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Abstract

Algorithms for efficient implementation of computation of prefix products on mesh-connected
processor arrays are presented. Assuming that an arithmetic operation takes unit time and com-
munication/computation ratio for a single input item is 7, we show that the prefixes of n items can
be computed in time 27y/n + O(logn) on a square mesh with n processors. If n processors are
configured as a disc with respect to the Manhattan metric, then the parallel time for the problem
becomes V2 1y/n 4+ O(y/7 ¥/n). We show that both of these algorithms are asymptotically optimal.

Categories and Subject Descriptors: C.1.2 [Processor Architectures|: Multiple Data Stream Ar-
chitectures  parallel processors; F.1.2 [Computation by Abstract Devices]: Modes of compu-
tation — parallelism; F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical
Algorithms and Problems — computations on discrete structures.

Keywords: Parallel prefix, mesh-connected processor arrays, communication complexity.

1 Introduction

Given an ordered n-tuple (z1,x9,...,x,) of elements of a set X closed under an associative binary
operation x, the prefiz problem is the computation of the partial products = =1 % z9 % --- % z; for
1 <4 < m. Problems of this nature arise in various settings including circuit design where * is a simple
boolean operation, and numerical problems where * may be floating-point matrix multiplication. As
examples, parallel algorithms for computing the Newton and Hermite interpolating polynomials make
use of parallel prefix algorithms where the z;’s are floating-point numbers and * is a floating-point
addition or multiplication [5]. Solution of kth order linear recurrences can be obtained by a parallel
prefix algorithm where x is k& x k£ matrix multiplication [10, 9, 8]. Tridiagonal systems can be solved
with Stone’s recursive doubling algorithm by computing the prefixes of 2 x 2 matrices [17].

Parallel prefix circuits have applications in the design of optimal-area adders [2] and the simulation
of sequential circuits by combinational circuits [12]. Fich’s paper [7] contains a review of the literature
on parallel prefix circuits along with further applications. In a parallel prefix circuit, the concern is to
reduce the depth and the size of the circuit. Size and depth bounds and trade-offs for prefix circuits
appear in [7] and [16].

Prefixes of n elements can be computed trivially in n — 1 steps sequentially where at each step a

single % operation is performed. There are several parallel prefix algorithms [12, 2, 11, 13], given either



in the arithmetic circuit or PRAM model of parallel computation. Asynchronous algorithms [14] and
implementation on various ensemble architectures [15, 3, 4, 1, 6] have also been considered.

We assume that we are given n identical processors with a routing mechanism to send an operand
from one processor to any other processor. An arithmetic step (or a multiplication step) is defined as
the time required to perform a * operation by a single processor. A routing step is the time required to
transfer an operand from one processor to a neighboring one. We assume that a routing step requires
7 units of time and an arithmetic step takes unit time. In this paper, we focus on the performance of
parallel prefix algorithms on mesh-connected processor arrays.

In §2 we derive a lower bound for the time complexity of prefix computations on a mesh-connected
system with the assumption that initially exactly one data item is assigned to each processor. We first
present a suboptimal parallel prefix algorithm (Algorithm A) on a rectangular mesh in §3 to motivate
the rest of the paper. In §4, we describe an improved algorithm (Algorithm B) for prefix computations
on a rectangular mesh, which is asymptotically optimal. Subsequently in §5 we construct an algorithm
(Algorithm C) for the prefix problem on the disc which uses Algorithm B as a subprocedure and which
is asymptotically optimal. This is followed by conclusions in §6.

2 Lower bounds

Consider the infinite grid of lattice points in the plane where a point (a1,b;) is connected to a point
(ag, bg) iff
‘Ch —a2|—|—|b1 —b2| =1.

The Manhattan metric between the points P = (a1,b1) and Q = (a9, by) is given by
d(P,Q) = |a1 — az| + |b1 — by . (1)

We say that a multiprocessor network with N processors forms a mesh if the processors are arranged
as a connected, induced subgraph of the lattice grid. The mesh is rectangular if it consists of all lattice
points in some a X b rectangle of lattice points as in Figure 1 (a). Figure 1 (b) shows disc of radius
r = 2. This latter mesh can be identified with the set of points P with d(P,Q) < r for some fixed
center point ().

Figure 1: Two meshes: (a): 3 x 4 rectangle (b) disc of radius 2.

Consider the list X = (z1,x9,...,%,) and suppose * is an associative binary operation on X. For
1 <i < j <mn, we denote the product z; * ;41 * - - - * z; by the symbol z[i : j]. The prefix problem on



X is the computation of the initial products

z[l:1] = mz
z[1:2] = z1xz9
z[l:n] = xyxxox- - %kxy .

We linearly order the prefix products by putting z[1 : 7] to be smaller than z[1 : j] when ¢ < j.
A lower bound for the time required for the computation of the prefix products of X on a mesh
with n processors is
logn + 7¢(n) (2)

where ¢(n) is a lower bound on the number of routing steps. This can be proved by showing that (2)
is a lower bound for the computation of the single term z[1 : n]. We assume that

1. initially each processor is assigned a single item z;,
2. the communication distance between two processors P and @ in the mesh is d(P, Q).

A lower bound for ¢(n) is given by
i P
min max d(P, Q) (3)

where the minimum is taken over all possible meshes of n processors. In other words ¢(n) is the
minimum diameter of all meshes with n points. We observe that the value of (3) is the diameter of
the smallest disc (with respect to the Manhattan metric) which contains all n processors. Next we
determine the radius of this smallest disc as a function of n.

Lemma 1 The number of lattice points at a distance k > 0 from a given lattice point is 4k.

Proof Without loss of generality, we can assume that the lattice point we are considering is @ = (0, 0).
Point P = (a1,b1) is at a distance |a1| + |b1| from Q. Therefore, the number of points & away from @
is equal to four times the number of solutions of

a1 +bi=k, a >0,by>0.
Since this number is k, the total number of points at distance exactly k from @ is 4k. O

It follows that in any mesh, the total number of processors at a distance at most r from @ is
bounded from above by the number of lattice points in a disc of radius r. By Lemma 1 this number is

T
1+ 4k=1+2r(r+1). (4)
k=1

For example, the disc of radius 2 in Figure 1 (b) contains 1 + 2 % 2 * (2 + 1) = 13 lattice points. If r is
the radius of the smallest disc that contains n processors, then from (4)

1
n=1+2r(r+1) = rzi(—1+\/2n—1).



For n > 1,
1 n
V-1 << \f2 (5)
2 2
and therefore
c(n) > V2n -2
Consequently a lower bound on the communication time required to compute prefixes of n items on
any mesh with n processors is 7(v/2n — 2). Since logn is a lower bound for the computation of z[1 : n]
we obtain that a lower bound for the computation of the prefixes of X on any mesh-connected system
is
7(V2n — 2) +logn .
When we have an a x b rectangular mesh with a total of n processors, the lower bound for ¢(n)
becomes 2y/n — 2, which is achieved for a = b = y/n. Thus

Lemma 2 A lower bound for the computation of prefizes of (x1,%2,...,Tn) on

(a) an arbitrary mesh with n processors is /27/n + logn — 27 ,

(b) on a rectangular mesh with n processors is 27+/n +logn — 27 .

3 A simple algorithm

In this section we describe a simple but suboptimal algorithm for the prefix problem on a rectangular
mesh. For simplicity, we describe the algorithm on the y/n x /n square mesh. The generalization to
an arbitrary rectangular mesh is a straightforward extension of this case.

We number the processors so that the processor at the lower left corner is (1, 1), and the one at the
top right is (1/n, v/n). The initial assignment of z1, z9, ..., z, to the processors is as follows: processor
(4,7) in row 7 and column j is assigned the item z
n = 16.

For 7 < 7, each processor in column ¢ will calculate a smaller prefix than any processor in column

j—1)y/n+i- An example is shown in Figure 2 (a) for

j. Also, if i < j, then for any given column, the processor at row ¢ will calculate a smaller prefix
than the processor at row j. This means that at the end of the algorithm, processor (i, 7) will contain
the prefix z[1: (j — 1)y/n + 4] . The algorithm (called Algorithm A) consists of the following four steps:

ALGORITHM A

Input: Ttems X = (z1,z9,...,%,). Initially processor (i,7) is assigned T(j 1)y mti-
Output: Prefix products of X. Processor (i,7) contains z[1: (j — 1)y/n + i].

1. Calculate the partial prefixes over each column using the logn arithmetic step algorithm (given
as procedure prefix.independent) in Kruskal, Rudolph, and Snir [11]. At the end of this step pro-
cessor (i, j) contains the value z[(j —1)y/n+1:(j —1)y/n+1] . The contents of the processors
after Step 1 is executed is shown in Figure 2 (b). The number of arithmetic steps required is

log v/n, and the number of routing steps required is

log(v/n)—1
Yoo 2F=ymn-1

k=0



Therefore, the total time required for Step 1 is
7(v/n —1) +logvn .

2. Calculate the partial prefixes for the top row using the logn algorithm as in Step 1. At the end
of this step, processor (y/n,j) will have the value z[1: jy/n] . The time required is the same as
in Step 1:
7(v/n —1) +logvn .
The contents of the processors immediately after the completion of Step 2 are shown in Figure 2

(c).

3. The value of z[1 : jy/n], now available in (y/n, ), is broadcast to each processor in column j + 1
for 1 < j < y/n . The dotted lines in Figure 2 (d) show these parallel routing steps. The time

required required is

.

4. Processor (i,7) multiplies the value z[1 : (j — 1)4/n] received in Step 3, along with the value
z[(j —Dy/n+1: (j —1)y/n+1i computed in Step 1, to compute its target product =zl :
( — 1)y/n +i] . Since this requires a single parallel multiplication, the time required is

1.

The final contents of the processors are shown in Figure 2 (d).

END ALGORITHM A

The total time T4 required by Algorithm A is the sum of the time required for each step. This is
found to be
Ty = 31v/n +logn — 27 + 1

The parallel time T4 exceeds the lower bound given in lemma 2 (b) by 7y/n+1. In the next section we
present an improved algorithm for the square mesh which exceeds the lower bound only by a constant

amount.

4 An optimal algorithm for the square

The algorithm we present in this section is based on Algorithm A, but has near optimal performance
achieved by reducing the communication complexity of Algorithm A. Here we imagine that the /n x/n
square as made up of two %\/ﬁ x y/n rectangles, an upper rectangle, and a lower rectangle, as separated
by a dotted line in Figure 3 (a) for n = 16. The idea is to limit the communication between the
upper and the lower rectangles to communicating across the horizontal boundary only. As before, for
1 < j, the prefix computed in column ¢ will be smaller than the one computed in column j. In the
lower rectangle, the prefixes will be computed as in Algorithm A; however in the upper rectangle, the
computation will proceed in the reverse order, so that the large products will be computed closer to

the boundary between the two rectangles.
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(a) Initial assignment.

z[1:4]

z[1:8] —_ z[1:12]__ z[1:16]

(11 z[13:

15]

z[5:6] — x[9:10] _ x[13: 14]

o[1:4) __ 2[5:8] —_ 2[9:12] __x[13: 16]
2[1:3) __ 2[5:7) — 2[9:11] _z[13 : 15]
2[1:2] __ 2[5:6] —_ 2[9:10] __z[13 : 14]
o
e[1:1)  z[5:5] — 2[9:9] —_x[13:13]
(b) Step 1:

Parallel columnwise prefixes.

z[5:5) — x[9:9] — x[13:13]

(c) Step 2:
Top row prefixes.

z[1:4]  [1:8] — =z[1:12] __ z[1:16]
_____ AR
f y y

z[1:3] —— 2[1:7 — z[1:11] __ z[1:15]
{ f ¥

z[l1:2] __ x[1:6] —— =[1:10] — =[1:14]
N

e[l:1]) — 2[1:5] — 2[1:9] — =z[1:13]

(d) Steps 3 & 4:

Column broadcast and single multiplication.

Figure 2: (a)-(d): Algorithm A.



The initial assignment of values are as shown in Figure 3 (a): processor (i,7) in row ¢ and column
j is assigned the value z(;_1) my; if 7 < V/n/2, i.e., the indices increase as we go up a column in the
lower rectangle; processor (i,j) has the value z; &y m/o0q; if @ > V/n/2, i.e., the indices increase as
we go down a column in the upper rectangle. The algorithm (which is called Algorithm B) consists of
seven basic steps as follows:

ALGORITHM B

Input: Ttems X = (z1,z9,...,%,). Initially processor (i,7) is assigned
Tiyymei  for i <V/n/2,
Output: Prefix products of X. Processor (i,7) contains

g[1:(j—D/n+i] for i<+n/2,
z[l:jvn+nj2+1—i for i>+/n/2.

1. Calculate the partial prefixes over each half-column in parallel, using the same method as Step 1
of Algorithm A. After this step, processor (i,7) has the partial product

2[(j ~Dvn+1:( —v/n+id], if i<+/n/2
o[ —DVn+vn/2+1:5yn+n/2+1—1], if i>+/n/2

as indicated in Figure 3 (b). Similar to Step (1) of Algorithm A, the time taken for this compu-

P2~ 1) + log(vii/2)

tation is

2. Send the values computed in Step (1) from

processor (1/n/2,j) to processor (v/n/2+ 1,7) directly for 1 < j < /n,

processor (v/n/2 +1,7) to (/n/2,j + 1) through processor (y/n/2,7) in two steps for 1 <
j<vn.

The time required for this step of the algorithm is:

2T .

The communication pattern used by the two central rows in Step 2 is indicated as dotted lines
in Figure 3 (c).

3. By a single multiplication,

processor (1/n/2,j) calculates

2 — DV +vn/2+1:(— D+ /2] for 1<j< v,

processor (y/n/2 +1,j) calculates z[(j — 1)y/n+ 1:jy/n] for 1 <j < y/n.



After Step 3, the processors contain the partial products in Figure 3 (d). The time required is

1

4. Now using the logn algorithm of Step 1 of Algorithm A, processors in row /n/2 + 1 calculate
their partial prefix products across their row. In the same way, the processors in row /n/2
calculate their partial prefix products, arriving at the configuration in Figure 3 (e). At the end
of this step,

processor (y/n/2,7) has z[l:(j —1)y/n + /n/2], and
processor (y/n/2 +1,7) has z[1:jy/n].

The time required for this step is
7(v/n — 1) +logyv/n .

5. Send the values computed in the previous step from

processor (y/n/2,j) to processor (y/n/2+1,j) directly, and from
processor (v/n/2 +1,7) to (y/n/2,7+ 1) through processor (y/n,j) for 1 < j < +/n.

These routing lines are shown in Figure 3 (f). The time required is

2T .

6. The processors (y/n/2,7) and (y/n/2 4+ 1,7) now broadcast the values received in the previous
step to all of the processors in their side of column j. The parallel time required is

r(v/nf2 - 1)

7. Each processor calculates its target prefix product by at most one more multiplication using the

values received at the end of Step 5. The time required is
1

The final configuration of values is shown in Figure 3 (f).

END ALGORITHM B

Let T denote the total time required by algorithm B. Tg is the sum of the seven individual steps
of the algorithm, which is found to be

Tg=21yn+logn+7+1 . (6)

By lemma 2 (b), a lower bound on the time required for the prefix computation on a rectangular
mesh is 27y/n+logn —27. From the expression in (6) for Tg we see that the running time of Algorithm

B exceeds the lower bound only by the constant amount 37 + 1.
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(a) Initial assignment.

z[3:3] — 2[7:7] —z[11:11]_z[15: 15]
z[3:4] —— 2[7:8] —z[11:12]_z[15: 16]
NN
| vl vl '
z[l1:2] __ x[5:6] — =[9:10] — =[13: 14]
z[l:1] — «[5:5] — x[9:9] — z[13:13]
(c) Step 2:

Communication pattern.

z[3:3] — 2[7:7 —2[11:11]_z[15:15]

: 12 z[15: 16)

z[1:2] __ z[5:6] — z[9:10] — z[13: 14]
2[1:1) — z[5:5] — x[9:9] — 2[13:13]
(b) Step 1:

Parallel columnwise prefixes.

x[3:3] —— 2[7:7 —2[11:11]_z[15:15]

:12] ___x[13:16]

x[1:2) __ x[3:6] _ =[7:10] _ =[11: 14]
z[1:1] — x[5:5] — =[9:9] — z[13:13]
(d) Step 3:

Single multiplication.

Figure 3: (a)-(d): Algorithm B.



z[3:3] — 2[7:7] —z[11:11]_z[15: 15] z[1:3] —— 2[1:7 — z[1:11] __ z[1:15]

y f f
z[1:2] — z[1:6] — =z[1:10] — =z[1: 14] z[1:2] — z[1:6] — z[1:10] — =z[1: 14]
z[l:1] — 2[1:5] — 2[9:9] — z[13:13] 2[l:1]) — 2[1:5] —— =2[1:9] — =x[1:13]
(e) Step 4: (f) Steps 5, 6 & T:
Parallel prefix along central rows. Communication pattern and final configuration.

Figure 3: (e)-(f): Algorithm B.

5 Prefix on a disc

In this section we consider the prefix computation on mesh of processors arranged as a disc with respect
to the metric in (1), as in Figure 1 (b). For simplicity, we assume that n is of the form n = 14 2r(r+1).

The algorithm is as follows: we label the processors by their lattice coordinates, the center being
O = (0,0). The disc is conceptually divided into four quadrants Qi,Q2, @3, and Q4 as shown in
Figure 4 (a), where

Q1 = { processors (s,t) | s <0, t > 0},

Q2 = { processors (s,t) | s >0, t > 0},

Q3 = { processors (s,t) | s >0, t <0},
(s,t) |

Q4 = { processors s <0, t<0}.

For any positive integer L, we can further divide the quadrants into cells of size L x L as shown in
Figure 4 (b) for L = 2. For example, in Q1 processors (s,t) with —L < s < 0,0 < ¢ < L are in one cell
denoted by Cy o, processors (s,t) with —2L < s < —L, L. <t < 2L will be in one cell denoted by C_; ;.
In general we label the cells in @y as C; ; with —r/L <4 <0 and 0 < j < r/L where C; ; consists of
all processors (s,t) with —(i+1)L < s < —iL and jL <t < (j+1)L. A similar notation is used in the
other quadrants. For instance the cells in ()2 are labeled C; ; with0 < ¢ < [r/L],and 0 < j < (r—1)/L,
with C; ; consisting of all processors (s,t) with (i — 1)L < s <L, and jL <t < (j + 1)L. See Figure
4 (b) for an example of this decomposition with r = 4 and L = 2.

The assignment of initial values to the processors is as follows: first of all if i < 5 with z,, € Q;
and z, € ()j, then u < v. Within a quadrant, the items are assigned to cells so that z, € C;; and
Ty € Ck,; implies u < v, whenever |i| > |k|, or i =k, and |j| > |I|. Thus essentially, in each quadrant
the columns of cells farther from the origin are assigned items with smaller indices, and within a given

10
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Figure 4: (a) Quadrants Q1, Q2, @3, Q4 on a disc D with center O and radius r = 4, (b) Decomposition
of D into cells of size L = 2.

column in a quadrant, the indices of the items increase as we get closer to the horizontal axis. This
bulk assignment is shown in Figure 5 (¢) for r = 7 and L = 4, in which the of the list shown in each
cell is the set of items that will be assigned to processors in the cell.

Within a cell, the items are assigned as in algorithm B, but with two provisos:

1. The highest indexed item that appears in a cell is assigned to the processor on the vertical side
of the cell closer to the center. Thus in ()1 and @4 the items are assigned exactly as in algorithm
B, whereas in Q9 and ()5 the assigned values are reversed along the vertical axis of each cell.
Consequently, in quadrants 2 and 3, the largest indexed item is on the left hand side of the cell.

2. The cell may not be complete. In this case we respect the order given by the assignment of

algorithm B in our assignment to the existing processors in the incomplete cell.

For r = 7 and L = 4, the assignments of items to individual processors in each of the cells Cy 1, Cp,
and C,; are shown in Figure 6 (a), (b), and (c), respectively.

ALGORITHM C
Input: Ttems X = (z1,z9,...,2,). Initially processor (s,t) is assigned item z;, as described above.

We assume that n = 1+ 2r(r + 1) for some r.
Output: Prefix products of X.

1. Calculate in parallel the prefixes of the assigned items in each cell by using Algorithm B given
in the previous section. Let ¢; ; denote the processor in cell C; ; that is closest to the origin and
let p; ; be the product of all of the items assigned to processors in C; ;. The quantity p; ; is

11
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Figure 5: Bulk distribution of items to cells: r =7, n = 113, and L = 4.
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the largest prefix computed in C; ; at the completion of Algorithm B. Send p; ; to processor ¢; ;.
Figure 7 (a) and Figure 7 (b) show the resulting values in the processors in cell Cp;, and the
values in each of the special processors ¢; ; over the entire mesh after this step, respectively.

T —Tni2)— T1:14] — T11:17]

T[11:20) = Po,1 Co,—2 C1,-2

€o,1 : 1,1
o ! o
T(11:19] z[11 : 20] ! x[43 : 48]
1
C*],U CO,U : (,‘170 (,‘270
. - o o : o) o
~{11:16] —[11:20] z[1:10] z[21:36] ' x[49:64] =x[37:42]
I S
1
T[11:13] — T[11:15] — T[11:18] !
C—-1,-1 Co,—1 : C1,—1 C2,—1
o o ' o o
| z[86 : 91] #[98 :113] | z[71:85] =z[65: 67
1
1

©) (@)
Cot z[92 : 97] x[68 : 70]

(a) (b)

Figure 7: After Step 1 (a): Prefixes in Cj 1, (b) Contents of processors ¢; ;.

The time required for this computation is the time (6) required by Algorithm B on an L x L
square plus 7L/2 units of communication time required to send p; ; to processor ¢; ;. The total
is computed to be

5
§TL+210gL+7'+1

. In this step, prefixes of the p; ;’s themselves along each column of cells in each quadrant, as well
as the product of all p; ; in a given quadrant will be computed at the special processors ¢; ;. Let
q1, 92,3, q4 denote the product of all p; ; in the quadrants @1, ()2, (3, Q4, respectively. In each
quadrant, the computation in this step of the algorithm is independent of the values computed
in the other quadrants, and is performed in parallel. Denote the prefix computed by ¢; ; during
this step by a; ;. Initially a; ; = p; ; for every processor ¢; j. We will give a high level description
of this step of the algorithm on quadrant ();. A sequence of operations similar to the code in
Figure 8 are executed in quadrants @2, O3, and @4 also. In these quadrants indices of the code
Figure 8 need to be suitably modified.

In ()1 we perform the sequence of operations given in Figure 8:

An example of this step with /L = 2 is shown in parts (a), (b), and (c) of Figure 9. In (a), the
initial send operation together with the computation of a_; g :=p_11*p_1 0 and ag,;1 := po,1 *po 2
are shown. The next two figures in parts (b) and (c) correspond to the execution of the for loop
in Figure 8 with & = 1 and k = 0, respectively. In (b), computation of a_19:=a_29*a_1 and

13



for each i,j with (j —i=r/L) and (5 > 0) parallel do /* initial step */

begin
/* send down parallel */

send a; ; from ¢; ; to ¢; j 1;
/* multiply parallel %/

end
for kK =r/L —1 downto 0 do /* loop */
begin
for each i,j with (j — ¢ = k) parallel do
begin
if j > 0 then send a;; from ¢; ; to ¢; ;1 /* send down parallel */
else send a_j_ from c_j_; o to c_ ; /* send right by one processor x/
if 7> 0then q;; 1 :=p;j_1*a;j /* multiply parallel %/
else a_po:=a_p_10*a_pp; /* multiply by one processor */
end
end
Figure 8: Step 2 of Algorithm C: Code for Q.
€o,2 €o,2 Cp,2
Q O O
Y
1,1 Co,1 -1, Co,1 1,1 Co,1
O O O O O O
ap,2 * Po,1
Y Y
€-2,0 €-1,0 €0,0 €-2,0 €-1,0 €0,0 €-2,0 €-1,0 €0,0
o o o O----» O o o O----» 0
a_1,1*P-1,0 a_1,0*a—20 ap,1 *Po,0 ap,0 *a—1,0

3

(a) (b) (c)

Figure 9: Execution of Step 2 in @ with r/L = 2: (a) initial, (b) k =1, (c) k = 0.
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apo := ap,1 * pyo after the parallel send is shown. Finally in part (c), the current a_; o is sent to
co,0 and consequently the final value of ag o := a_1 g *ag is computed. Note that the final values
of aj,j in Q] are

a_s0 = product of items assigned to cell C_5
(available at ¢_29 and c_1 ),

a_1,0 = product of items assigned to cells C_5, C_; 1, and C_q
(available at ¢_1,9 and ¢g ),

ap,0 = product of items assigned to cells C_29, C_11, C_1, Coz2 , Co,1, and Co
(available at ¢g ).

In particular, after the execution of the above code processor cg g contains the product of all items
assigned to @), in other words ag = ¢;. Similarly, at the end of Step 2, processor c; o contains
g2 = a1,0, processor ¢ contains g3 = a1 _, and processor co _; contains g4 = ag,—1. For the
example given in Figure 7 (b), these products are

g1 =1[1:36], go=x[37:64], g3 =x[65:85, qgs=x[86:113].

An individual send operation performed in the code Figure 8 requires 7L steps. The time taken
for the initial parallel do is 7L + 1. The for loop takes (r/L)(7L + 1) units of time, giving a
total parallel time of (r/L + 1)(7L + 1) for this step. Using the upper bound on r in terms of n
given in (5) we find that the total time taken by Step 2 is at most

Yl
o T V2 7T

3. Calculate and forward the prefixes of (g1, g2, g3) using the available values at the four processors

€0,0, €1,0, €1,—1, and ¢p _1 in clockwise manner as shown in Figure 10:  First send ¢; to processor

Co,0 a1 C1,0
QO ----m-- > O 91*Q2
E qi * g2
\
Co,—1 C1,-1
O <-------- O 91 *Gq2*4q3
q1 * g2 * 43

Figure 10: Execution of Step 3.

c1,0 and compute g1 x g2. Next send gy * g2 to processor ¢, _; and compute q; * g2 * g3. Finally
send this last value to processor co _1.

The time required is:
24+ 37

Going back to the example Figure 7 (b), at the end of Step 3, the prefixes z[1,36], z[1,64], and
z[1,85] are available at processors ¢ g, ¢1,—1, and ¢, 1, respectively.
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4. In Step 4 we combine two types of broadcast operations: broadcast to special processors that lie
along the horizontal axis in each quadrant, and from each such processor to all special processors
along its column. Again, these operations are carried on independently and in parallel in each
quadrant. More precisely

In @1, broadcast the value 1 from ¢g to each processor c¢; g, ¢ < 0.

In @2, broadcast ¢ (obtained in Step 3) from processor ¢; o to processors ¢;g, i@ > 0.

In @3, broadcast ¢ * g (computed in Step 3) from processor ¢;, 1 to processors ¢; 1, i > 0.

In Q4, broadcast g * g2 * g3 (computed in Step 3) from processor ¢ 1 to processors ¢; 1, i < 0.

The special processors that lie along the horizontal axis compute the smallest prefix that is
needed in each cell in its column (we can call this the smallest prefix for the column) by a single
multiplication as soon as they receive the horizontally broadcast value. Consequently they initiate
a broadcast to the special processors in each cell that lie in their column. For example, in 1,
processor ¢; g, 1 < 0,

1. receives 1 from c;y1,

2. sends 1 to ¢;—1,,

3. computes 1x*a;_1 and initiates a broadcast to the special processors in column 7 by sending

this value to ¢; 1.

Similarly, in quadrant ()2, each ¢; g, 7 > 1,

1. receives g; from c¢;_1 g,
2. sends ¢ to ciy10,
3. computes g1 *a;41,0 and initiates a broadcast to the special processors in column 4 by sending

this value to ¢; ;.

This step is shown in Figure 11 in quadrant s.

1,2 €1,2 1,2
o) o o
A
L1 % a2
1,1 2,1 1,1 2,1 1,1 2,1
o) o) o o) o o
A A
L1 * a2 L1 % a3
Clo g €20 3,0 1,0 €20 ¢ €30 €1,0 €2,0 €3,0
O ----» O o) o O ----» O o o o)
g1 * a2 g1 * a3

Figure 11: Execution of Step 4 in Q9 with r/L = 2.
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Each special processor receives the smallest prefix for its column computed above in no more
than r communication steps and a single multiplication. Therefore the total time required is:

In
— 1.
T 9 +

. In each cell C;;, compute the product of the smallest column prefix (which is available in ¢; ;
after Step 4) and the value obtained in Step 2 from the closest cell in the same column. For
example, in the first quadrant, the processor ¢; ; computes the product of the smallest column
prefix and a; j41, and in ()3 processor ¢; ; computes the product of the smallest column prefix
it received in Step 4 with a; j_; that it obtained in Step 2. Each ¢; j broadcasts this product to

each processor in the cell as shown in Figure 12.

O

O
O
O

x[49 : 51]  x[49:55] x[49:59] x[49: 63]

A A A A
o o o o
249 : 52]  z[49:56] x[49:60] x[49 : 64]

x[49 : 50] z[4 :
4 4 4

O <+---- O =---- O =----
x[49 :49]  2[49:53] x[49:57] x[49: 61]

$[43 : 48] == a],1
x[1:42] = agp *xazp
$[1 . 48] = ai, * ap,0 * az.0

Figure 12: Step 5 in C; ¢ with r =7, n =117, and L = 4: Broadcast z[1 : 48].

The time required for this step is
1+27L .

6. Calculate the actual prefix in each processor, using the value obtained in Step 5. The time

required is

END ALGORITHM C

The total time T¢ required by Algorithm C is the sum of the time required for Steps 1 through 6.
This is found to be | "
n n
274/ =+ —=/=+ —7L +2log L +4 .
T,/2+L\/2+27+ ogL+41 +7 (7)
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To minimize time, we differentiate equation (7) with respect to L and equate it to 0. This gives

11V27 L2+ 4V2L — 2/n=0.

Therefore,
. ~2+44/4+11V27/n
B 117 ’
and for large n
4
2n

L~ ——.
V1lT

Substituting this value in (8) into the expression (7) gives

44
gﬁ{‘/ﬁ—i—?log

Therefore the running time of Algorithm C is
Te = V21vn+ O(K/7Yn) . (9)

By the lower bound given in part (a) of Lemma 2, algorithm C' is asymptotically optimal.

v2n

Tcz\/ﬁ’r\/ﬁ—i- \/ﬁ
T

+474+ 7.

6 Remarks

Under the assumptions that each processor is assigned a single item z;, and the communication cost of
sending a single input item between processors P and @ is 7d(P, @), algorithms for the computation
of prefix products of a list X of n items on mesh-connected multiprocessor systems are constructed.
Initial loading of the items to the processors is not taken into account. For rectangular meshes two
algorithms are provided: Algorithm A is simple to implement but suboptimal, whereas Algorithm B
is asymptotically optimal but harder to implement. By partitioning the disc into variable size square
meshes and using Algorithm B as a subprocedure on these squares, it is possible to construct an asymp-
totically optimal algorithm (Algorithm C) for the prefix problem on a disc with n processors. This
latter algorithm assumes that n is of the form n = 1 4 2r(r 4+ 1). If this is not the case, then list X
can be augmented by adding necessary number of 1’s to make it so. This new list can not be longer
than the original by more than O(y/n), therefore the asymptotic complexity of Algorithm C given in
(9) remains valid.
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