.Initial loading of the items to the pro
essors is not taken into a

ount. For re
tangular meshes twoalgorithms are provided: Algorithm A is simple to implement but suboptimal, whereas Algorithm Bis asymptoti
ally optimal but harder to implement. By partitioning the dis
 into variable size squaremeshes and using Algorithm B as a subpro
edure on these squares, it is possible to
onstru
t an asymp-toti
ally optimal algorithm (Algorithm C) for the pre�x problem on a dis
 with n pro
essors. Thislatter algorithm assumes that n is of the form n = 1 + 2r(r + 1). If this is not the
ase, then list X
an be augmented by adding ne
essary number of 1's to make it so. This new list
an not be longerthan the original by more than O(pn), therefore the asymptoti

omplexity of Algorithm C given in(9) remains valid.Referen
es[1℄ S. G. Akl. The Design and Analysis of Parallel Algorithms. Englewood Cli�s, NJ: Prenti
e-Hall,1989.[2℄ R. P. Brent and H. T. Kung. A regular layout for parallel adders. IEEE Transa
tions on Com-puters, 31(3):260{264, Mar
h 1982.[3℄ D. A. Carlson. Modi�ed mesh-
onne
ted parallel
omputers. IEEE Transa
tions on Computers,37(10):1315{1321, O
tober 1988. 18

[4℄ �O. E�ge
io�glu, C� . K. Ko�
, and A. J. Laub. A re
ursive doubling algorithm for solution of tridiag-onal systems on hyper
ube multipro
essors. Journal of Computational and Applied Mathemati
s,27(1+2):95{108, 1989.[5℄ �O. E�ge
io�glu, E. Gallopoulos, and C� . K. Ko�
. Parallel Hermite interpolation: An algebrai
 ap-proa
h. Computing, 42(4):291{307, 1989.[6℄ �O. E�ge
io�glu and C� . K. Ko�
. Parallel pre�x
omputation with few pro
essors. Computers andMathemati
s with Appli
ations, Vol. 24, No. 4:77{84, 1992.[7℄ F. E. Fi
h. New bounds for parallel pre�x
ir
uits. In Pro
eedings of the 15th Annual ACMSymposium on Theory of Computing, pages 100{109, 1983.[8℄ A. G. Greenberg, R. E. Ladner, M. Paterson, and Z. Galil. EÆ
ient parallel algorithms for linearre
urren
e
omputation. Information Pro
essing Letters, 15(1):31{35, 1982.[9℄ L. Hya�l and H. T. Kung. The
omplexity of parallel evaluation of linear re
urren
es. Journal ofthe ACM, 24(3):513{521, July 1977.[10℄ P. M. Kogge and H. S. Stone. A parallel algorithm for the eÆ
ient solution of a general
lass ofre
urren
e equations. IEEE Transa
tions on Computers, 22(8):786{792, August 1973.[11℄ C. P. Kruskal, L. Rudolph, and M. Snir. The power of parallel pre�x. IEEE Transa
tions onComputers, 34(10):965{968, O
tober 1985.[12℄ R. Ladner and M. Fis
her. Parallel pre�x
omputation. Journal of the ACM, 27(4):831{838,O
tober 1980.[13℄ S. Lakshmivarahan, C. Yang, and S. K. Dhall. On a new
lass of optimal parallel pre�x
ir
uitswith (SIZE + DEPTH) = 2n � 2 and dlog ne � DEPTH � (2dlog ne � 3). In Pro
eedings of theInternational Conferen
e on Parallel Pro
essing, pages 58{65, August 17{21 1987.[14℄ B. D. Luba
hevsky and A. G. Greenberg. Simple, eÆ
ient asyn
hronous parallel pre�x algorithms.In Pro
eedings of the International Conferen
e on Parallel Pro
essing, pages 66{69, August 17{211987.[15℄ H. Meijer and S. G. Akl. Optimal
omputation of pre�x sums on a binary tree of pro
essors.International Journal of Parallel Programming, 16(2):127{136, 1987.[16℄ M. Snir. Depth-size trade-o�s for parallel pre�x
omputation. Journal of Algorithms, 7(2):185{201,1986.[17℄ H. S. Stone. An eÆ
ient parallel algorithm for the solution of a tridiagonal linear system ofequations. Journal of the ACM, 20(1):27{38, January 1973.
19

