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Abstract

We construct a bijective proof for the number of spanning trees of complete multipar-
tite graphs. The weight preserving properties of our bijection yields a 6—variate weight
generating function which keeps track of various statistics on spanning trees. This bijec-
tion allows for the ranking and unranking of the spanning trees of an n-vertex complete
multipartite graph in O(n) time. As a further application, we compute the asymptotic
distribution of leaves in these families of spanning trees.
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1 Introduction

Let Ky, k,....x, denote the complete p-partite graph on vertexset V= Vi + V5 +---+V,,
where |V;| = k; for ¢ = 1,2,...,p, and “4” denotes disjoint union. Put sg = 0 and
define s; = ky + -+ 4+ k; for t = 1,2,...,p. We assume that the total number of
vertices is n (= |V| = s,) and the vertex set V; consists of the integers in the half-open
interval (s;_1,s;]. The edges in Ky i, .., are all pairs {z,7} such that there is no ¢
with 1 4+ s; <¢,7 < s441. Let Spn([(k17k27...7kp) denote the collection of spanning trees
of Ky, ky,..k,- Using the matrix-tree theorem, Onodera [4] showed that

P
ISP (K ooy)| = 1072 [[ (0 — k)" (1)
t=1

Our first aim is to construct a bijective proof of this formula by suitably interpreting
the right hand side of (1) as the enumerator of a certain restricted class of functions
mapping {2,3,...,n— 1} to {1,2,...,n}. The functional diagrams of these functions
are then put in one to one correspondence with trees in Spn([(khk%“’kp). This con-
struction relies on a variant of the bijection for Cayley trees (i.e. the spanning trees
SP.(K,) of the complete graph K,,) given by the authors in [2]. Indeed, the bijection
presented here can be viewed as a generalization of of this bijection from complete
graphs to complete multipartite graphs. For a generalization in a different direction,

see [3].
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Our interpretation of the right hand side of (1) will allow us to rank and unrank
the trees in Spn([(k17k27.,,7kp) optimally in linear time. Furthermore, as is the case with
most bijective proofs, we gain extra information about the underlying combinatorial
objects by considering the special properties of the bijection constructed. Analogous
to the Cayley tree case, our bijection for the spanning trees of complete multipartite
graphs has a number of natural weight preserving properties. These allow for the
derivation of various ¢-analogues of Onodera’s result. For example, if we put [0] = 0,

and [m|=1+qg+ -+ ¢! for m > 0, then

nt+ 1), p
> =0 =gl T gt s

TeSPu(Kiy ky, ... kp) =t

where degr(i) denotes the degree of vertex ¢ in a tree 7.

Further properties of our bijection allows for the computation of the asymptotic
distribution of leaf nodes in Spn([(k17k27.,,7kp) as well. More particularly, if the number
of parts p is kept fixed and we let n — oo, then the asymptotic probability that a
vertex vin T € Spn([&’khk%“’kp) is a leaf is given by

Z% e (2)

where «o; = lim,,_. %

The outline of this paper is as follows. In Section 2 we reproduce the 6, bijec-
tion for the number of spanning trees of the complete graph K,, which forms our
point of departure. In Section 3, we construct our bijection for complete multipartite
graphs. This is followed in Section 4 by weight-generating functions for spanning trees
of complete multipartite graphs and various ¢-analogues of (1). In Section 5 we present
ranking and unranking algorithms for Spn([(k17k27...7kp) and the analysis of their time
requirements. Finally, the asymptotic properties of SP,(Ky, k,,...k,) and the proof of
(2) appears in Section 6.

2 The 6, bijection for Cayley trees

For completeness we reproduce here the 8, bijection for Cayley trees on n nodes that
appears in [2], as it forms the basis for the bijection in the general case.

Denote by C, the spanning trees SP,(K,), where we imagine each tree as rooted
at the largest labeled node n. Furthermore, we orient each edge {¢,j} of a Cayley tree
T € C, by directing it toward the root. Clearly, |C,| = | SP.(K,)|. Next, let F, denote
the set of functions from {2,3,...,n — 1} into {1,2,...,n}. The bijection 8,, between
C, and F, is most easily described by referring to an explicit example.

Suppose n = 21 and f € Fy; is given by Table I



NG RNVl EAN Ol EEN O
2 5 |7 7 |12 20 |17 16
3 4 |8 1213 19 |18 6
15 9 1 1 19 |19 7
5 3 |10 4 |15 6 |20 12
6 20 |11 4 |16 1

We view [ as a digraph with vertex set {1,2,...,21} by putting an edge from 7 to
g if f(¢) = j. For example, the digraph for f given above is pictured in Figure 1.

Figure 1

A moment’s thought will convince one that in general, the digraph corresponding
toan f: {2,3,....n —1} — {1,2,...,n} will consist of two trees rooted at 1 and
n, respectively, with all edges directed toward their roots plus a number of directed
cycles of length > 1 where for each vertex v on a given cycle, there is possibly a tree
attached to v with v as the root and all edges directed toward v. Note that there are
trees rooted at 1 and n due to the fact that 1 and n are not in the domain of f, and
consequently there are no directed edges out of 1 or n. Note also that cycles of length
one or loops simply correspond to fixed points of f.

As in Figure 1, we imagine the directed graph corresponding to f € F,, is drawn so
that

1. the trees rooted at 1 and n are drawn on the extreme left and extreme right
respectively with their edges directed upwards,

2. the cycles are drawn so that their vertices form a directed path on the line between
1 and n with one back edge above the line and the tree attached to any vertex
on a cycle is drawn below the line between 1 and n with edges directed upwards,



3. each cycle is arranged so that its smallest element is on the right and the cycles
themselves are ordered from left to right by increasing smallest elements.

Once the directed graph for f is drawn as above, let us refer to the rightmost
element in the i-th cycle as r; and the leftmost element in the ¢-th cycle as ;. Thus
for the f given above, [y =4, 11 =3, [y = ry =7, I3 = 20, and r3 = 12. Once an
f € F, is drawn in this manner, it is easy to describe the bijection 6, (f). That is, if
the directed graph of f has k cycles where k£ > 0, we simply eliminate the back edges
ri — [ fore =1,2,... k and add the edges 1 — Iy, 7y — l3, 79 — [3,..., 7% — n. For
example, in Figure 1, we eliminate the back edges 3 — 4,7 — 7, 12 — 20 and add the
edges 1 — 4,3 — 7,7 — 20, and 12 — 21 which are dotted for emphasis. If there are
no cycles in the directed graph of f, i.e., k = 0, then we simply add the edge 1 — n.

Note that it is immediate that 6, is a bijection between F,, and C, since given any
Cayley tree T' € C,, we can easily recover the directed graph of f € F,, such that
0.(f) = T. The key point here is that by our conventions for the ordering of the cycles
of f, it is easy to recover the sequence of nodes r1,ry,...,r; since ry is the smallest
element on the path between 1 and n, ry is the smallest element on the path between
r1 and n, etc., and clearly, knowing ry,ry, ..., 7 allows us to recover f from T

Since 8, : F, — C, is a bijection, we arrive at Cayley’s formula n"~% = | F,| =
€.l = | SPu(Ko ).

In the next section, we construct a variant of the bijection 8, to set up a one-to-
one correspondence between the spanning trees of Ky, 1,..x, and a certain subset of
functions in F,,.

3 The bijection (2, for complete multipartite graphs

To prove (1) combinatorially, we interpret the right side of (1) in the following manner.
First of all let S; = Vi \ {1}, S, = V, \ {n} and for 1 < ¢ < p put S; = V,. Clearly
S1,59,...,5, form a partition of {2,3,...,n — 1} with |S1] = k4 — 1, |S,| = k, — 1,
and for 1 <t < p, |S¢{ = k. As before, we imagine each tree T in SB, (K, 4s,...k,)
as rooted at its largest labeled vertex n, and direct each edge {7,5} in T towards the
root. Let Fi, i,,..r, denote the set of functions f € F, with the following properties:

Lo f(51) CVaUVsU - UV, and f(5,) S ViUV U--- UV,
2. Forl<t<pandie S, fi) e iUu---U Vi U{iUVia U--- UV,
3. f has at most one fixed point on each S; for 1 <t < p.

Clearly we have

P
| P | = 1T 1F| (3)
=1

where Fy = {f: 51 — U, Vit, Fo = {f: S, = U2, Vi), and for 1 < t < p, F, is the
set of functions f : Sy — |Jj_; Sk satisfying conditions (2) and (3) above. Note that
for 1 <t < p, there are (n — k;)* functions in F, with no fixed points and (n — k)~ 1
functions in F; with fixed point ¢ for any given ¢ € S;. Thus for 1 <t < p,

\Fil = (n — k)™ + ke(n — k)™t = n(n — k)™ (4)

4



Now it is easy to see that |Fi| = (n — k)"~ ! and |F,| = (n — k,)**~L, so that
p—1
[ Fhsoreadip | = (0= k)7 (= k)8 [T (= k)™
t=2

= pP? f[l(n — k)t (5)

To define Q,,(f) where f € Fy, ..., k,» We first draw the digraph of f in the manner
of the 8, bijection. Thus the trees rooted at 1 and n are drawn on the extreme left and
extreme right respectively, and the cycles of f are arranged with their smallest element
r; on the right with a single back edge, ordered from left to right between 1 and n by
increasing r;. After the digraph of f is drawn in this manner, we further rearrange the
cycles which are fized points of f in the following manner. Suppose a cycle C; is a fixed
point of f. Then r; = [; of C; belongs to a set S; for some 5, 1 < j < p. Note that
by the definition of the class of functions Fy, 1,...,, f does not have any other fixed
points on the set S;. Let now ¢ be the smallest index such that r, € S; and r, < r;. We
then place C; immediately before the cycle which has this r; as its smallest element.
Denote by R(f) the functional diagram that results after the cycles corresponding to
fixed points of f are rearranged in this manner. The bijection {2, is constructed from
R(f) exactly as in 6, bijection. Namely, we connect the cycles in R(f) by adding
edges directed from left to right, and then we break the back edge in each cycle. As
an example, consider the following function f € Fs3 477 given in Table II:

Table IT

fO e fO1 i fEOf ¢ fG)
20 [ 7 1312 12 [17T 6
118 4 |13 19 18 1
8 |9 20|14 3 |19 9
2 |10 6 |15 8 |20 1
6 |11 3 |16 12

Here Vi = {1,2,3}, Vo = {4,5,6,7}, V5 = {8,9,10,11,12,13, 14}, and V; = {15,16,17, 18,19, 20,21},
with S; = Vi \ {1}, Sy = V5, S5 = V3, Sy = Vi \ {21}. The numbers s; are given by

s1 =3, 8, =17, s3 =14, and s, = 21. When we order the cycles of f in the manner of

the 8, bijection, we obtain the digraph in Figure 2.

Y| O = | W DD =

Figure 2

Next, rearranging the positions of the two fixed points of f results in R(f) and
Q21(f) depicted in Figure 3.



Figure 3

In this case Q91(f) is the spanning tree T' of K5 477 pictured in Figure 4.

To see that Q,(f) € SPu(Kk, ks,...k,), first observe that our definition of Fy, ...k,
ensures that the only edges ¢ — j in the digraph of f where both ¢ and j lie in some V;
is if ¢ = j so that the edge ¢+ — j is a back edge associated to some fixed point of R(f).
Assume R(f) has k cycles and let r; and [; denote the right and left hand endpoints
of the i-th cycle respectively. Since all back edges of R(f) are eliminated in Q,(f), it
follows that the only edges ¢ — j of Q,(f) which could be such that both 7 and j are
in some V; are among the newly added edges 1 — [, ry — l5, ..., 7z — n. Of course if
there are no cycles, i.e. & = 0, then we simply add the edge 1 — n in which case we
automatically have that Q,(f) € SP,(Ky, k,,...k,). Otherwise, consider ry. If ry € 5y,
it follows that [y & V; since f(S1) C U=, Vs. If 1 € S, where t > 1, then since rq is
the smallest element in its cycle, it must be the case that [; € V; U --- U V,. Thus in
either case [y ¢ Vi, and the edge 1 — [; does not have both of its end points in some
Vi. Next consider r. It cannot be the case that ry € S, because f(.5,) C UPZ; V, and
hence [, € Uf:_ll Vi. But then [ < rp, violating the fact that r; is the smallest element
in its cycle. Thus ry € V, and the edge r;, — n does not have both of its end points
in some V;. Finally, consider two consecutive cycles in R(f) with end points /;,; and
liv1,7i41. We shall show that r;, € S, and ;11 € S, where u < v so that the edge
ri — lip1 in Q,(f) does not connect two points in some V;. There are four cases to
consider:

(i) Neither cycle is a fired point of f: In this case r; < riyq so that ri41 € S, where
w > u. Because [;41 # 141, it follows that [;41 € S,,. But r;1; is the smallest
element in its cycle, so we must have that [,;; € S, where v > w > w. Thus

u # v.

(ii) Both cycles are fized points of f: Since f has at most one fixed point on any one
of the sets 5;, it follows that r; and r;1; belong to 5, and 5,, respectively, with
u < 0.



Figure 4

(iii) The first cycle is a fized point of f: Note that either r; < riq or if r; > riyq,
then it must be the case that r;y; is the least right hand endpoint of a cycle with
ri,Tir1 € Sy. In either case, we can conclude that r;y; € 5, where v < w. Then
just as in case (i), we can argue that [;11 € S, where v > w > u.

(iv) The second cycle is a fized point of f: Note that in the construction of R(f),
rit1 1s placed preceding the cycle with the smallest r; with ry,r; € S; and ry < r;.
Therefore after the rearrangement r; and ;41 cannot belong to the same 5;. Thus
if r; € 9, it follows that l;;1 = r;p1 € S, where v > w.

Thus we have shown that Q,(f) € SPu(Kk, ,,..k,) for all f € Fp o, Let us
make one more observation about the map Q,. Let ¢; < ¢3 < --- < ¢; denote the right
hand endpoints of the cycles of the digraph of f before we move the fixed points to
produce R(f). Suppose that ¢; is the first fixed point among ¢i,...,¢; and 7 is the
least index m < j such that ¢,, and ¢; lie in some S;. Now if ¢ < j, then keeping our
notation above we will have r, = ¢, for t <1, r; = ¢;, ry = ¢;—1 for ¢+ <1 < j. Then

We can recover rq,Tsq,...,r; from Q,(f) as follows. Just as in the 6, bijection, 1 = ¢
is the least element on the path from 1 to n, r; = ¢; is the least element on the path
from r; to n, ... , r,_1 = ¢;_1 is the least element on the path from r;_5 to n. Now

if we consider the least element on the path from r;_; to n, this element is r;y; = ¢;.
However, when we try to recover the cycle starting with ;41 as in the 8, bijection, we
would try to draw the back edge ;11 — r;. Of course, we would then recognize that
the edge r;11 — r; cannot be an edge in the digraph of f because the only edges in
the digraph of f which have both endpoints in some V; are loops. Thus we know that
r; must be a fixed point of f and the back edge from r;y; should go to the element
immediately following r; on the path from 1 to n. Then r;15 = ¢;11 is the least element



on the path from r;1; to n, ... , r; = ¢;_1 is the least element on the path from r;_; to
n. Finally we observe that all the elements on the path from r; to n are greater than
r;. Of course in the case where 7 =7, so that we did not need to move the fixed point
¢;, we can recover ry,...,r; just as in the 8, bijection. By using the same procedure
on the elements which lie on the path from r; to n, we can recover all the cycles of the
digraph of f up to the next fixed point of f, etc..

It follows that given any spanning tree T € Spn([&'khk%“’kp), we can recover the
digraph of fr € Fi, k,,...k, such that Q. (fr) = T. To see this, consider the sequence
of nodes uy, us,...,u, where uy is the smallest node on the path from 1 to n in T', uy
is the smallest element on the path from u; to n, etc., exactly as in the 8, bijection.
Consider the left hand endpoints vy, vs, ..., v, determined by this sequence of nodes
up < ug < --- < up. For example if we start with the tree T pictured in Figure 3,
up = 3, vy = 11, ug = 4, vg = 6, us = 9, and v3 = 12. We then eliminate the
edges 1 — v1, Uy — vy, .., U1 — U, U, — n and attempt to draw the back edges
u; — v; to complete the cycles of f. If u; and v; are in different parts of the partition
S1+ S+ -+ 5, we keep the cycle. If for some ¢, u;,v; € S;, we declare v; to be
a fixed point of fr and let w; be the element which follows v; on the path from 1 to
n. Note that since v; — w; in T', we must have w; € 5;. We then eliminate the edge
v; — w; and draw the back edges v; — v; and u; — w; to give two cycles. We claim
that this procedure always produces the digraph of a function fr € Fi, k,,..x,. Clearly,
there is no difficulty with the edges which lie both in T and the digraph of fr. The
only problem can come from the back edges where we must show that there are no
fixed points of fr in Sy or S, and that there is at most one fixed point of fr in S; for
1 <t < p. First we claim that there is no fixed point of fr in S;. That is, suppose v;
is a fixed point of fr and v; € S7. Then since u; < v;, we must have u; € S7. But then
either + = 1 and the edge 1 — vy isin T, or 2 > 1 and the edge v,y — v; isin T. In
the latter case, u;_y < u; and u; € S7 implies u;_y € S;. Thus in either case, we would
get an edge in T' connecting two points of V; which is impossible. Similarly, suppose
v; is a fixed point of fr and v; € S,. But then u; € 5, and since u; < wjpy < -+ < uy,
we would have u, € S,. This is impossible because then the edge vy — n would be
in 7" and would connect two points in V,. Finally, suppose there are indices ¢ < j
where v; and v; are fixed points of fr and v;,v; € S for some . Thus it must be the
case that u; and u; are in S;. But then u; < w;_; < u; so that u;_y € S;. This is
impossible because then u;_y — v; would be an edge in T' connecting two vertices in
Vi. Thus fr € Fi ky,...k, Wwhenever T' € SP, (K, k,,...k,)- Thus we have shown that Q,
is a bijection between Fi, ...k, and SP.(Ky, k,,...k, ). Hence by (5) we have

P

14
|S,Pn([(k1,k2,...,kp)| = np_2 H(n — kt)kt_l.
=1

4 Statistics on spanning trees

Consider T' € SPH(I(khk%.”,kp), where as before we consider T" as rooted at its largest
labeled node n, and direct each edge back toward the root. We call a directed edge



t— 7 arise if 1 < j and a fall if © > j. We assign a monomial weight
. o Joagitt >y,
simi)={ e 20 o
We then define the weight of T'= (V, E) € SP,(Kk, k,..... kp) by setting

w(T) = H w(e). (7)

eely

For example, if T' is the tree pictured in Figure 5, then the weight of the edge 7 — 3
is x¢"t3, the weight of the edge 5 — 8 is yp°s®, and the weight of 7" itself is

w(T) = (yps*)(yp’s)(yp’s®)(yp*s ) (yp°s*) (xg°t%) (v qt)
— $2y5p15831q13t6.

Similarly, for f € Fj, x,.....k,, define

o(f) = TLwlf)

where

| oagtt it f(i)=jand i > j,
wifi) = { yp's? if f(i)=j and i <. (8)
Consider the weight generating functions
GS,Pn([(kl,kQ ..... kp) = Z w(T), (9)
TESPr(Kky ky,... kp)
G(Fry py,ky) = > w(f) (10)
TE€Fky ky .. kp

It is easy to see that

p—1
G(Ffﬂ k2., kp) - G(fl) X G(‘Fp) X H G(Ft)v
=2
in which
G(Fi) =>_w(/f),
!
where the sum is over all functions f in F; and Fi,...,F, are defined as in Section 3.
We find that .
G(F1) = [Tlyp'(s"* 4 +57)), (11)
=2
n—1 )
G(F) = II (eq'(t+ - +1v7)), (12)
’i:1+5p_1



and fort =2,...,p—1,

St

G(F) = JI @ps™ 4 s +ag U4 +07) + (13)
1=145¢-1
+ Z ypigi H (ypj(sHst—I-"'-I-S”)—l—xqj(t—l—---—l—tsf—l))'
i=1+s¢_1 J=14sp_q
J#
We have

Theorem 1 GSP.(Kp, ky,ky) = Y0 " G(Fy ko,ooy )-
Proof We shall prove the theorem by showing that

w(§2.(f)) = yps"w(f) (14)

for each f € Fi, ky,..k,- To prove (14), note that our definitions ensure that if f(z) = j
and ¢ — j remains a directed edge in both the directed graph of f and the directed
graph of T' = Q(f), then w(f,i) = w(i — j). Thus in the case where the directed
graph of f has no cycles, (14) is clear since in this case T is obtained from f by adding
the edge 1 — n to the digraph of f, and the contribution of this edge to the weight is
yps™. If the directed graph R(f) which is obtained from the digraph of f after ordering
the cycles and reordering the fixed points of f according to the definition of ) has k
cycles with &£ > 0, then we follow our conventions from Section 3 and let [; and r;
denote the left and right hand points of the :-th cycle in the digraph of f. Note that
the only difference between the weights of f and T' are due to the difference between
the weights of the edges ry — [i,...,rx — [p which are deleted from the graph of f,
and the weights of the new set of edges S = {1 — l1,r1 — by, ..., 11 — L, 7 — n}
added to the resulting digraph. Since r; is the smallest element in the z-th cycle of f,
we know that [; = f(r;) > r; for i = 1,..., k. Thus we must have w(f,r;) = yp"shi. It
follows that

wlf) = (yp"s")ypst) - (wpst)  J1 w(fi)
— ykpZmSZJg I w(f.9). (15)

Now if T'= (V. E) then
H w(f,i) = H w(t = j),

i%{Tl ..... Tk} Z—>]€E\S

since if f(i) =j and ¢ € {ry,..., 7}, then i — j is an edge in both the directed graph
of f and the directed graph of T. We claim that each of the edges in S are rise edges.
It is clear that 1 — /4 and r; — n are rise edges. In Section 3, we proved that if r; € 5,

then [;11 € S, where u < v. Thus r; < [;41 and r; — [;11 is a rise edge for every edge
in S. Thus



= (yps")yp"s™) - (yp s ) (wp™s") I w(i =)

i—j@E\S
= (yps")yFpitiszit T w(fi).
ig{Tl,...,Tk}
Thus by (15)
w(T) = yps"w(f),
and the Theorem follows. O

Due to the definition of the family of functions Fy, 1,...x,, the weight generating func-
tion GSPH([(k17k27...7kp) is not in a particularly simple form. However for certain inter-
esting statistics on trees, GSPH([(k17k27.,,7kp) specializes to a much nicer product form.
We give an example: For T' € SP,(Kp, iy, k), let 6(T) = Y;eridr(i), where dp(z) is
the degree of the vertex z in T'. Now if we set + = y = 1 and p, s, and ¢ equal to ¢
in the monomial weight of 7', then each vertex ¢ will contribute a factor of ¢* to the
resulting weight of T' every time vertex ¢ is either a right or left endpoint of a directed
edge in T'. Hence the resulting weight of 1" with those substitutions will be precisely
qzz‘ “r(@) = ¢*(T) Note that the § weight is independent of the fact that we regard T
as rooted at vertex n. As a corollary of Theorem 1 we obtain the following ¢-analogue
of (1):

Corollary 1

+1

> S0 = q(” ) )‘S[n]p‘z TT (] + g [n — s

TESPa(Kky ky,... kp) =1
where s;, = ky +-++k;, [0] =0, and [m] =1+ q+ ..+ ¢™ ! for m > 0.

Proof [t is easy to see that when we set © =y = 1 and p, s, and ¢ equal to ¢ in the
monomial weight of T', then the partial weight generating functions G(F;), and G(F,)
in (11) and (12) specialize to

¢ (¢ [n =) and g ls,oa] T

respectively, where
S1 n—1

61:Z(i—l-1), €p = Z (i+1)'

1=2 1=1455_1

Fort=2,....p—1, put

St

€ = Z (i+1).

1=14s54_1

For these values of ¢, G(F;) given in (13) specializes to

st 4 = s S g (i) + g — si)F

1=14s54_1

= ¢“([sea] + ¢ [n = se] + ¢ k) ([s0-1] + ¢ [0 = ]!

= ¢ [n]([se=1] + ¢"[n — St])kt_l,

11



Thus we have

p
> ¢ = gttt [ T ([sema] + g% — si])
TESPa(Kky ky,... kp) =1
n—1
It can be easily verified that e; +e3 +---+ e, = Z(z +1)= (735 — 3 as claimed. O
1=2

We end this section with a brief outline of how we can also obtain a weight generating
function similar to (10) for spanning trees of Ky, ... k, which are rooted at vertex 1
instead of vertex n. That is, root each T' € SP,( Ky, ky..... kp) at vertex 1 and direct each

edge back toward the root. Define the weight of directed edge w(i — j) and the weight
of atree T € SP.(Kp ky,...k,) by (6) and (7), respectively. Then define

GSP. (K, py,ty) = > w(T).

TESPR(Kpy by, kp)
T rooted at 1

Next, define the weight of a function f € Fy, ,,...k, bY

n—1

w(f) = T a(f.9), (16)

where .
o xgt i f)=j and i >,
w(f,1) = { ypis’ it f(i)=j and i < J.

Note that the only difference between (8) and (16) is the weight of the fixed points of

f. Then let
G(Fy hyhy) = > @)
TE€Fky ky .. kp
Again it is easy to see that
G(Ffﬂ ka,..., kp) = G(fl) X G(‘Fp) X H G(Ft)v
=2

in which

and F; are defined as in Section 3. Then it is easy to check that G(F;) = G(Fy),
G(F,) =G(F,),andfor t =2,...,p—1

St

G(Ft) = H (ypi(sl-l-st 4+ 4 Sn) + qu(t 4oy tst_l)) +
1=145¢-1
+ Z l’qiti H (ypj(SI-I-St 4+ 4+ Sn) 4 l’qj(t N tst_l)), (17)
1=145;_1 J=l+4sp_1q
J#
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Next we shall describe how we can modify the €, bijection to produce a bijection
by — SPu(Kiy ks, k,) Where for each [ € Fp iy ks Qn(f) is a spanning

K2 yeeey D

tree rooted at 1 such that B
atq"w(f) = w(Qa(f))
Thus Q,, will show that
GSPu( Ky hy,py) = Ttq" G(Fy ooty )-

Now given an f € Fi, ,,..k,, Wwe draw the digraph of f in much the same way as in
the first step of the £, bijection except that we

1. put the tree rooted at 1 on the extreme right,
put the tree rooted at n on the extreme left,

draw the cycles so that the largest element is on the right,

S S

and finally order the cycles from left to right by decreasing largest elements.

For example, the digraph of the function f in Figure 2 would be drawn as in Figure 6.

Figure 6

Next we rearrange the cycles corresponding to the fixed points of f. Suppose
the ¢-th cycle C; is a fixed point of f on S;. Let C; be the first cycle preceding C;
whose right hand endpoint is in S;. If there is no such index j, then we do not move
(. Otherwise we place C; immediately before C;. For example, for the function
of Figure 6 where V; = {1,2,3}, Vo, = {4,5,6,7,8,9}, V3 = {10,11,12,13,14}, and
Vi ={15,16,17,18,19,20, 21}, the fixed point 6 is moved.

Now let R(f) denote the digraph of f after we have rearranged the cycles in the
manner described above. Let r; and [; denote the right and left hand points of the
i—th cycle of R(f) reading from left to right. Then we obtain Q,(f) from R(f) just as
before, i.e., we eliminate the back edges r; — [; for k = 1,..., k where k is the number
of cycles of R(f) and add the edges n — Iy, ry — lo,... 7y — g, and rp — 1. If
there are no cycles, we just add the edge n — 1. See Figure 7, for example.

The weight preserving properties of the Q,, bijection and the fact that Q,, € SP,(Ky, x,.... kp)
follow from an analysis very similar to the one given in Section 3 which shows that

1.1, &5,
2. L € Sl,

13



Figure 7

3. foreach:=1,...;k—1,r;, €5, and l;1, € S,,,, where u; > v;1;.

P41
Thus in particular, all the edges n — I, ry — Iy, ..., 751 — [}, and rp — 1 are falls.

Given a tree T' € SPn([(k17k27.,.7kp) rooted at 1, we can show that we can recover the
function fr € Fi, ...k, such that Q,(fr) = T as follows. Consider the path from n
to 1 in T. Let wy be the largest element on the path from n to 1, uy be the largest
element on the path from wu; to 1, us be the largest element on the path from wus to
1, etc. We use uy > ug > --- > ui to determine the cycles of fr just as we do in
reversing the (1, bijection. In other words, let vy, vy,...,v; be the left hand points
of the cycles determined by wuy,us, ..., ur respectively. Then we eliminate the edges
n — U1, Uy — Vgy...,Up_1 — Vg, up — 1. If u; and v; are in different parts of the
partition S U --- U S,, we add the back edge u; — v;. Otherwise we let w; be the
element immediately following v; on the path from n to 1. We then eliminate the edge
v; — w; and form two cycles by adding the back edges v; — v; and u; — w;.

5 Ranking and unranking SP,(Kj, t,,..k,)

In a number of settings it is required to generate random combinatorial structures
(k-subsets of an n-set, permutations, partitions, compositions, trees, planar graphs,
Hamiltonian cycles, etc.), or random objects from a subclass of such an underlying
family having a particular property, usually drawn from a uniform distribution. Effi-
cient ranking is one of the obvious ways of achieving this. A collection of ranking and
unranking algorithms for combinatorial structures of a diverse nature can be found in
Nijenhaus and Wilf [6], and Reingold, Nievergelt, and Deo [7].

Colbourn, Day, and Nel [1] provided an O(n?) ranking and unranking algorithm for
spanning trees of an arbitrary n-vertex graph (G. This makes it possible to generate a
random spanning tree of a given connected n-vertex graph in time O(n?). The bijection

14



€1, allows us to rank and unrank spanning trees of Ky, r, ., in linear time by ranking
and unranking the functions F, r,..,-

5.1 The procedures UNRANK (r) and RANK(T)

Given r with 0 < r < |SP.(Ki, ky,...k, )|, We construct in stages, an f € Fy i, 5, We
first determine the values of f on S and S, as follows. Let

ro= qln = k)" 4,
q = %(n - kp)kp_l + Tp, (18)

with 0 <7y < (n— k)= and 0 <r, < (n — k,)* 1. Base (n — ky) expansion of ry
ry=dag+ ai(n— ki) 4 ap_o(n — k)72 (19)

defines a partial function f in Fj, r,..,, mapping Sy to Sy U--- U S,, by suitably
shifting the digits a; of r1 in (19). More precisely, we let f(¢) = k1 + 1+ a,_2 for ¢ € 55.
Similarly, base n — k, expansion of r,

Tp = bo —|— bl(n — kp) —|— s —|— bkp_g(n — kp)kp_z (20)

defines f on S, by the recipe f(i) = 1 + bi—pyr,—1. Thus 1 4 by is the image of the
smallest element in S, under f, 1 4 b; the image of the second smallest, and so on.

Next, we define f on the sets 5, for 1 <t < p. Before doing this however, we first
determine two integers () and R from ¢, by

9p = an_2 + R (21)

where g, is as found in (18) and 0 < R < n?~2. If we now consider the base n expansion
of the remainder R in (21),

R=mny+nsn+--- +np_1np_3, (22)

we obtain n — 2 integers n;, 0 < n; < n. We will use these numbers to interpret the
factor n that appears under the product sign in (4) in deciding whether or not f should
have a fixed point on Sy, 1 <t < p. More precisely, there are two cases to consider. If
ny € {0,1,...,k — 1}, we interpret this to mean that (1 + n¢)-th smallest element in
Sy shall be a fixed point of f. Otherwise n, takes on one of the n — k; values in the set
{ke, ke +1,...,n — 1}. In this case, we consider the unique order preserving bijection
between {ki, k:+1,...,n — 1} and the n — k; integers Sy U---US;_1 U Sppq U---US,,

le.,

1 2 S R R TR =i A A n
kt kt—l—l . . St—l St . . n—1

The value of n; is then used to define the image of the function f on the smallest
element in S; via this bijection. After this phase of the procedure, for every S; with
1 <t < p, either the unique fixed point of f on Sy, or the value of f on the smallest
element in S; 1s determined.
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Next we need to define f on the remaining k; — 1 elements of the sets S; for 1 <t < p.
Wedo thisfort = 2,3,...,p—1, in that order. To define f on S5, consider the remainder
ro in base n — kg expansion of the quotient () obtained above

Q@ = q2(n — kz)k2_1 + 7o, (23)
with 0 < ry < (n — k2)*~1. Now assume
o = CO—|—Cl(n—k2)+"'—|—Ck2_2(n—k2)k2_2. (24)

First the digits co, ¢y, ..., ck,—2 are assigned to the ky — 1 elements for which f has not
yet been defined in 53, from left to right in increasing order. It is easy to see that
after this by a suitable translation, each ¢; can be used to define the corresponding
value of f via the unique order preserving bijection between S; U S3U --- U S, and
{0,1,...,n—ky — 1}.

Now to define f on the remaining k3 — 1 elements of S3, we consider the base n — k3
expansion of the remainder r3 in

@2 = q3(n — k3)k3_1 + 73, (25)

and so on. Note that ¢,y =0 and ¢,—2 = rp_1.

After the function f corresponding to the given r is constructed in this manner, we
set UNRANK (r) = Q,(f). Similarly, for a given T' € SP,(Ky, k,,....k, ), We compute
RANK(T) by first constructing f = Q'(T"), and then reversing our steps above.

5.2 Analysis of UNRANK(r) and RANK(T)

Now we consider the number of operations required for the procedures UN RAN K and
RANK. Here we represent T' € SP, (K, ky,ok,) as an array T[1],T[2],...,T[n — 1]
where T'[i] = j iff the edge {¢, 5} is oriented from vertex 7 to vertex j, when we consider
each edge of T' as oriented towards the root n. Similarly, an f € F,, will be represented
as an array of values f[2], f[3],--+, fl[n — 1] of length n — 2. It is not difficult to see
that with these representations of trees and functions, the computation of ,(f) and
Q. 1(T) require only O(n) operations.

For procedure UN RANK | we first need to compute (n — k;)¥~1 for i = 1,2,....p,
and also n?~2. This requires a total of O(log p+3;log k;) = O(n) arithmetic operations.
Note that this computation is preprocessing, and is needed to be performed only once
for kq, kg, ..., k, fixed.

Next, the computation of r; and its base n — k; expansion requires k; operations for
t=1,2,...,p. The computation of () and R can be performed with p + 1 arithmetic
operations. Once the expansions of the various r; are known, f[2], f[3],..., fln — 1]
can be found in time proportional to n. Thus the total time to compute f from r is
O(ks + ko + -+ ky) = O(n). The application of £, to f requires an additional O(n)
steps. Thus we conclude that with O(n) preprocessing cost, each UN RAN K operation
requires linear time to complete.

In computing RANK(T') from the array representation of T', we first find the cor-
responding function f = Q- '(T) in O(n) operations. By Horner’s rule, each r; can
be computed with O(k;) arithmetic steps. Similarly, the computation of R and @ will
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require O(p) arithmetic operations. Thus the computation of RAN K (T') requires O(n)
time as well.

In particular, if R(n) denotes the optimal number of operations required to gener-
ate a random integer r in the range 0 < r < |SP( Ky, ks, k)], then UNRANK(r)
generates a random spanning tree of SP,(Ky, k,,..k,) optimally in O(R(n) 4+ n) time.

6 Asymptotic distribution of leaves in SPn(Kkl,kz’m,kp)

It easily follows from the Priifer bijection [5] that the asymptotic probability that a
vertex is a leaf (i.e., has degree one) in a Cayley tree T' € SP,(K,,) is ¢!, where ¢ is
the base of natural logarithms. In this section, as another application of the bijection
2, we compute the asymptotic distribution of leaves in Spn([(k17k27...7kp) where we keep
the number of parts p fixed and let n tend to infinity.

It is easy to see that a vertex v is a leaf in 7' = Q( f) if and only if v has no preimage
under f € Fi ...k, Let .7:,1]17,627“.7% denote the collection of functions in Fy, ...k, i
which v has no preimage. By a straightforward counting argument using the definition
(3) we obtain

Lemma 1 Ifv eV, t €{1,2,...,p}, then

_ n— k)1 2 _
| ]1?]17k27~~~7kp| - (n B 1)p 2(n(— kt —t)l)kt—l H(n N kZ N 1)]% 1'

1=

k .

Now assume that lim,,_. =y, fore=1,...,p. Thusey + s+ -+, =1.

Theorem 2 The asymptotic probability that a vertex v in T € Spn([&’khk%“’kp) s a
leaf is given by

- Z 1itxt P 1‘11‘ .
e t=1 Z o el (26)
=1

Proof Given that v € V;, by Lemma 1, the probability that v is a leaf is

[T (n — ki — 1)k

FU 1 2:1
fin Pnety| lim (1 — )72 lim 7 (27)
n—00 |Fk1,k2,...,kp| n—00 n n—00 H (n _ ki)ki_l
%
Using the fact that lim,_..(1 4+ £)" = €, we obtain that (27) is equal to
3t B3
T Lo D limp_e Kot =1 '
lim [J(1— —— )" = J[e ™k =e =
el =1 n— kZ =1
it i#t
o %=l %4l %
— e 1—aq l—ap_q 1_O‘t+1 l—ap
Since the probability that v € V; is a; for e = 1,..., p, the Theorem follows. a
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From Theorem 2, we obtain the following corollary:
Corollary 2
(i) Consider the complete p-partite graph Ky . x. The asymptotic probability that a
vertex v in T € SPyr(Ki k.. k) is a leaf is e™', independently of p.
(it) Let lim,_ % = a; with 0 < a; <1 fore=1,2,....p. Then the asymptlotic
probability that a vertex v in T € SP( Kk, ks, kp) is a leaf satisfies the inequality

Zaiel—éi > el (28)

€
=1
with equality iff oy =g =+ =, = ]l),
Proof For part (i), oy = ;; for e = 1,...,p. The result now follows from specializing

(26) with these values of the «;. For part (ii), note that (28) is equivalent to

P
; Zozzel o > 1,

Since a; > 0 and oy +az+- -+, = 1, Part (ii) is a consequence of Jensen’s inequality
in the form

P

> iy P ‘

ei=1 < g ;e
=1

with y; = (1 — ;)7L O

It is interesting to note that by Corollary 2, the asymptotic probability that a given
vertex is a leaf in a spanning tree of a complete multipartite graph takes its minimum
value e=! for regular complete multipartite graphs.

Acknowledgement: We would like to thank Glenn Hurlbert for reference [?].
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