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Abstract

We construct a bijective proof for the number of spanning trees of complete multipar-

tite graphs. The weight preserving properties of our bijection yields a 6{variate weight

generating function which keeps track of various statistics on spanning trees. This bijec-

tion allows for the ranking and unranking of the spanning trees of an n-vertex complete

multipartite graph in O(n) time. As a further application, we compute the asymptotic

distribution of leaves in these families of spanning trees.
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1 Introduction

Let K

k

1

;k

2

;:::;k

p

denote the complete p-partite graph on vertex set V = V

1

+V

2

+ � � �+V

p

,

where jV

i

j = k

i

for i = 1; 2; : : : ; p, and \+" denotes disjoint union. Put s

0

= 0 and

de�ne s

t

= k

1

+ � � � + k

t

for t = 1; 2; : : : ; p. We assume that the total number of

vertices is n (= jV j = s

p

) and the vertex set V

i

consists of the integers in the half-open

interval (s

i�1

; s

i

]. The edges in K

k

1

;k

2

;:::;k

p

are all pairs fi; jg such that there is no t

with 1 + s

t

� i; j � s

t+1

. Let SP

n

(K

k

1

;k

2

;:::;k

p

) denote the collection of spanning trees

of K

k

1

;k

2

;:::;k

p

. Using the matrix-tree theorem, Onodera [4] showed that

jSP

n

(K

k

1

;k

2

;:::;k

p

)j = n

p�2

p

t=1

(n � k

t

)

k

t

�1

: (1)

Our �rst aim is to construct a bijective proof of this formula by suitably interpreting

the right hand side of (1) as the enumerator of a certain restricted class of functions

mapping f2; 3; : : : ; n� 1g to f1; 2; : : : ; ng. The functional diagrams of these functions

are then put in one to one correspondence with trees in SP

n

(K

k

1

;k

2

;:::;k

p

). This con-

struction relies on a variant of the bijection for Cayley trees (i.e. the spanning trees

SP

n

(K

n

) of the complete graph K

n

) given by the authors in [2]. Indeed, the bijection

presented here can be viewed as a generalization of of this bijection from complete

graphs to complete multipartite graphs. For a generalization in a di�erent direction,

see [3].

�
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Our interpretation of the right hand side of (1) will allow us to ran and unran

the trees in SP

n

(K

k

1

;k

2

;:::;k

p

) optimally in linear time. Furthermore, as is the case with

most bijective proofs, we gain extra information about the underlying combinatorial

objects by considering the special properties of the bijection constructed. nalogous

to the Cayley tree case, our bijection for the spanning trees of complete multipartite

graphs has a number of natural weight preserving properties. These allow for the

derivation of various -analogues of Onodera's result. For example, if we put [0] = 0,

and [ ] = 1 + + � � �+

m�1

for 0, then

n

(

k

1

;k

2

;:::;k

p

)

i

deg

T

(i)

=

n + 1

2

�3

[n]

p�2

p

t=1

([s

t

� 1] +

s

t

[n� s

t

])

k

t

�1

;

where (i) denotes the degree of vertex i in a tree .

Further properties of our bijection allows for the computation of the asymptotic

distribution of leaf nodes in SP

n

(K

k

1

;k

2

;:::;k

p

) as well. More particularly, if the number

of parts p is ept �xed and we let n , then the asymptotic probability that a

vertex in SP

n

(K

k

1

;k

2

;:::;k

p

) is a leaf is given by

�

p

t=1

�

t

1��

t

p

i=1

i

�

i

1��

i

; (2)

where

i

= lim

n!

k

i

n

.

The outline of this paper is as follows. In Section 2 we reproduce the

n

bijec-

tion for the number of spanning trees of the complete graph K

n

, which forms our

point of departure. In Section 3, we construct our bijection for complete multipartite

graphs. This is followed in Section 4 by weight-generating functions for spanning trees

of complete multipartite graphs and various -analogues of (1). In Section we present

ran ing and unran ing algorithms for SP

n

(K

k

1

;k

2

;:::;k

p

) and the analysis of their time

re uirements. Finally, the asymptotic properties of SP

n

(K

k

1

;k

2

;:::;k

p

) and the proof of

(2) appears in Section 6.

n

i ction or tr

For completeness we reproduce here the

n

bijection for Cayley trees on n nodes that

appears in [2], as it forms the basis for the bijection in the general case.

Denote by

n

the spanning trees SP

n

(K

n

), where we imagine each tree as rooted

at the largest labeled node n. Furthermore, we orient each edge fi; jg of a Cayley tree

n

by directing it toward the root. Clearly, j

n

j = j SP

n

(K

n

)j. ext, let

n

denote

the set of functions from f2; 3; : : : ; n� 1g into f1; 2; : : : ; ng. The bijection

n

between

n

and

n

is most easily described by referring to an explicit example.

Suppose n = 21 and

21

is given by Table I



i
(i) i (i) i (i) i (i)

2
12 20 1 16

3
4 12 13 19 1 6

4
9 1 14 19 19

3 10 4 1 6 20 12

6 21 11 4 16 1

We view as a digraph with vertex set f1; 2; : : : ; 21g by putting an edge from i to

j if (i) = j. For example, the digraph for given above is pictured in Figure 1.

moment's thought will convince one that in general, the digraph corresponding

to an : f2; 3; : : : ; n � 1g f1; 2; : : : ; ng will consist of two trees rooted at 1 and

n, respectively, with all edges directed toward their roots plus a number of directed

cycles of length 1 where for each vertex on a given cycle, there is possibly a tree

attached to with as the root and all edges directed toward . ote that there are

trees rooted at 1 and n due to the fact that 1 and n are not in the domain of , and

conse uently there are no directed edges out of 1 or n. ote also that cycles of length

one or loops simply correspond to �xed points of .

s in Figure 1, we imagine the directed graph corresponding to

n

is drawn so

that

1. the trees rooted at 1 and n are drawn on the extreme left and extreme right

respectively with their edges directed upwards,

2. the cycles are drawn so that their vertices form a directed path on the line between

1 and n with one bac edge above the line and the tree attached to any vertex

on a cycle is drawn below the line between 1 and n with edges directed upwards,



3. each cycle is arranged so that its smallest element is on the right and the cycles

themselves are ordered from left to right by increasing smallest elements.

Once the directed graph for is drawn as above, let us refer to the rightmost

element in the i-th cycle as

i

and the leftmost element in the i-th cycle as

i

. Thus

for the given above,

1

= 4,

1

= 3,

2

=

2

= ,

3

= 20, and

3

= 12. Once an

n

is drawn in this manner, it is easy to describe the bijection

n

( ). That is, if

the directed graph of has k cycles where k 0, we simply eliminate the bac edges

i i

for i = 1; 2; : : : ; k and add the edges 1

1

,

1 2

,

2 3

; : : : ;

k

n. For

example, in Figure 1, we eliminate the bac edges 3 4, , 12 20 and add the

edges 1 4, 3 , 20, and 12 21 which are dotted for emphasis. If there are

no cycles in the directed graph of , i.e., k = 0, then we simply add the edge 1 n.

ote that it is immediate that

n

is a bijection between

n

and

n

since given any

Cayley tree

n

, we can easily recover the directed graph of

n

such that

n

( ) = . The ey point here is that by our conventions for the ordering of the cycles

of , it is easy to recover the se uence of nodes

1

;

2

; : : : ;

k

since

1

is the smallest

element on the path between 1 and n,

2

is the smallest element on the path between

1

and n, etc., and clearly, nowing

1

;

2

; : : : ;

k

allows us to recover from .

Since

n

:

n n

is a bijection, we arrive at Cayley's formula n

n�2

= j

n

j =

j

n

j = j SP

n

(K

n

)j.

In the next section, we construct a variant of the bijection

n

to set up a one-to-

one correspondence between the spanning trees of K

k

1

;k

2

;:::;k

p

and a certain subset of

functions in

n

.

i ction

n

or co t u ti rtit r

To prove (1) combinatorially, we interpret the right side of (1) in the following manner.

First of all let

1

= V

1

f1g,

p

= V

p

fng and for 1 t p put

t

= V

t

. Clearly

1

;

2

; : : : ;

p

form a partition of f2; 3; : : : ; n � 1g with j

1

j = k

1

� 1, j

p

j = k

p

� 1,

and for 1 t p, j

t

j = k

t

. s before, we imagine each tree in SP

n

(K

k

1

;k

2

;:::;k

p

)

as rooted at its largest labeled vertex n, and direct each edge fi; jg in towards the

root. Let

k

1

;k

2

;:::;k

p

denote the set of functions

n

with the following properties:

1. (

1

) V

2

V

3

� � � V

p

, and (

p

) V

1

V

2

� � � V

p�1

,

2. For 1 t p and i

t

, (i) V

1

� � � V

t�1

fig V

t+1

� � � V

p

,

3. has at most one �xed point on each

t

for 1 t p.

Clearly we have

j

k

1

;k

2

;:::;k

p

j =

p

i=1

j

i

j (3)

where

1

= f :

1

p

k=2

V

k

g,

p

= f :

p

p�1

k=1

V

k

g, and for 1 t p,

t

is the

set of functions :

t

p

k=1

k

satisfying conditions (2) and (3) above. ote that

for 1 t p, there are (n� k

t

)

k

t

functions in

t

with no �xed points and (n� k

t

)

k

t

�1

functions in

t

with �xed point i for any given i

t

. Thus for 1 t p,

j

t

j = (n� k

t

)

k

t

+ k

t

(n� k

t

)

k

t

�1

= n(n� k

t

)

k

t

�1

: (4)



ow it is easy to see that j

1

j = (n� k

1

)

k

1

�1

and j

p

j = (n� k

p

)

k

p

�1

, so that

j

k

1

;k

2

;:::;k

p

j = (n� k

1

)

k

1

�1

(n � k

p

)

k

p

�1

p�1

t=2

n(n� k

t

)

k

t

�1

= n

p�2

p

t=1

(n� k

t

)

k

t

�1

: ( )

To de�ne

n

( ) where

k

1

;k

2

;:::;k

p

, we �rst draw the digraph of in the manner

of the

n

bijection. Thus the trees rooted at 1 and n are drawn on the extreme left and

extreme right respectively, and the cycles of are arranged with their smallest element

i

on the right with a single bac edge, ordered from left to right between 1 and n by

increasing

i

. fter the digraph of is drawn in this manner, we further rearrange the

cycles which are e of in the following manner. Suppose a cycle

i

is a �xed

point of . Then

i

=

i

of

i

belongs to a set for some j, 1 j p. ote that

by the de�nition of the class of functions

k

1

;k

2

;:::;k

p

, does not have any other �xed

points on the set . Let now t be the smallest index such that

t

and

t i

. We

then place

i

immediately before the cycle which has this

t

as its smallest element.

Denote by ( ) the functional diagram that results after the cycles corresponding to

�xed points of are rearranged in this manner. The bijection

n

is constructed from

( ) exactly as in

n

bijection. amely, we connect the cycles in ( ) by adding

edges directed from left to right, and then we brea the bac edge in each cycle. s

an example, consider the following function

3; ; ;

given in Table II:

i
(i) i (i) i (i) i (i)

2
21 13 12 12 1 6

3
11 4 13 19 1 1

4
9 20 14 3 19 9

2 10 6 1 20 13

6
6 11 3 16 12

ere V

1

= f1; 2; 3g, V

2

= f4; ; 6; g, V

3

= f ; 9; 10; 11; 12; 13; 14g, and V = f1 ; 16; 1 ; 1 ; 19; 20; 21g,

with

1

= V

1

f1g,

2

= V

2

,

3

= V

3

, = V f21g. The numbers s

i

are given by

s

1

= 3, s

2

= , s

3

= 14, and s = 21. When we order the cycles of in the manner of

the

n

bijection, we obtain the digraph in Figure 2.

ext, rearranging the positions of the two �xed points of results in ( ) and

21

( ) depicted in Figure 3.



In this case

21

( ) is the spanning tree of K

3; ; ;

pictured in Figure 4.

To see that

n

( ) SP

n

(K

k

1

;k

2

;:::;k

p

), �rst observe that our de�nition of

k

1

;k

2

;:::;k

p

ensures that the only edges i j in the digraph of where both i and j lie in some V

t

is if i = j so that the edge i j is a bac edge associated to some �xed point of ( ).

ssume ( ) has k cycles and let

i

and

i

denote the right and left hand endpoints

of the i-th cycle respectively. Since all bac edges of ( ) are eliminated in

n

( ), it

follows that the only edges i j of

n

( ) which could be such that both i and j are

in some V

t

are among the newly added edges 1

1

,

1 2

; : : : ;

k

n. Of course if

there are no cycles, i.e. k = 0, then we simply add the edge 1 n in which case we

automatically have that

n

( ) SP

n

(K

k

1

;k

2

;:::;k

p

). Otherwise, consider

1

. If

1 1

,

it follows that

1

V

1

since (

1

)

p

t=2

V

t

. If

1 t

, where t 1, then since

1

is

the smallest element in its cycle, it must be the case that

1

V

t

� � � V

p

. Thus in

either case

1

V

1

, and the edge 1

1

does not have both of its end points in some

V

t

. ext consider

k

. It cannot be the case that

k p

because (

p

)

p�1

t=1

V

t

and

hence

k

p�1

t=1

V

t

. But then

k k

, violating the fact that

k

is the smallest element

in its cycle. Thus

k

V

p

and the edge

k

n does not have both of its end points

in some V

t

. Finally, consider two consecutive cycles in ( ) with end points

i

;

i

and

i+1

;

i+1

. We shall show that

i

and

i+1

where so that the edge

i i+1

in

n

( ) does not connect two points in some V

t

. There are four cases to

consider:

(i) e e e e In this case

i i+1

so that

i+1

where

. Because

i+1

=

i+1

, it follows that

i+1

. But

i+1

is the smallest

element in its cycle, so we must have that

i+1

where . Thus

= .

(ii) e e e Since has at most one �xed point on any one

of the sets , it follows that

i

and

i+1

belong to and , respectively, with

.



(iii) e e e ote that either

i i+1

or if

i i+1

,

then it must be the case that

i+1

is the least right hand endpoint of a cycle with

i

;

i+1

. In either case, we can conclude that

i+1

where � . Then

just as in case (i), we can argue that

i+1

where .

(iv) e e e e ote that in the construction of ( ),

i+1

is placed preceding the cycle with the smallest

t

with

t

;

i

and

t i

.

Therefore after the rearrangement

i

and

i+1

cannot belong to the same . Thus

if

i

, it follows that

i+1

=

i+1

where .

Thus we have shown that

n

( ) SP

n

(K

k

1

;k

2

;:::;k

p

) for all

k

1

;k

2

;:::;k

p

. Let us

ma e one more observation about the map

n

. Let

1 2

� � �

k

denote the right

hand endpoints of the cycles of the digraph of before we move the �xed points to

produce ( ). Suppose that is the �rst �xed point among

1

; : : : ;

k

and i is the

least index � j such that

m

and lie in some

t

. ow if i j, then eeping our

notation above we will have

t

=

t

for t i,

i

= ,

t

=

t�1

for i t � j. Then

we can recover

1

;

2

; : : : ; from

n

( ) as follows. Just as in the

n

bijection,

1

=

1

is the least element on the path from 1 to n,

2

=

2

is the least element on the path

from

1

to n, ... ,

i�1

=

i�1

is the least element on the path from

i�2

to n. ow

if we consider the least element on the path from

i�1

to n, this element is

i+1

=

i

.

owever, when we try to recover the cycle starting with

i+1

as in the

n

bijection, we

would try to draw the bac edge

i+1 i

. Of course, we would then recognize that

the edge

i+1 i

cannot be an edge in the digraph of because the only edges in

the digraph of which have both endpoints in some V

t

are loops. Thus we now that

i

must be a �xed point of and the bac edge from

i+1

should go to the element

immediately following

i

on the path from 1 to n. Then

i+2

=

i+1

is the least element



on the path from

i+1

to n, ... , =

�1

is the least element on the path from

�1

to

n. Finally we observe that all the elements on the path from to n are greater than

i

. Of course in the case where j = i, so that we did not need to move the �xed point

, we can recover

1

; : : : ; just as in the

n

bijection. By using the same procedure

on the elements which lie on the path from to n, we can recover all the cycles of the

digraph of up to the next �xed point of , etc..

It follows that given any spanning tree SP

n

(K

k

1

;k

2

;:::;k

p

), we can recover the

digraph of

k

1

;k

2

;:::;k

p

such that

n

( ) = . To see this, consider the se uence

of nodes

1

;

2

; : : : ;

k

where

1

is the smallest node on the path from 1 to n in ,

2

is the smallest element on the path from

1

to n, etc., exactly as in the

n

bijection.

Consider the left hand endpoints

1

;

2

; : : : ;

k

determined by this se uence of nodes

1 2

� � �

k

. For example if we start with the tree pictured in Figure 3,

1

= 3,

1

= 11,

2

= 4,

2

= 6,

3

= 9, and

3

= 12. We then eliminate the

edges 1

1

,

1 2

; : : : ;

n�1 n

,

n

n and attempt to draw the bac edges

i i

to complete the cycles of . If

i

and

i

are in di�erent parts of the partition

1

+

2

+ � � � +

p

, we eep the cycle. If for some t,

i

;

i t

, we declare

i

to be

a �xed point of and let

i

be the element which follows

i

on the path from 1 to

n. ote that since

i i

in , we must have

i t

. We then eliminate the edge

i i

and draw the bac edges

i i

and

i i

to give two cycles. We claim

that this procedure always produces the digraph of a function

k

1

;k

2

;:::;k

p

. Clearly,

there is no di culty with the edges which lie both in and the digraph of . The

only problem can come from the bac edges where we must show that there are no

�xed points of in

1

or

p

and that there is at most one �xed point of in

t

for

1 t p. First we claim that there is no �xed point of in

1

. That is, suppose

i

is a �xed point of and

i 1

. Then since

i

�

i

, we must have

i 1

. But then

either i = 1 and the edge 1

1

is in , or i 1 and the edge

i�1 i

is in . In

the latter case,

i�1 i

and

i 1

implies

i�1 1

. Thus in either case, we would

get an edge in connecting two points of V

1

which is impossible. Similarly, suppose

i

is a �xed point of and

i p

. But then

i p

and since

i i+1

� � �

k

,

we would have

k p

. This is impossible because then the edge

k

n would be

in and would connect two points in V

p

. Finally, suppose there are indices i j

where

i

and are �xed points of and

i

;

t

for some t. Thus it must be the

case that

i

and are in

t

. But then

i

�

�1

so that

�1 t

. This is

impossible because then

�1

would be an edge in connecting two vertices in

V

t

. Thus

k

1

;k

2

;:::;k

p

whenever SP

n

(K

k

1

;k

2

;:::;k

p

). Thus we have shown that

n

is a bijection between

k

1

;k

2

;:::;k

p

and SP

n

(K

k

1

;k

2

;:::;k

p

). ence by ( ) we have

j SP

n

(K

k

1

;k

2

;:::;k

p

)j = n

p�2

p

t=1

(n� k

t

)

k

t

�1

:

t ti tic on nnin tr

Consider SP

n

(K

k

1

;k

2

;:::;k

p

), where as before we consider as rooted at its largest

labeled node n, and direct each edge bac toward the root. We call a directed edge



i j a e if i j and a if i j. We assign a monomial weight

(i j) =

i

t if i j;

p

i

s if i j:

(6)

We then de�ne the weight of = (V; ) SP

n

(K

k

1

;k

2

;:::;k

p

) by setting

( ) =

e

( ): ( )

For example, if is the tree pictured in Figure , then the weight of the edge 3

is t

3

, the weight of the edge is p s , and the weight of itself is

( ) = ( ps )( p

2

s )( p

3

s )( p s )( p s )( t

3

)( t

3

)

=

2

p

1

s

31 13

t :

Similarly, for

k

1

;k

2

;:::;k

p

, de�ne

( ) =

n�1

i=2

( ; i);

where

( ; i) =

i

t if (i) = j and i j;

p

i

s if (i) = j and i � j:

( )

Consider the weight generating functions

SP

n

(K

k

1

;k

2

;:::;k

p

) =

n

(

k

1

;k

2

;:::;k

p

)

( ); (9)

(

k

1

;k

2

;:::;k

p

) =

k

1

;k

2

;:::;k

p

( ): (10)

It is easy to see that

(

k

1

;k

2

;:::;k

p

) = (

1

) (

p

)

p�1

t=2

(

t

);

in which

(

i

) = ( );

where the sum is over all functions in

i

and

1

; : : : ;

p

are de�ned as in Section 3.

We �nd that

(

1

) =

s

1

i=2

( p

i

(s

1+s

1

+ � � � + s

n

)); (11)

(

p

) =

n�1

i=1+s

p�1

(

i

(t+ � � �+ t

s

p�1

)); (12)



and for t = 2; : : : ; p � 1,

(

t

) =

s

t

i=1+s

t�1

( p

i

(s

1+s

t

+ � � �+ s

n

) +

i

(t+ � � � + t

s

t�1

)) + (13)

+

s

t

i=1+s

t�1

p

i

s

i

s

t

=1

t�1

=i

( p (s

1+s

t

+ � � � + s

n

) + (t+ � � �+ t

s

t�1

)):

We have

SP

n

(K

k

1

;k

2

;:::;k

p

) = ps

n

(

k

1

;k

2

;:::;k

p

):

We shall prove the theorem by showing that

(

n

( )) = ps

n

( ) (14)

for each

k

1

;k

2

;:::;k

p

. To prove (14), note that our de�nitions ensure that if (i) = j

and i j remains a directed edge in both the directed graph of and the directed

graph of = ( ), then ( ; i) = (i j). Thus in the case where the directed

graph of has no cycles, (14) is clear since in this case is obtained from by adding

the edge 1 n to the digraph of , and the contribution of this edge to the weight is

ps

n

. If the directed graph ( ) which is obtained from the digraph of after ordering

the cycles and reordering the �xed points of according to the de�nition of has k

cycles with k 0, then we follow our conventions from Section 3 and let

i

and

i

denote the left and right hand points of the i-th cycle in the digraph of . ote that

the only di�erence between the weights of and are due to the di�erence between

the weights of the edges

1 1

; : : : ;

k k

which are deleted from the graph of ,

and the weights of the new set of edges = f1

1

;

1 2

; : : : ;

k�1 k

;

k

ng

added to the resulting digraph. Since

i

is the smallest element in the i-th cycle of ,

we now that

i

= (

i

)

i

for i = 1; : : : ; k. Thus we must have ( ;

i

) = p

i

s

i

. It

follows that

( ) = ( p

1

s

1

)( p

2

s

2

) � � � ( p

k

s

k

)

i

1

;:::;

k

( ; i)

=

k

p

i

i

s

i

i

i

1

;:::;

k

( ; i): (1 )

ow if = (V; ) then

i

1

;:::;

k

( ; i) =

i!

(i j);

since if (i) = j and i f

1

; : : : ;

k

g, then i j is an edge in both the directed graph

of and the directed graph of . We claim that each of the edges in are rise edges.

It is clear that 1

1

and

k

n are rise edges. In Section 3, we proved that if

i

then

i+1

where . Thus

i i+1

and

i i+1

is a rise edge for every edge

in . Thus

( ) =

i!

(i j)

i!

(i j)

1



= ( ps

1

)( p

1

s

1

) � � � ( p

k�1

s

k

)( p

k

s

n

)

i!

(i j)

= ( ps

n

)

k

p

i

i

s

i

i

i

1

;:::;

k

( ; i):

Thus by (1 )

( ) = ps

n

( );

and the Theorem follows.

Due to the de�nition of the family of functions

k

1

;k

2

;:::;k

p

, the weight generating func-

tion SP

n

(K

k

1

;k

2

;:::;k

p

) is not in a particularly simple form. owever for certain inter-

esting statistics on trees, SP

n

(K

k

1

;k

2

;:::;k

p

) specializes to a much nicer product form.

We give an example: For SP

n

(K

k

1

;k

2

;:::;k

p

), let ( ) =

i

i (i), where (i) is

the degree of the vertex i in . ow if we set = = 1 and p; s, and t e ual to

in the monomial weight of , then each vertex i will contribute a factor of

i

to the

resulting weight of every time vertex i is either a right or left endpoint of a directed

edge in . ence the resulting weight of with those substitutions will be precisely

i

id

T

(i)

=

( )

. ote that the weight is independent of the fact that we regard

as rooted at vertex n. s a corollary of Theorem 1 we obtain the following -analogue

of (1):

n

(

k

1

;k

2

;:::;k

p

)

( )

=

n + 1

2

�3

[n]

p�2

p

t=1

([s

t�1

] +

s

t

[n� s

t

])

k

t

�1

;

e e s

t

= k

1

+ � � �+ k

t

, [0] = 0, [ ] = 1 + + ::+

m�1

0.

It is easy to see that when we set = = 1 and p; s, and t e ual to in the

monomial weight of , then the partial weight generating functions (

1

), and (

p

)

in (11) and (12) specialize to

e

1

(

s

1

[n� s

1

])

k

1

�1

; and

e

p

[s

p�1

]

k

p

�1

;

respectively, where

1

=

s

1

i=2

(i+ 1);

p

=

n�1

i=1+s

p�1

(i+ 1):

For t = 2; : : : ; p � 1, put

t

=

s

t

i=1+s

t�1

(i+ 1):

For these values of t, (

t

) given in (13) specializes to

e

t

([s

t�1

] +

s

t

[n� s

t

])

k

t

+

s

t

i=1+s

t�1

e

t

+i�1

([s

t�1

] +

s

t

[n� s

t

])

k

t

�1

=

e

t

([s

t�1

] +

s

t

[n� s

t

] +

s

t�1

[k

t

])([s

t�1

] +

s

t

[n� s

t

])

k

t

�1

=

e

t

[n]([s

t�1

] +

s

t

[n� s

t

])

k

t

�1

:

11



Thus we have

n

(

k

1

;k

2

;:::;k

p

)

( )

=

e

1

+e

2

+���+e

p

[n]

p�2

p

t=1

([s

t�1

] +

s

t

[n� s

t

])

k

t

�1

:

It can be easily veri�ed that

1

+

2

+ � � �+

p

=

n�1

i=2

(i+ 1) =

n + 1

2

� 3 as claimed.

We end this section with a brief outline of how we can also obtain a weight generating

function similar to (10) for spanning trees of K

k

1

;k

2

;:::;k

p

which are rooted at vertex 1

instead of vertex n. That is, root each SP

n

(K

k

1

;k

2

;:::;k

p

) at vertex 1 and direct each

edge bac toward the root. De�ne the weight of directed edge (i j) and the weight

of a tree SP

n

(K

k

1

;k

2

;:::;k

p

) by (6) and ( ), respectively. Then de�ne

SP

n

(K

k

1

;k

2

;:::;k

p

) =

T

n

k

1

;k

2

;:::;k

p

ted t 1

( ):

ext, de�ne the weight of a function

k

1

;k

2

;:::;k

p

by

( ) =

n�1

i=2

( ; i); (16)

where

( ; i) =

i

t if (i) = j and i j;

p

i

s if (i) = j and i j:

ote that the only di�erence between ( ) and (16) is the weight of the �xed points of

. Then let

(

k

1

;k

2

;:::;k

p

) =

k

1

;k

2

;:::;k

p

( ):

gain it is easy to see that

(

k

1

;k

2

;:::;k

p

) = (

1

) (

p

)

p�1

t=2

(

t

);

in which

(

i

) = ( );

and

i

are de�ned as in Section 3. Then it is easy to chec that (

1

) = (

1

),

(

p

) = (

p

), and for t = 2; : : : ; p� 1

(

t

) =

s

t

i=1+s

t�1

( p

i

(s

1+s

t

+ � � � + s

n

) +

i

(t+ � � �+ t

s

t�1

)) +

+

s

t

i=1+s

t�1

i

t

i

s

t

=1

t�1

=i

( p (s

1+s

t

+ � � �+ s

n

) + (t+ � � �+ t

s

t�1

)): (1 )

1



ext we shall describe how we can modify the

n

bijection to produce a bijection

n

:

k

1

;k

2

;:::;k

p

SP

n

(K

k

1

;k

2

;:::;k

p

) where for each

k

1

;k

2

;:::;k

p

,

n

( ) is a spanning

tree rooted at 1 such that

t

n

( ) = (

n

( )):

Thus

n

will show that

SP

n

(K

k

1

;k

2

;:::;k

p

) = t

n

(

k

1

;k

2

;:::;k

p

):

ow given an

k

1

;k

2

;:::;k

p

, we draw the digraph of in much the same way as in

the �rst step of the

n

bijection except that we

1. put the tree rooted at 1 on the extreme right,

2. put the tree rooted at n on the extreme left,

3. draw the cycles so that the largest element is on the right,

4. and �nally order the cycles from left to right by decreasing largest elements.

For example, the digraph of the function in Figure 2 would be drawn as in Figure 6.

ext we rearrange the cycles corresponding to the �xed points of . Suppose

the i-th cycle

i

is a �xed point of on

t

. Let be the �rst cycle preceding

i

whose right hand endpoint is in

t

. If there is no such index j, then we do not move

i

. Otherwise we place

i

immediately before . For example, for the function

of Figure 6 where V

1

= f1; 2; 3g, V

2

= f4; ; 6; ; ; 9g, V

3

= f10; 11; 12; 13; 14g, and

V = f1 ; 16; 1 ; 1 ; 19; 20; 21g, the �xed point 6 is moved.

ow let ( ) denote the digraph of after we have rearranged the cycles in the

manner described above. Let

i

and

i

denote the right and left hand points of the

i� t cycle of ( ) reading from left to right. Then we obtain

n

( ) from ( ) just as

before, i.e., we eliminate the bac edges

i i

for k = 1; : : : ; k where k is the number

of cycles of ( ) and add the edges n

1

,

1 2

; : : : ;

k�1 k

, and

k

1. If

there are no cycles, we just add the edge n 1. See Figure , for example.

The weight preserving properties of the

n

bijection and the fact that

n

SP

n

(K

k

1

;k

2

;:::;k

p

)

follow from an analysis very similar to the one given in Section 3 which shows that

1.

1 p

,

2.

k 1

,

1



3. for each i = 1; : : : ; k � 1,

i

i

and

i+1

i 1

where

i i+1

.

Thus in particular, all the edges n

1

,

1 2

; : : : ;

k�1 k

, and

k

1 are falls.

iven a tree SP

n

(K

k

1

;k

2

;:::;k

p

) rooted at 1, we can show that we can recover the

function

k

1

;k

2

;:::;k

p

such that

n

( ) = as follows. Consider the path from n

to 1 in . Let

1

be the largest element on the path from n to 1,

2

be the largest

element on the path from

1

to 1,

3

be the largest element on the path from

2

to

1, etc. We use

1 2

� � �

k

to determine the cycles of just as we do in

reversing the

n

bijection. In other words, let

1

;

2

; : : : ;

k

be the left hand points

of the cycles determined by

1

;

2

; : : : ;

k

respectively. Then we eliminate the edges

n

1

,

1 2

; : : : ;

k�1 k

;

k

1. If

i

and

i

are in di�erent parts of the

partition

1

� � �

p

, we add the bac edge

i i

. Otherwise we let

i

be the

element immediately following

i

on the path from n to 1. We then eliminate the edge

i i

and form two cycles by adding the bac edges

i i

and

i i

.

n in nd unr n in

n ; ;:::;

In a number of settings it is re uired to generate random combinatorial structures

(k-subsets of an n-set, permutations, partitions, compositions, trees, planar graphs,

amiltonian cycles, etc.), or random objects from a subclass of such an underlying

family having a particular property, usually drawn from a uniform distribution. E -

cient ran ing is one of the obvious ways of achieving this. collection of ran ing and

unran ing algorithms for combinatorial structures of a diverse nature can be found in

ijenhaus and Wilf [6], and Reingold, ievergelt, and Deo [ ].

Colbourn, Day, and el [1] provided an (n

3

) ran ing and unran ing algorithm for

spanning trees of an arbitrary n-vertex graph . This ma es it possible to generate a

random spanning tree of a given connected n-vertex graph in time (n

3

). The bijection

1



n

allows us to ran and unran spanning trees of K

k

1

;k

2

;:::;k

p

in linear time by ran ing

and unran ing the functions

k

1

;k

2

;:::;k

p

.

. K( ) K( )

iven with 0 � jSP

n

(K

k

1

;k

2

;:::;k

p

)j, we construct in stages, an

k

1

;k

2

;:::;k

p

. We

�rst determine the values of on

1

and

p

as follows. Let

=

1

(n� k

1

)

k

1

�1

+

1

;

1

=

p

(n� k

p

)

k

p

�1

+

p

; (1 )

with 0 �

1

(n� k

1

)

k

1

�1

, and 0 �

p

(n� k

p

)

k

p

�1

. Base (n� k

1

) expansion of

1

1

=

0

+

1

(n� k

1

) + � � �+

k

1

�2

(n� k

1

)

k

1

�2

(19)

de�nes a partial function in

k

1

;k

2

;:::;k

p

, mapping

1

to

2

� � �

p

, by suitably

shifting the digits

i

of

1

in (19). More precisely, we let (i) = k

1

+1+

i�2

for i

1

.

Similarly, base n � k

p

expansion of

p

p

=

0

+

1

(n� k

p

) + � � �+

k

p

�2

(n� k

p

)

k

p

�2

(20)

de�nes on

p

by the recipe (i) = 1 +

i�n+k

p

�1

. Thus 1 +

0

is the image of the

smallest element in

p

under , 1 +

1

the image of the second smallest, and so on.

ext, we de�ne on the sets

t

, for 1 t p. Before doing this however, we �rst

determine two integers and from

p

by

p

= n

p�2

+ (21)

where

p

is as found in (1 ) and 0 � n

p�2

. If we now consider the base n expansion

of the remainder in (21),

= n

2

+ n

3

n+ � � � + n

p�1

n

p�3

; (22)

we obtain n � 2 integers n

t

, 0 � n

t

n. We will use these numbers to interpret the

factor n that appears under the product sign in (4) in deciding whether or not should

have a �xed point on

t

, 1 t p. More precisely, there are two cases to consider. If

n

t

f0; 1; : : : ; k

t

� 1g, we interpret this to mean that (1 + n

t

)-th smallest element in

t

shall be a �xed point of . Otherwise n

t

ta es on one of the n� k

t

values in the set

fk

t

; k

t

+ 1; : : : ; n � 1g. In this case, we consider the uni ue order preserving bijection

between fk

t

; k

t

+ 1; : : : ; n� 1g and the n� k

t

integers

1

� � �

t�1 t+1

� � �

p

,

i.e.,

1
2 : : s

t�1

s

t

+ 1 : : n

k

t

k

t

+ 1 : : s

t

� 1 s

t

: : n� 1

The value of n

t

is then used to de�ne the image of the function on the e

element in

t

via this bijection. fter this phase of the procedure, for every

t

with

1 t p, either the uni ue �xed point of on

t

, or the value of on the smallest

element in

t

is determined.

1



ext we need to de�ne on the remaining k

t

�1 elements of the sets

t

for 1 t p.

We do this for t = 2; 3; : : : ; p�1, in that order. To de�ne on

2

, consider the remainder

2

in base n� k

2

expansion of the uotient obtained above

=

2

(n� k

2

)

k

2

�1

+

2

; (23)

with 0 �

2

(n� k

2

)

k

2

�1

. ow assume

2

=

0

+

1

(n � k

2

) + � � �+

k

2

�2

(n� k

2

)

k

2

�2

: (24)

First the digits

0

;

1

; : : : ;

k

2

�2

are assigned to the k

2

� 1 elements for which has not

yet been de�ned in

2

, from left to right in increasing order. It is easy to see that

after this by a suitable translation, each

i

can be used to de�ne the corresponding

value of via the uni ue order preserving bijection between

1 3

� � �

p

and

f0; 1; : : : ; n� k

2

� 1g.

ow to de�ne on the remaining k

3

�1 elements of

3

, we consider the base n�k

3

expansion of the remainder

3

in

2

=

3

(n� k

3

)

k �1

+

3

; (2 )

and so on. ote that

p�1

= 0 and

p�2

=

p�1

.

fter the function corresponding to the given is constructed in this manner, we

set K( ) =

n

( ). Similarly, for a given SP

n

(K

k

1

;k

2

;:::;k

p

), we compute

K( ) by �rst constructing =

�1

n

( ), and then reversing our steps above.

. K( ) K( )

ow we consider the number of operations re uired for the procedures K and

K. ere we represent SP

n

(K

k

1

;k

2

;���;k

p

) as an array [1]; [2]; : : : ; [n � 1]

where [i] = j i� the edge fi; jg is oriented from vertex i to vertex j, when we consider

each edge of as oriented towards the root n. Similarly, an

n

will be represented

as an array of values [2]; [3]; � � � ; [n � 1] of length n � 2. It is not di cult to see

that with these representations of trees and functions, the computation of

n

( ) and

�1

n

( ) re uire only (n) operations.

For procedure K, we �rst need to compute (n� k

i

)

k

i

�1

for i = 1; 2; : : : ; p,

and also n

p�2

. This re uires a total of (log p+

i

log k

i

) = (n) arithmetic operations.

ote that this computation is preprocessing, and is needed to be performed only once

for k

1

; k

2

; : : : ; k

p

�xed.

ext, the computation of

i

and its base n� k

i

expansion re uires k

i

operations for

i = 1; 2; : : : ; p. The computation of and can be performed with p + 1 arithmetic

operations. Once the expansions of the various

i

are nown, [2]; [3]; : : : ; [n � 1]

can be found in time proportional to n. Thus the total time to compute from is

(k

1

+ k

2

+ � � �+ k

p

) = (n). The application of

n

to re uires an additional (n)

steps. Thus we conclude that with (n) preprocessing cost, each K operation

re uires linear time to complete.

In computing K( ) from the array representation of , we �rst �nd the cor-

responding function =

�1

n

( ) in (n) operations. By orner's rule, each

i

can

be computed with (k

i

) arithmetic steps. Similarly, the computation of and will

1



re uire (p) arithmetic operations. Thus the computation of K( ) re uires (n)

time as well.

In particular, if (n) denotes the optimal number of operations re uired to gener-

ate a random integer in the range 0 � jSP

n

(K

k

1

;k

2

;:::;k

p

)j, then K( )

generates a random spanning tree of SP

n

(K

k

1

;k

2

;:::;k

p

) optimally in ( (n) + n) time.

totic di tri ution o in

n ; ;:::;

It easily follows from the Pr�ufer bijection [ ] that the asymptotic probability that a

vertex is a leaf (i.e., has degree one) in a Cayley tree SP

n

(K

n

) is

�1

, where is

the base of natural logarithms. In this section, as another application of the bijection

, we compute the asymptotic distribution of leaves in SP

n

(K

k

1

;k

2

;:::;k

p

) where we eep

the number of parts p �xed and let n tend to in�nity.

It is easy to see that a vertex is a leaf in = ( ) if and only if has no preimage

under

k

1

;k

2

;:::;k

p

. Let

k

1

;k

2

;:::;k

p

denote the collection of functions in

k

1

;k

2

;:::;k

p

in

which has no preimage. By a straightforward counting argument using the de�nition

(3) we obtain

V

t

, t f1; 2; : : : ; pg, e

j

k

1

;k

2

;:::;k

p

j = (n� 1)

p�2

(n� k

t

)

k

t

�1

(n� k

t

� 1)

k

t

�1

p

i=1

(n � k

i

� 1)

k

i

�1

:

ow assume that lim

n!

k

i

n

=

i

, for i = 1; : : : ; p. Thus

1

+

2

+ � � �+

p

= 1.

e e e SP

n

(K

k

1

;k

2

;:::;k

p

)

e e

�

p

t=1

�

t

1��

t

p

i=1

i

�

i

1��

i

: (26)

iven that V

t

, by Lemma 1, the probability that is a leaf is

lim

n!

j

k

1

;k

2

;:::;k

p

j

j

k

1

;k

2

;:::;k

p

j

= lim

n!

(1 �

1

n

)

p�2

lim

n!

p

=

=

(n� k

i

� 1)

k

i

�1

p

=

=

(n � k

i

)

k

i

�1

: (2 )

Using the fact that lim

n!

(1 +

n

)

n

= , we obtain that (2 ) is e ual to

lim

n!

p

i=1

i=t

(1�

1

n� k

i

)

k

i

�1

=

p

i=1

i=t

�

n

k

i

�1

n�k

i

=

�

p

i=1

i=t

n

k

i

�1

n�k

i

=

�

�

1

1��

1

�����

�

t�1

1��

t�1

�

�

t 1

1��

t 1

�����

�

p

1��

p

:

Since the probability that V

i

is

i

for i = 1; : : : ; p, the Theorem follows.

1



From Theorem 2, we obtain the following corollary:

e e e e p e K

k;k;:::;k

. e

e e SP

pk

(K

k;k;:::;k

) e

�1

, e e e p.

e lim

n!

k

i

n

=

i

0

i

1 i = 1; 2; : : : ; p. e e

e e SP

n

(K

k

1

;k

2

;:::;k

p

) e e e e

�

p

t=1

�

t

1��

t

p

i=1

i

�

i

1��

i

�1

; (2 )

e

1

=

2

= � � � =

p

=

1

p

.

For part (i),

i

=

1

p

for i = 1; : : : ; p. The result now follows from specializing

(26) with these values of the

i

. For part (ii), note that (2 ) is e uivalent to

�

p

t=1

�

t

1��

t

p

i=1

i

1

1��

i

1:

Since

i

0 and

1

+

2

+ � � �+

p

= 1, Part (ii) is a conse uence of Jensen's ine uality

in the form

p

=1

i i

�

p

i=1

i

i

with

i

= (1�

i

)

�1

.

It is interesting to note that by Corollary 2, the asymptotic probability that a given

vertex is a leaf in a spanning tree of a complete multipartite graph ta es its minimum

value

�1

for regular complete multipartite graphs.

: We would li e to than lenn urlbert for reference [ ].
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