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Abstract

The Mostar index of a graph was defined by Dosli¢, Martinjak, Skrekovski, Tipuri¢
SpuZevi¢ and Zubac in the context of the study of the properties of chemical graphs.
It measures how far a given graph is from being distance-balanced. In this paper, we
determine the Mostar index of two well-known families of graphs: Fibonacci cubes
and Lucas cubes.
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1 Introduction

We consider what is termed the Mostar index of Fibonacci and Lucas cubes. These two
families of graphs are special subgraphs of hypercube graphs. They were introduced as
alternative interconnection networks to hypercubes and have been studied extensively
because of their interesting graph theoretic properties. The Mostar index of a graph
was introduced in [4].
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Let G = (V(G), E(G)) be a graph with vertex set V(G) and edge set E(G). For
any uv € E(G), let n, ,(G) denote the number of vertices in V (G) that are closer
(w.r.t. the standard shortest path metric) to u than to v, and let n, ,(G) denote the
number of vertices in V (G) that are closer to v than to u. The Mostar index of G is
defined in [4] as

Mo(G) = > |nuv(G) —nyu(G)l.

uveE(G)

When G and uv is clear from the context, we will write n, = n, ,(G) and n, =
1y u(G).

Distance-related properties of graphs such as the Wiener index, irregularity and
Mostar index have been studied for various families of graphs in the literature.

The Wiener index W (G) of a connected graph G is defined as the sum of distances
over all unordered pairs of vertices of G. It is determined for Fibonacci cubes and
Lucas cubes in [9]. The irregularity of a graph is another distance invariant measuring
how much the graph differs from a regular graph, and Albertson index (irregularity) is
defined as the sum of |deg(u#) — deg(v)| over all edges uv in the graph [1]. The irreg-
ularity of Fibonacci cubes and Lucas cubes is studied in [2,5]. The relation between
the Mostar index and the irregularity of graphs and their difference is investigated in
[6]. Recently, the Mostar index of trees and product graphs has been investigated in
[3].

In this work, we determine the Mostar index of Fibonacci cubes and Lucas cubes.
As a consequence, we derive a relation between the Mostar and the Wiener indices
for Fibonacci cubes, giving an alternate expression to the closed formula for W (I7;,)
calculated in [9].

2 Preliminaries
We use the notation [n] = {1,2,...,n} forany n € Z*. Let B = {0, 1} and
B, ={b1by...b, | Vi € [n] b; € B}
denote the set of all binary strings of length n. Special subsets of B, defined as
Fn={b1by...by | Vi € [n — 1] b; - bis1 = 0}
and
Ly, ={biba... by | Vi € [n—1] b; -biy1 =0and by - b, = 0}
are the set of all Fibonacci strings and Lucas strings of length n, respectively.
The n-dimensional hypercube Q) has vertex set B,. Two vertices are adjacent if

and only if they differ in exactly one coordinate in their string representation. For
n > 1, the Fibonacci cube I, and the Lucas cube A,, are defined as the subgraphs of
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Q,, induced by the Fibonacci strings F,, and Lucas strings £,, of length n [7,10]. For
convenience, we take 1) = K whose only vertex is represented by the empty string.

One can classify the binary strings defining the vertices of I3, by the value of b.
In this way, I, decomposes into a subgraph I3,_; whose vertices start with 0 and a
subgraph I';,_» whose vertices start with 10 in [7,. This decomposition can be denoted
by

I, =001+ 101> .

Furthermore, 07}, in turn has a subgraph 007;,_, and there is a perfect matching
between 00/7,_» and 1077;,_», whose edges are called link edges. This decomposition
is the fundamental decomposition of I',. In a similar way, we can also decompose I},
as

I,=1,.104+1,,01.

We refer to [8] for further details on 7, .
Forn > 2, A, is obtained from I}, by deleting the vertices that start and end with
1. This gives the fundamental decomposition of A,, as

Ay =00, + 107,50 .

Here, 017, has a subgraph 007,30 and there is a perfect matching between 0017,_30
and 1073,_30.

Fibonacci numbers f; are defined by the recursion f,, = f,,—1+ f,—2 forn > 2, with
fo =0and f; = 1.Similarly, the Lucas numbers L, are definedby L,, = L,_1+L,—>
forn > 2, with Ly = 2 and L = 1. It is well known that |V (Q,)| = |B,| = 2",
V()| = |Ful = fag2 and |V (An)| = |Ln| = L.

For any binary string s, let wy (s) denote the Hamming weight of s, that is, the
number of its nonzero coordinates. The XOR of two binary strings s; and s, of length
n, denoted by s1 @ s2, is defined as the string of length n whose coordinates are the
modulo 2 sum of the coordinates of s; and s,. The distance d(u, v) between two
vertices u and v of the hypercube, the Fibonacci cube and the Lucas cube is equal to
the Hamming distance between the string representations of « and v. In other words,
d(u,v) = dg(s1,s2) = wy(s) @ s2) for any of these graphs, by assuming u and v
have string representations s; and s», respectively.

3 The Mostar Index of Fibonacci Cubes

For any uv € E(I}), let the string representations of u and v be ujus...u, and
V1V2 ... Uy, respectively. By the structure of I;,, we know that d(u, v) = 1; that is,
there is only one index k for which uy # vy.

Lemma1 For n > 2, assume that uv € E(Iy) with uy = 0 and v = 1 for some
k € [n]. Then, nu,v(Fn) = fk+1fn—k+2 and nv,u(rn) = fkfn—k+l~
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Proof The resultis clear forn = 2. Assumethatn > 3,1 <k <nandleta € V(I7},)
have string representation b1 b . .. b,. Since uv € E(I},), u and v must be of the form
aj...ap—10axq1...a, and ay ...ax—1lag4 ... a,, respectively. Since v € V([3),
we must have ax_1 = ay+1 = 0. From these representations, we observe that the
difference between d(«, 1) and d(«, v) depends on the value of by only. If by = 0, we
have d(«, u) = d(a, v) — 1, and if by = 1, we have d(«, u) = d(«, v) + 1. Therefore,
the vertices whose kth coordinate is O are closer to u than v, and the vertices whose
kth coordinate is 1 are closer to v than u. Hence, n, ,(I3,) is equal to the number of
vertices in I}, whose kth coordinate is 0. These vertices have string representation
of the form 8108, where B is any Fibonacci string of length k — 1 and B; is any
Fibonacci string of length n — k. Consequently, n, ,(I7) = fi+1 fu—k+2. Similarly,
ny,u(I,) is number of vertices of the form B301084, and this is equal to fi f—k+1-
For the case k = 1, wehaveu € V(0I},—1) and v € V(107 —2). Then, n, ,(I},) =
[V(OI,-1)| = fa+1 and 1y, (I5) = |V(10I,-2)| = f,. Similarly, for k = n we
have u € V(I;,-10) and v € V(I},,—201). This gives again n, ,(I},) = fy+1 and
nyu(In) = fnfork =n. As fi = fo = 1, these are also of the form claimed. O

To find the Mostar index of Fibonacci cubes, we only need to find the number of
edges uv in I, for which uy = 0 and vy = 1 for a fixed k € [n] and add up these
contributions over k.

Lemma2 Forn > 2, assume that uv € E(I}) with uy = 0 and v = 1 for some
k € [n]. Then, the number of such edges in Iy, is equal to fi fn—k+1-

Proof As in the proof of Lemma 1, the result is clear for n = 2. Assume that n > 3.
For 1 < k < n, we know that # and v are of the form aj ... a;—2000ax> . .. a, and
aj ...ar—2010ak43 ... a,. Then, the number of edges uv in I}, satisfying uy = 0 and
v = 1 is equal to the number of vertices of the form aj . . . ax_2000a+> . . . a,, which
gives the desired result.

For the boundary cases k = 1 and k = n, we need to find the number of vertices of
the form 00as3 . ..a, and a; .. . a,—200, respectively. Clearly, this number is equal to
[V(00I;,-2)| = f, and f; = 1. This completes the proof. O

Using Lemma 1 and Lemma 2, we obtain the following main result.

Theorem 1 The Mostar index of Fibonacci cube T, is given by

Mo(l3) = Y fefakst firt fooir2 = S fokt1) - )]

k=1

Proof Letuv € E(I},) withu = 0and vy = 1 forsome k € [n]. Then, from Lemma 1
we know that

Ny — Nyl = firt fomka2 — S foks
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and therefore using Lemma 2, we have

Mo(5) = ) lnu—ml

uveE(Iy)

=Y fifoirt (fest foirz = fefakr) -
k=1

O

Note that fi 1 fu—k+2— fk fa—k+1 = fi fa—k+ fi—1 fu—k+2 so that we can equivalently
write

n
Mo(53) = Y fifaitt (ffak + fiot faks2) -
k=1
In Sect. 5, Theorem 3, we present a closed-form formula for Mo(/7},) obtained by
using the theory of generating functions.
Next, we consider the Mostar index of Lucas cubes.

4 The Mostar Index of Lucas Cubes

We know that A, = I and therefore Mo(1%) = Mo(A») = 2.

For any uv € E(A,), let the string representations of # and v be uuj . ..u, and
V103 . .. Uy, respectively. We know that d(u, v) = 1 and there is only one index k for
which uy # vg. Similar to Lemma 1 and Lemma 2, we have the following result.

Lemma3 Forn > 3, assume that uv € E(Ay) with uy = 0 and vy = 1 for some
k € [n]. Then, ny (Ap) = fut1 and nyu(Ay) = So—1.

Proof Assume that 1 < k < n and let @ € V(A,) having string representation
biby ...by,. Since uv € E(A,), u must be of the form ay . .. ax—2000a43 . . .a, and
v must be of the form ay . ..ar_2010ar4> ... a,. Then, if by = 0, we have d(«, u) =
d(o,v) — 1 and if by = 1, we have d(a, u) = d(«, v) + 1. Therefore, n, ,(A,) and
ny,u(Ay,) are equal to the number of vertices in A, whose kth coordinate is 0 and
1, respectively. Therefore, we need to count the number of Lucas strings of the form
B10B82 and B301084 which gives Nuv(Ap) = fag1 and ny , (Ay) = fu_1.

For the case k = 1, using the fundamental decomposition of A, we have
u € V(OI,—1) and v € V(10I,-30). Then, n, ,(A,) = |V(0A,)| = fut+1 and
nyu(Ay) = |V(10I,-30)| = f,—1. Similarly, for & = n we have the same results
v (Ap) = fuyr1 and ny , (Ay) = fu—1. |

For any uv € E(A,) using Lemma 3, we have

|nu,v(An) - ”v,u(An)| = fort — fu-1=fu .

Since the number of edges in A, is nf,—1 [10], similar to Theorem 1 we have the
following result.
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Theorem 2 The Mostar index of Lucas cube Ay, is given by

Mo(Ay) = nfy fu—1 .

Here, we remark that the vertices of Lucas cubes are represented by Lucas strings which
are circular binary strings that avoid the pattern “11." Because of this symmetry, the
derivation of a closed formula of Theorem 2 for the Mostar index of Lucas cube A,, is
easier than the one for I, in which the first and the last coordinates behave differently
from the others.

5 A Closed Formula for Mo(I"p,)

By the fundamental decomposition of I3, the set of edges E(I}) consists of three
distinct types:

1. The edges in 0I3,_1, which we denote by E(017,—1).
2. The link edges between 10I3,_> and 00/3,_», denoted by C,,.
3. The edges in 107;,_5, which we denote by E(1017,_>) .

In other words, we have the partition
E(I},) = E(0—1) UG, U E(100,—2) .

We keep track of the contribution of each part of this decomposition by setting for
n>2,

My, y, )= Y me—mlx 4 Y e —mly

uveE0I;,—1) uveCy

+ ) Iz @)

wveE(105,_2)

Clearly, Mo(I,) = M, (1, 1, 1). By direct inspection, we observe that

My =x+y

Mz =4x 4+ 2y +z

My = 16x + 6y + 62
Ms = 54x + 15y 4+ 23¢

which gives

Mo(Ds) = Ma(1,1,1) =2
Mo(I3) = M3(1,1,1) =7

Mo(Iy) = Ma(1,1,1) = 28
Mo(Is) = Ms(1,1,1) =92,
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consistent with the values that are calculated using Theorem 1.
By using the fundamental decomposition of I,, we obtain the following useful
result.

Proposition 1 For n > 2, the polynomial M, (x, y, z) satisfies

My(x,y,2) =Mp_1(x+2,0,x) + M, 2Q2x +z,x+2,x+2)
+ o1 (fn + fo—2)x + fufu1y

where Mo(x,y,z) = Mi(x,y,z) =0.
Proof By the definition (2), there are three cases to consider:

1. Assume that uv € C,, such thatu € V(0I,_1) and v € V(10I},_7):
We know that d(u, v) = 1 and the string representations of # and v must be of the
form 00b3 . ..b, and 10b3 ... b,, respectively. Then, using Lemma 1 with k = 1
we have |n, —ny| = fat1 — fu = fu—1 foreach edge uv in C,,. As |Cp| = fp, all
of these edges contribute f, f,—1y to M,,(x, y, z).

2. Assume that uv € E(107},->):
Let the string representations of # and v be 10u3 . . . u, and 10v3 . . . vy, respectively.
Using the fundamental decomposition of I7,, there exist vertices of the form u’ =
Ouz...up and v/ = Ovz...v, in V(U —1); u” = uz...u, and v/ = v3...v,
in V(I,—3). Then, n, counts the number of vertices O € V(0I,—1) and 108 €
V(107;,—») satisfying

d(0a, u) < d(Oc, v) and d(108, u) < d(108,v) .

For any O« € V(0I},—1), we know that d(Oc, u) = d(a, u’) + 1 and d(0a, v) =
d(o, Ov’) + 1. Therefore, for a fixed O € V(0I;,,_1), d(a,u’) < d(a, V') if
and only if d(0c, u) < d(Oa, v). Similarly, for any 108 € V(10I;,—2) we have
d(10B8,u) =d(B,u”) and d(B, v) = d(B, v"). Then, we can write

Yo @) == Y e (D) = g (D)
uveE(100;,-2) u'v'eE(ly,—1)
+ D e (D) — g (Nha)| -
u"v"eE(I,-2)

Note that I},_; = 0I},_» + 10I;,_3 and the edge u’v' € E(I},_1) is an edge in the
set E(0I},—2). Furthermore, u”v” € E(I},_3) is an arbitrary edge. Then, by the
definition (2) of M,, we have

Yo T = ny (Do) = My—1(1,0,0)
Wv'eE(—1)

and

S | (Tha) = nyrr (M) = My (1. 1,1) .

u"v"eE(I,—-2)
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Hence, all of these edges uv € E(10I;,_3) contribute (M,,_l (1,0,0) +
M,_2(1,1, 1))z to My (x, y, 2).

3. Assume that uv € E(0l;,_1):
Since 01,1 = 00I;,—» + 0107;,_3, we have three subcases to consider here.

(a)

(b)

(©)

Assume that uv € C,_; such that u € 00I},_» and v € 0107;,_3 .
Then, using Lemma 1 with k = 2 we have

Ny —nul = f3fn— fofum1 =210 — fuct = fu + fu=2

for each edge uv in C,. As |C,—1] = fu—1, all of these edges contribute
Jn1(fu + fu—2)x to My(x, y, 2).

Assume that uv € E(0107;,_3):

Let the string representations of u and v are of the form 010u4 . ..u, and
010v4 .. . vy, respectively. Using the fundamental decomposition of I}, there
exist vertices of the form u' = 000u4...u, and v/ = 000vs...v, in
V(OIl,—1); u” = Ouq...u, and v = Ovg...v, in V(I,—2). Then, for any
100 € V(107;,_») we know that d (10, u) = d(10a, ') + 1 = d(a, u”) + 2
and we know that d (10, v) = d (10, v')+1 = d(a, v") +2. Therefore, for all
10 € V(101;,—2) we count their total contribution to M, by M, _»(1, 0, 0)x in
this case. Furthermore, as uv € E(0107},_3), we have uv € E(0I},—1), and for
all O € V(0I;,—1), we count their total contribution to M,, by M,,_1(0, 0, 1)x
by using the definition of M,,_;. Hence, the edges uv € E(0107;,_3) contribute
(Ma-1(0.0. 1) + My _5(1,0,0))x to My (x, y. 2).

Assume that uv € E(007;,_3).

These edges are the ones of E(0/},_) that are not in E(01073,_3) and C,,_;
(not created during the connection of 00/;,_> and 010/,_3). Then, simi-
lar to the Case 2 and using the definition (2) of M, these edges contribute
(My—1(1,0,0) + M, 5(1, 1, D)x to My(x, y.2).

Combining all of the above cases and noting M,_1(0,0, H)x = M,_1(0,0, x),
M,_>(1,0,0)x = M,_2(x,0,0), M,_»(1,1, Dx = M,_»(x, x, x), we complete
the proof. O

If we write M, (x, y, z) = apx+b,y+c,z, then from the recursion in Proposition 1,
we obtain forn > 2

ap =ap1+cy—1+2a,2+ b2+ chn_2+ fu1(fu + fa-2)
b, = fnfn—l

Cp=an_1+ap2+by_2+chr2.

Eliminating b,,, this is equivalent to the system

ap =ap1 +2a, 2+ cy_1 +cp2+ fn—2fn—3 + fu—1fu—2+ fnfn—l
Cp =an—1 +an—2+cn—2+ fu—2fu-3. 3)
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Let A(t), B(t), C(t) be the generating functions of the sequences ay,, by, ¢c,, (n > 2),
respectively. We already know that ( [11, A001654])

12
B(r)—ngfnfn L TP YR )
From (3), we obtain
A(t) = (1 + 20)A0) + (¢ +1)CH) + (1 + 1 4+ ) B(1)
C@) = (t +HA@W) +1*C(1) +1*B@) . ®)
Solving the system of equations (5) and using (4), we calculate
)
AD = Trra s o2
P42t =1
C@t) = (6)

A+02(1 =3t +12)2 "

Since Mo(I,) = M,(1,1,1) = a, + b, + c,, adding the generating functions
A(1), B(t), C(t) we obtain

> Mo(ry)" @-oe (7
© B Y

n>2

Using partial fractions decomposition in (7) and the expansions

T e Z Pt ®)
1
———s =) L (@0 +2) oz + Gn+3) o)1, ©)
(1 =3t 412)2 = 5

we obtain

1
Mo(F3) = 22 (Gn +2)(=1)" + @n = 5) fau2 + Gn +3) fan1 = (4n = 3) fa = 3nf21 ) |

which can be simplified to the closed-form expression for Mo(/7,) in Theorem 3. This
is another way of writing the sum given in Theorem 1.

Theorem 3 The Mostar index of Fibonacci cube T, is
1
Mo(I) = E((3n —2) fany2 + nfant1 + Gn+2)(=1)") .
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6 The Wiener Index and Remarks

In [9], it is shown that
n
W) =Y fifirt okt fuksa (10)
k=1

and that this sum can be evaluated as

1
W(Iy) = 5(4<n+ DfZ+ On+2) fu fas1 +6nf2 ) . (11)

In view of our formula (1) of Theorem 1 and (10), this means that
n
W(I) =Mo(I) + Y (fifuir)” .
k=1

The sum above is the sequence [11, A136429] with generating function

1(1 —1)2
(14020 =3t +12)2°

Adding the generating function (7) to this, we get

n__ t

Using partial fractions and the expansions (8) and (9), W(I7},) (n > 2) is found to be

W(I) = 52(Bn +2) fants + (n = 2) fans2 — (0 +2)(=1)")

S
25
which is a somewhat simpler expression than (11).

It is also curious that in view of their generating functions (6) and (12) which differ
only by factor of ¢, we have

ap = M,(1,0,0) = W(5—1) .
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