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Abstract. The application of nonparametric probability density function estimation for the
purpose of data analysis is well established. More recently, such methods have been applied to
fluid flow calculations since the density of the fluid plays a crucial role in determining the flow.
Furthermore, when the calculations involve directional or axial data, the domain of interest falls on
the surface of the sphere. Accurate and fast estimation of probability density functions is crucial for
these calculations since the density estimation is performed at each iteration during the computation.
In particular the values fn(X1), fn(X2), . . . , fn(Xn) of the density estimate at the sampled points
Xi are needed to evolve the system. Usual nonparametric estimators make use of kernel functions to
construct fn. We propose a special sequence of weight functions for nonparametric density estimation
that is especially suitable for such applications. The resulting method has a computational advantage
over kernel methods in certain situations and also parallelizes easily. Conditions for convergence turn
out to be similar to those required for kernel-based methods. We also discuss experiments on different
distributions and compare the computational efficiency of our method with kernel based estimators.
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1. Introduction. Nonparametric density estimation is the problem of the es-
timation of the values of a probability density function, given samples from the as-
sociated distribution. No assumption is made about the type of the distribution
from which the samples are drawn. This is in contrast to parametric estimation
in which the density is assumed to come from a given family, and the parameters
are then estimated by various statistical methods. Early contributors to the theory
of nonparametric estimation include Smirnov [21], Rosenblatt [16], Parzen [15], and
Chentsov [3]. Extensive descriptions of various approaches to nonparametric estima-
tion along with a comprehensive bibliography can be found in books by Silverman
[23] and Nadaraya [14]. More recent developments are presented in books by Scott
[18] and Wand and Jones [27]. Results of the experimental comparison of some widely
used methods appear in [10, 25].

In addition to data analysis, an important application of nonparametric density
estimation is in computational fluid mechanics. When the flow calculations are per-
formed in a Lagrangian framework, a set of points in space are evolved through time
using the governing equations. In time, points that were initially close can move apart,
leading to mesh distortion and numerical difficulties. Problems with mesh distortion
can be eliminated to a certain extent by the use of smoothed particle hydrodynamics
(SPH) techniques [2, 13, 9, 12]. SPH treats the points being tracked as samples com-
ing from an unknown probability distribution. These calculations often require the
computation of the values of not only the unknown density, but its gradient as well.
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In contrast to applications concerned with the display of the density, where it is suffi-
cient to estimate the density on some grid, in these fluid flow calculations the density
estimate is required at each sample point. Another difference in these two types of
applications is that when dealing with data analysis, one is usually concerned with
the optimal accuracy one can get for a given sample size. In fluid flow calculations,
where additional “data” can be obtained with increased discretization, one is usually
more concerned with the optimal variation of the computational effort as a function
of error.

In some applications, for example, in problems involving directional data [24], the
samples lie on the unit circle S1 or along the surface of the unit sphere S2. A special
case of directional data is axial data, in which the density is symmetric about the
center of the circle or the sphere, that is, f(�x) = f(−�x).

Various methods have been proposed for nonparametric density estimation in
mathematical statistics, such as the kernel [15, 1, 28] and the orthogonal series meth-
ods [17, 11]. The kernel method has been extensively studied, and it is probably the
most popular scheme in applications such as SPH. In this method, the value of the
density at the point x is estimated as

fn(x) =
1

nAh

n
∑

i=1

K

(

x−Xi

h

)

,(1)

where fn is the estimate of the density given a sample of size n, Xi are the positions of
the samples drawn from a probability distribution with an unknown density function
f , K is a kernel function, h is the window width, and Ah is a normalization factor
to make fn into a probability density. One of the drawbacks of the kernel method
is the computational cost involved. Even though it is possible to reduce the cost in
the one-dimensional case using the expansion of a polynomial kernel and an updating
strategy [19], this strategy cannot be easily extended to higher dimensions [5]. Binning
methods [5] can be used in any dimension. However, since the density in this case is
evaluated on a uniform grid, this method is not suitable for the fluid flow calculations
in which we are interested, where an estimate is required at each sample point.

We propose a cosine-based weight function estimator cm(x) for nonparametric
density estimation, which is a special case of the class of estimators that form a δ
sequence [26, 28]. This estimator is similar to the kernel estimator but has the ease
of evaluation of a series expansion. The role of the window width parameter h of the
kernel method is replaced by a smoothing parameter m in our method, and fn is now
of the form

fn(x) =
1

n

n
∑

i=1

cm (x−Xi) .(2)

Our choice of cm is particularly suitable for applications in fluid flow calculations
where the values fn(X1), fn(X2), . . ., fn(Xn) at the sampled directions themselves
are required at each point in each time step in the flow simulation. We show that with
this estimator the required n values can be computed efficiently using only O(m1+dn)
arithmetic operations for directional data and O(mdn) arithmetic operations for axial
data in d dimensions, where m need not be large as long as it increases without bound
with n. This is in contrast to the O(n2) operations required by the kernel method
for this computation in the worst case and an expected complexity of O(hdn2) with
kernels having bounded support. However, in the special case of d = 1, the complexity
of the kernel method can be reduced to linear after an initial sorting step.
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We derive conditions under which the sequence of estimated density functions fn
constructed in this fashion converge to the unknown density f , and experimentally
verify the accuracy and the efficiency of our method in practical test cases. Exper-
iments and theoretical analyses also indicate how m should vary with n for optimal
accuracy.

The paper is organized as follows. In section 2 we define the weight function
estimator cm and give the conditions for the convergence of the mean integrated square
error (MISE) when the sample space is S1 (Theorem 3). The conditions guarantee
that

∫

E(fn(x) − f(x))2dx → 0

as n → ∞. We also present corresponding results for S2. In section 3 schemes for
efficient computation of these estimates on S1 and S2 are presented. In sections 4
and 5, we describe experimental results with our estimator and compare it with the
kernel method for some distributions encountered in practice. Our experiments imply
a net savings on the number of operations performed over kernel methods in certain
situations and also verify the formula found for the optimal choice of m. The results
show that the kernel method and our estimator perform well in different settings, and
thus complement each other. The main conclusions are presented in section 6. The
appendix contains additional test results.

2. The cosine estimator and the convergence of MISE. In this section, we
first mention some related work done on spherical data; then we define our estimator
and derive conditions for its convergence for directional data on the circle, and give
corresponding results for directional and axial data on the sphere and axial data on
the circle.

The kernel method for nonparametric density estimation for directional and axial
data is discussed in [6, 8]. While dealing with directional data, Fisher, Lewis, and
Embleton [6] recommend using the following kernel:

Wn(P, Pi) =

[

Cn

4π sinh(Cn)

]

exp
[

Cn(xTXi)
]

.(3)

For axial data they recommend the kernel

Wn(P, Pi) = A(Cn) exp
[

Cn(xTXi)
]

,(4)

where A(Cn) normalizes W to a probability density function, and Cn is the reciprocal
of h used in the definition of kernel estimators. x and Xi are the Cartesian represen-
tation of points P and Pi, respectively, and xTXi is the inner product of these two
vectors. Wn(P, Pi) plays the role of K(x − Xi) of (1). Hall, Watson, and Cabrera
[8] analyze estimators for directional data with the x − Xi term in (1) replaced by
1 − xTXi. Observe that the term xTXi is the cosine of the angle between the points
P and Pi, and therefore 1 − xTXi is a measure of the distance along the surface
of the sphere between points P and Pi. Inner product plays a crucial role in these
estimators. We consider an estimator that can be written in terms of powers of the
inner product, the power playing the role of the smoothing parameter. This enables
us to expand the estimator in a series and facilitates fast computation.
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Fig. 1. The functions c32(x) and c32(x−
π
4
) on S1 and on [−π, π].

2.1. The case of S
1. We first define our estimator on S1. Assume Xj , j =

1, 2, . . . , n, is a sequence of independently and identically distributed (i.i.d.) random
variables (observations) for directional data on [−π, π] with probability density func-
tion f ∈ C2[−π, π]. We impose the additional condition that f(−π) = f(π) since the
random variables Xj are defined on the unit circle S1.

As an estimator of the density of directional data f(x), x ∈ [−π, π], we consider
a nonparametric estimator of the form given by (2) with

cm(x) =
1

Am
cos2m

(x

2

)

(5)

on [−π, π]. The normalization factor Am given below makes cm(x) integrate to 1 on
[−π, π]:

Am =

∫ π

−π

cos2m
(x

2

)

dx.

Making use of a table of integrals such as Gradshteyn and Ryzhik [7] and by using
Stirling’s formula, it can be shown that

Am =
π

22m−1

(

2m

m

)

∼ 2
√
π√
m

.(6)

As examples, the functions cm(x) and cm(x− π
4 ) for m = 32 are shown on S1 in

Figure 1(a) and on the interval [−π, π] in Figure 1(b).
We wish to find sufficient conditions under which the sequence of estimators fn

converges to f in the MISE sense. In order to do this, we first show the convergence
of the bias and then derive the conditions under which the variance converges to 0.
We shall then use these results to prove convergence of MISE on S1.

First we show that as m → ∞, the expected value of the estimate fn(x) ap-
proaches the actual density f(x) uniformly for any given n.
Lemma 1. Suppose f ∈ C2[−π, π] and let fn(x) be as given in (2). Then

Efn(x) → f(x) as m → ∞ uniformly, independently of n.

Proof.

Efn(x) =

∫ π

−π

cm(x− s)f(s)ds,(7)
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as shown in Silverman [20] and Whittle [29]. By a change of variable

∫ π

−π

cm(x− s)f(s)ds =

∫ x+π

x−π

cm(−y)f(x + y)dy =

∫ x+π

x−π

cm(y)f(x + y)dy(8)

since cm(y) = cm(−y). By using the periodicity of cm and f , along with (7), (8), and
the mean value theorem,

Efn(x) =

∫ π

−π

cm(y)f(x + y)dy =

∫ π

−π

cm(y)(f(x) + f ′(x)y + f ′′(ξx(y))y2/2)dy,

where ξx(y) is some point between x and y. Therefore

Efn(x) = f(x)

∫ π

−π

cm(y)dy +

∫ π

−π

cm(y)f ′(x)ydy +

∫ π

−π

cm(y)f ′′(ξx(y))y2/2dy.

From (6), the first integral evaluates to 1, and since ycm(y) is an odd function, the
second integral evaluates to 0. Let 2M ′ = maxx∈[−π,π] |f ′′(x)|. We then have the
following estimate for the bias:

|Efn(x) − f(x)| ≤
∣

∣

∣

∣

∫ π

−π

cm(y)f ′′(ξx(y))y2dy

∣

∣

∣

∣

≤ M ′

∫ π

−π

cm(y)y2dy = M ′

∫ π

−π

1

Am
cos2m(y/2)y2dy.

For any δ such that 0 < δ ≤ π,

|Efn(x) − f(x)| ≤ M ′

∫

|y|<δ

1

Am
cos2m(y/2)y2dy + M ′

∫

|y|≥δ

1

Am
cos2m(y/2)y2dy

≤ M ′δ2

∫

|y|<δ

1

Am
cos2m(y/2)dy +

2π3M ′

3

1

Am
cos2m(δ/2)(9)

since cos y decreases as |y| increases on the interval under consideration. Furthermore,
the integral in (9) is bounded above by 1. Therefore,

|Efn(x) − f(x)| ≤ M ′δ2 +
2π3M ′

3

cos2m(δ/2)

Am

≤ M ′δ2 +
2π3M ′

3

(

1 − δ2/8 + δ4/384
)2m

Am
(10)

= M ′δ2 +
2π3M ′

3

(

1 − δ2(1 − δ2/48)/8
)2m

Am
.

In order to get a bound, we will choose δ as a function of m. If we take δ → 0

as m → ∞, then
(

1 − δ2(1 − δ2/48)/8
)2m → exp(−mδ2(1 − δ2/48)/4). Observe

that if mδ2 → ∞ as m → ∞, then this term decays exponentially. The second
expression in (10) is the product of this term and 1/Am = O(

√
m), and thus the

product approaches 0 since the exponential decay dominates. In order to get a good
bound on the first term of (10), we wish to choose δ satisfying the condition that

mδ2 → ∞ such that the δ2 is as small as possible. We can choose δ = 1/m
1
2−ǫ,

where ǫ > 0 is arbitrarily small. Thus M ′/m is an asymptotic bound on the bias.
Furthermore, the bound is independent of x; hence, the convergence is uniform.
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Lemma 2. Suppose f ∈ C2[−π, π] and let fn(x) be as given in (2). Then

var fn(x) → 0 uniformly as n → ∞, provided m → ∞ as n → ∞, and m = o(n2).
Proof.

var fn(x) =
1

n

∫ π

−π

cm(x− s)2f(s)ds− 1

n

{
∫ π

−π

cm(x− s)f(s)ds

}2

as shown in Whittle [29]. As a consequence of Lemma 1, the second integral ap-
proaches f(x) asymptotically, and hence, the second term approach 0 since f is
bounded. It thus suffices to show the convergence of the first integral to 0.

Let M = maxx∈[−π,π] |f(x)|. As in Lemma 1, making a change of variable y =
x− s and using periodicity as in (8), we get

1

n

∫ π

−π

cm(y)2f(x + y)dy ≤ MA2m

nA2
m

→ M√
8π

√
m

n
,

where the expression on the right-hand side is a consequence of the asymptotic ex-
pression for Am in (6). Since m/n2 → 0 as n → ∞, the above integral converges to
0. Since m is independent of x, the convergence is uniform. Therefore the variance of
fn(x) converges uniformly to 0 under the conditions of the lemma.

Note that the bound on the bias for the cosine method given by Lemma 1 is of
the form

|Efn(x) − f(x)| ≤ 1

2
max |f ′′(x)|/m,(11)

and the bound for the variance given by Lemma 2 is

var fn(x) ≤ 1√
8π

max |f(x)|
√
m/n .(12)

Therefore, the role played by m for the cosine method is the same as h−2 of the kernel
based methods, where h is the window width of the kernel estimator. In other words
when m ∼ h−2, the bounds on the bias and the variance of the cosine estimator are in
accordance with the asymptotic behavior of the kernel method found in Silverman [23].
Such similarity of rates of convergence is to be expected since the cosine estimator is
essentially like the kernel estimator, though the forms of the functions differ. It will be
shown later that the main advantage of the cosine estimator lies in its computational
efficiency.
Theorem 3. Suppose f ∈ C2[−π, π] and fn(x) is as given in (2). If m → ∞ as

n → ∞, and m = o(n2), then

MISE =

∫ π

−π

E(fn(x) − f(x))2dx → 0

as n → ∞.

Proof.

∫

E(fn(x) − f(x))2dx =

∫

(Efn(x) − f(x))2dx +

∫

var fn(x)dx

as shown in Whittle [29]. From Lemmas 1 and 2, each of the integrals approaches 0.
Hence, the MISE converges to 0.
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In fact, the MISE is of the form

MISE = O(1/m2) + O(
√
m/n),(13)

where the asymptotic bounds on the constants are as given in (11) and (12). However,
as we shall explain later, the exact asymptotic constants are not all that important
for practical computations.

Conditions for the convergence of the estimates and its derivatives on the real
line instead of S1 can be found in [4]. Next we consider the case when the directional
data lie along the surface of the unit sphere.

2.2. The case of S
2. Let Xj , j = 1, 2, . . . , n, be a sequence of i.i.d. random

variables (observations) with values on the surface of the unit sphere S2 centered at
the origin in R

3. Suppose that the probability density function f(x) of the Xj has
bounded second derivatives. We consider a nonparametric estimator of the form

fn(x) =
1

n

n
∑

i=1

cm(x,Xi)(14)

for some m to be determined as a function of n. The cm are defined in this case as
follows. If αxX denotes the angle between points x and X, then

cm(x,X) =
1

Am
cos2m

(αxX

2

)

.(15)

The normalizing factor Am is given below:

Am =
4π

m + 1
.

Through a derivation along the lines of the case of the circle, the following theorem
can be proved for the convergence of the estimators.
Theorem 4. Suppose f ∈ C2(S2) and let fn(x) be as given in (14). If m → ∞

as n → ∞ and m = o(n), then

MISE =

∫

E(fn(x) − f(x))2dx → 0.

Analogous to (13), the form of the MISE is found to be

MISE = O

(

1

m2

)

+ O
(m

n

)

.(16)

From this expression for MISE we see that as in the case of S1, m ∼ h−2, where h is
the window width of the kernel estimator.

When dealing with axial data, we can consider the following axial estimator for
spherical data:

cm(x,X) =
1

A2m
cos2m(αxX).

We can also define a corresponding estimator on the circle, where we take the cosine
of the arc length between two points, instead of the cosine of half the arc length as in
the case of directional data. The relationship between the asymptotic MISE, m and n,
is the same as in (13) and (16) for the cases of the circle and the sphere, respectively.
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3. Efficient evaluation of the density estimator. In this section, we shall
describe an efficient algorithm for the computation of the density estimates fn(x)
evaluated at a set of n observed points X1, X2, . . . , Xn on the unit circle S1 (d = 1
case) and on the unit sphere S2 (d = 2 case). We also show that if the value
of fn at some arbitrary x is desired, then this is also easily accomplished once
fn(X1), fn(X2), . . . , fn(Xn) have been computed. The efficiency of our method is
based on the fact that fn(x) is defined in terms of the functions cm(x) as given in (5)
or (15).

Suppose we represent the positions of the observed points X1, X2, . . . , Xn by their
Cartesian coordinates. We show that for any x, fn(x) can be expressed as a polynomial
of total degree m in the coordinates of x. The coefficients of this polynomial can be
determined in turn from the coordinates of the Xi. Moreover, the coefficients are the
sums of the contributions due to each Xi independently.

First we consider the case of directional data on S1. From (2), (5), and the
half-angle formula for cosine we get

fn(x) =
1

nAm

n
∑

i=1

(

1 + cos(x−Xi)

2

)m

.(17)

Denote the points on S1 corresponding to the angles x and Xi for i = 1, 2, . . . , n, by
�x = (x1, x2) and �Xi = (Xi1, Xi2) in Cartesian coordinates and let 〈, 〉 represent the

standard inner product on R
2. Then cos(x − Xi) = 〈�x, �Xi〉. Substituting this into

(17) we get

fn(x) =
1

n2mAm

n
∑

i=1

(

1 + 〈�x, �Xi〉
)m

=
1

n2mAm

n
∑

i=1

(1 + x1Xi1 + x2Xi2)
m
.(18)

The expression (18) is a polynomial of degree m in x1 and x2. For a fixed m, we can
compute the coefficients by adding the contribution of each Xi as follows. Using the
multinomial theorem and (18)

fn(x) =
1

n2mAm

n
∑

i=1

∑

r+s≤m

(

m

r, s

)

xr
1x

s
2 X

r
i1X

s
i2,(19)

where the inner summation is over all r + s ≤ m with r, s ≥ 0. Changing the order of
summation

fn(x) =
1

2mAm

∑

r+s≤m

(

m

r, s

)

M(r, s) xr
1x

s
2,(20)

where

M(r, s) =
1

n

n
∑

i=1

Xr
i1X

s
i2,

and Am is as given by (6). If we use the asymptotic expression for Am in (6) for
computational ease, then (20) simplifies to

fn(x) =

√
m

2m+1
√
π

∑

r+s≤m

(

m

r, s

)

M(r, s) xr
1x

s
2(21)
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Table 1

Computational complexity of the cosine estimator.

Circle (d = 1) Sphere (d = 2)

Axial data mn m2n

Directional data m2n m3n

for large m. Now we consider the number of operations required for the evaluation
of fn(x) given the observations X1, X2, . . . , Xn. The powers Xr

i1 and Xr
i2 for a fixed

i and r = 1, 2, . . . ,m can be computed with O(m) multiplications. Doing this for
i = 1, 2, . . . , n requires O(mn) multiplications. After the conclusion of this step, each
of the O(m2) averages M(r, s) for a given r and s can be computed with an additional
O(n) operations. Since there are a total of O(m2) terms in fn(x) corresponding to
the pairs r, s with 0 ≤ r, s,≤ m, this means that the coefficients of the polynomial in
(20) or (21) can be computed with a total of O(m2n) arithmetic operations.

Once the coefficients of fn(x) have been computed, to evaluate fn(x) with �x =
(x1, x2) we calculate the powers xr

1 and xr
2 for r = 1, 2, . . . ,m in O(m) operations.

Since the coefficients are already available, the remaining computation in (20) requires
only an additional O(m2) multiplications and additions. The results for different cases
are summarized in Table 1.

Remark. For our MISE convergence condition for S1 (Theorem 3) to be satisfied,
m must increase without bound with n. Theoretically, we can take m to be as
slowly increasing as we like. Then the above result implies that the computation
of the density at all of the sample points can be accomplished using only about O(n)
arithmetic operations if the magnitude of m gives acceptable accuracy for fn(x). The
problem with taking m to be too slowly growing is that the magnitude of m controls
the error terms in our convergence proofs.

An efficient algorithm for the evaluation of fn(�x) for directional data on S2 is

constructed similarly. When �X1, �X2, . . . , �Xn are observations on S2 drawn from an
unknown density, it can be shown [4] that

fn(x) =
m + 1

π2m+2

∑

r+s+t≤m

(

m

r, s, t

)

M(r, s, t) xr
1x

s
2x

t
3,(22)

where the summation is over all r + s + t ≤ m with r, s, t ≥ 0, and

M(r, s, t) =
1

n

n
∑

i=1

Xr
i1X

s
i2X

t
i3 .

This time the coefficients of the polynomial in (22) can be computed with a total of
O(m3n) arithmetic operations. After this preprocessing, each evaluation of fn(x) for
x ∈ S2 requires only an additional O(m3) operations.

Corresponding results can be derived for axial data as summarized in Table 1.
It should also be noted that we needed the Cartesian representation of the data. If

the data are given in spherical coordinates, then there will be an additional overhead
for obtaining the Cartesian representation. However, this overhead takes only linear
time and so will be negligible for sufficiently large data. Furthermore, it has been
shown [24] that for an important class of applications, Cartesian coordinates are
preferable to spherical coordinates, as the latter system is not numerically stable for
solving the differential equations that arise.
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In the subsequent parts of this section we shall compare the computational effi-
ciency of our scheme with that of the kernel method.

3.1. Parallelization. One of the advantages of the computational strategy de-
scribed above is the ease of parallelization. Parallelization is required in many fluid
flow calculations due to the large sizes of the systems. The kernel method is some-
what difficult to parallelize. If we use an efficient kernel implementation that performs
kernel evaluations only for those points which are within a cut-off distance h of the
given sample, then an efficient implementation of the parallelization requires periodic
load balancing and domain decomposition so that points that are close by remain on
the same processor, and so that each processor has roughly the same load in terms
of the computational effort. Also, the communication pattern for the kernel method
is not very regular. In contrast, parallelization for the cosine estimator can easily
be accomplished by a global reduction operation, for which efficient implementations
are usually available. This method requires the same computational effort for each
point, and so the load is easily balanced by having the same number of points in each
processor. Domain decomposition does not play an important role in this scheme,
since the points can be on any processor.

3.2. Theoretical comparison of the kernel and the cosine estimators.

Now we analyze the computational efficiency of the kernel and the cosine density
estimation methods. An important measure of the efficiency of the algorithms is not
just the convergence rate of the error with sample size n, but the relationship of the
computational effort C required as a function of the error E. For the kernel estimator,
we can write the asymptotic MISE E as

E = O

(

h4 +
1

hdn

)

,(23)

where h is the smoothing parameter, d = 1, 2 is the dimension, and n is the sample
size. The computational effort required for this nonparametric density estimation can
be expressed as

C = O(hβnγ),(24)

where 0 ≤ β ≤ d and γ = 1 or 2 depending on the details of the algorithm used. For
a given sample size, (23) gives the optimal h as h ∼ n−1/(d+4). However, since the
equation for the computational complexity also depends on h, we need to consider
the possibility that a value of h smaller than this optimal value may actually result
in a lower computational effort.

Let us consider a variation of h with n of the form

h = O(n−α), 1/(d + 4) ≤ α < 1/d .(25)

From (25), (24), and (23) we obtain

C = n−αβ+γ ⇒ n = C
1

γ−βα ⇒ E = C
−4α
γ−βα + C

dα−1
γ−βα .

For minimum error, the exponent of both the terms on the right should be the same,
otherwise the error due to the higher term will dominate. This leads to α = 1/(d + 4)
which is the same as the value of optimal α for a given n. If we let hoptn represent
the optimal h minimizing the MISE for a given n, and hoptC represent the optimal
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h minimizing the computational effort as a function of the error, then the expression
derived above for α does not necessarily imply that hoptn = hoptC since the relation
hoptn = khoptC would still satisfy the expression for α for some constant k. If k < 1,
then we can choose a suboptimal value of h in order to improve the speed of the
algorithm.

The optimal variation of error with computational complexity using this value of
α is given by

C = E
β
4 −

(d+4)γ
4 .

Let us now consider the cosine estimator. We can write the asymptotic MISE as
follows:

E = O

(

m−2 +
md/2

n

)

where E is the MISE, m is the smoothing parameter, d is the dimension (d = 1 for
the circle and d = 2 for the sphere), and n is the sample size. The computational
effort required for this estimator can be expressed as C = O(mξn), where ξ can be
determined from Table 1. The expression for C above is the same as (24) with γ = 1,
and β = −2ξ, recalling that m behaves as h−2. By an analysis similar to the previous
case we can show that the optimal variation of error with computational complexity
is given by

C = E
−(d/2+ξ)

2 −1.

As examples, for the cosine estimator on the circle (d = 1) with axial data (ξ = 1)
and directional data (ξ = 2), the computational complexity and the error are related
by C = E−1.75 and C = E−2.25, respectively.

The complexity of the kernel estimator is the same for axial and directional data.
However, several different possibilities exist depending on how efficient the implemen-
tation of the estimator is. If we consider estimators of the form given by (3) and (4),
then we have d = 1, β = 0, γ = 2, and therefore

C = E−2.5.(26)

However, if we consider a kernel with bounded support, and use an efficient imple-
mentation of the algorithm that computes the kernel only for those points that have
a nonzero contribution, then the expected value of β is 1 and we get C = E−2.25

for data on the circle. Note that the worst case complexity remains as in (26). For
the d = 1 case, we can consider an efficient algorithm using polynomial kernels and
updating [19], which uses a linear time after an initial O(n log n) sorting step. In
this case β = 0, γ = 1, and C = E−1.25, which means that the kernel method has a
better asymptotic complexity than the cosine kernel. However there appears to be no
natural generalization of this update strategy to higher dimensions [5].

Results for the different cases can be determined in the manner demonstrated
above and are presented in Table 2. We wish to mention that the exact asymptotic
constants in Theorem 3 are not quite that important (compared with the exponent
on E), since asymptotically the slowdown incurred by the cache misses dominates the
overall running time. We can expect that the simpler memory access pattern of our
estimator will make it advantageous over the kernel method in the asymptotic case.
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Table 2

Variation of the optimal computational effort versus MISE. The numbers in the table represent
η, where the relationship between the computational effort C and E = MISE is given by C = E−η.
*Does not take into account an initial sorting step.

Estimator Circle (d = 1) Sphere (d = 2)

Cosine, axial data 1.75 (ξ = 1) 2.5 (ξ = 2)

Cosine, directional data 2.25 (ξ = 2) 3.0 (ξ = 3)

Kernel, worst case 1.25 * (β = 0, γ = 1) 3.0 (β = 0, γ = 2)

Kernel, expected case 1.25 * (β = 0, γ = 1) 2.5 (β = 2, γ = 2)

Since the worst case complexities of the kernel method and the cosine estimator
for directional data on the sphere have the same order, the relative efficiencies of
the methods can be tested only through experiments. Similarly, since the worst case
complexity of the cosine estimator for axial data on the sphere is the same as the
expected case for an efficient implementation of the kernel estimator, we need to
perform experiments to test the relative merits of the two estimators.

4. Experimental results. We performed numerical experiments for axial and
directional data on the circle and sphere in order to test the effectiveness of our
estimator. We first plot estimates for known distributions and then demonstrate that
the MISE follows expected trends for certain distributions. We finally compare the
computational efficiency of our estimator with that of kernel methods. More empirical
results are presented in the appendix.

We consider the function ψ(φ, θ) = exp (US cos2(θ))/A where A normalizes the
function to be a density on the surface of a sphere and S is a known function of U .
The angles φ and θ are the azimuth and the elevation in spherical coordinates. This
is the solution to a particular problem in fluid mechanics. In Figure 2(a) we present a
typical estimate for the d = 1 version of the above density function where ψ was taken
to be ψ(x) = exp (US cos2(x))/A. In this figure, we take the data to be directional.
However, since this function is symmetric with respect to the center of the circle, we
can consider the data as axial and use the axial estimator. We can see from Figure
2(b) that this requires a much smaller value of m.

In Figure 3(a) the MISE is compared versus m and n for the one-dimensional ψ
distribution using the axial cosine estimator. We also compare with one case of the
directional estimator in order to show the benefit of using the axial estimator. In
Figure 3(b) the MISE is compared versus m and n for the two-dimensional version of
the ψ distribution on the surface of a sphere using the directional estimator.

We next present results for experiments comparing the speed of the cosine and the
kernel estimators. We consider the optimal variation of the computational effort with
MISE. In order to get the optimal computational effort for a given MISE, we allow for
the possibility that we may require different sample sizes for the kernel and the cosine
estimators. This is justified because in iterative calculations one can easily change
the “sample” size by changing the discretization of the system. We have performed
these comparisons only for spherical data. The case of data on the circle was not
considered because of the asymptotic analyses of the previous section which clearly
indicate that the linear kernel algorithm in the one-dimensional case will outperform
the cosine estimator. However, in a parallel implementation, the sorting step for the
linear kernel algorithm may be slow, and then one may wish to consider the cosine
estimator.
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Fig. 2. Cosine estimates for ψ(x) = exp (US cos2(x))/A, the one-dimensional case of the ψ
function defined above. The solid line represents the true density. (a) The dashed line represents
the directional estimate with m = 100, n = 500. (b) The dashed line represent the axial estimate
with m = 40, n = 500.

The following kernel was chosen for the comparisons:

K(x) =















1
A (1 − 1.5x2 + 0.75x3), x ∈ [0, 1],

1
A0.25(2 − x)3, x ∈ [1, 2],

0 otherwise,
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Fig. 3. MISE versus m and n for the ψ density. (a) One-dimensional (on the circle): ψ(x) =
exp (US cos2(x))/A; the solid line shows the results for the axial cosine estimator and the dashed
line for the directional estimator (with n = 2000). (b) Two-dimensional (on the sphere): ψ(φ, θ) =
exp (US cos2(θ))/A as defined above; MISE for the directional cosine estimator.

where A is the normalization constant, and the ratio of the distance between two
points along the surface of the sphere to h is given as the argument to the kernel
function. The use of this kernel for comparisons can be justified by its popular use
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Fig. 4. Comparison of time (in seconds) versus the MISE for the cosine and kernel estimation
of axial data sampled from ψ(φ, θ) = exp (US cos2(θ))/A as defined above. The points marked in o
represent the kernel estimate. The points marked in x represent the cosine estimate.

in fluid mechanics calculations [12]. Furthermore, we cannot expect any other kernel
to give a significantly better performance, for the following reasons: (i) It is well
known that most kernels are equally good [23, Table 3.1] with respect to “efficiency,”
as defined in [23]. (ii) Given that the efficiency is about the same, the only other
consideration is the computational effort involved. Our kernel takes between 6 and 10
floating point operations for a nonzero evaluation (including the cost of computing the
square of the distance). Any other reasonable kernel would require at least 6 floating
point operations. Apart from this, the memory access times and zero-evaluations
would add the same constant to all kernels.

Figures 4 and 5 compare the computational effort required for the cosine weight
function estimator and the kernel estimator for certain densities. We obtained the
data using the following procedure. We performed estimates for various values of n,
m, and h and obtained the MISE and the time for the calculations. For the cosine
and the kernel estimates, we separately plotted the data for the time required for the
calculations versus the error. We chose the lower envelope of the data as the curve for
that particular estimator since the values of m,n for the data on the lower envelope
give the best obtainable speed for a given MISE.

In the implementation of the kernel estimator, we divided the sphere into cells
such that the sides of the cells had length at least 2h (since the kernel defined above
has window width 2h, rather than h). We placed each sample in the appropriate cell.
When computing the density for a point in a particular cell, we need to search over
points in only a few cells. The expected complexity of this scheme is O(n2h2).

We first consider data estimated using the axial cosine estimator and an axial
variant of the kernel estimator. Figure 4 shows the results for the two-dimensional
ψ distribution. This is an example of a highly nonuniform distribution. We can see
that the kernel and the cosine estimators are about equally fast.
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We next consider a more uniform distribution given by f(φ, θ) ∝ cos(θ) + 1/(8π),
where φ is the azimuth and θ is the elevation. The results presented in Figure 5(a)
show that the cosine estimator outperforms the kernel estimator by more than an
order of magnitude when the axial forms of both the estimators are used.

After this we considered the two densities mentioned above but treated the data
as directional and estimated them using the directional variants of the kernel and the
cosine estimators. For the ψ distribution, the cosine estimator performed very poorly
in computational efficiency, and we do not present results for this case. Figure 5(b)
presents the results for the distribution given by f(φ, θ) ∝ cos(θ)+1/(8π). We can see
that the cosine estimator still outperforms the kernel estimator, though only slightly.

5. Discussion. The comparison of the estimates with the true density indicate
that the cosine estimator produces accurate results for the distributions tested. Plots
of MISE versus m and n follow the expected trends. As the sample size increases, the
error for the optimal m decreases. Besides, the optimal value of m increases as the
sample size increases. It can also be seen that as the number of points increases, the
range of m over which the estimate performs well also increases. We can use this to
our advantage by choosing a suboptimal value of m which decreases the computational
effort significantly but increases the error only slightly.

The experiments comparing the computational efficiencies show that the cosine
estimator outperforms the kernel estimator for axial data when the distribution is
moderately uniform. If the distribution is highly nonuniform, then the two estima-
tors give comparable performance for axial data. The cosine estimator outperforms
the kernel estimator slightly for directional data when the distribution is moderately
uniform. However, the timing results for the cosine estimator are poor for highly
nonuniform directional data. In general, when the data is not very nonuniform,
smoother weight functions are used. This gives a low value of m which implies a
fast evaluation using the cosine estimator. However, this leads to a higher h for the
kernel estimator, which implies that more samples contribute to the kernel evaluation
of each sample point and, hence, this leads to more computational effort. Conversely,
when the distribution is highly nonuniform, especially for directional data, the ker-
nel method is to be preferred. The empirical test results presented in the appendix
further demonstrate this point.

We also analyzed our experimental data to estimate an optimum variation of m
with n. Using the results of our experiments, we can perform a least squares analysis
and approximate m as kn1/2.5 for one-dimensional density estimation which is the
same as that expected based on the asymptotic expression for the MISE. Choosing
m = kn1/3 appears to give reasonable estimates for density on the surface of a sphere.
This result is also consistent with the theoretical predictions. Here, the magnitude of
k depends on the complexity of the density function. It varies between 1 and 10 for
the distributions considered here.

We also noted the values of m, n, and h, which gave the optimal computational
effort for a given MISE, and compared the results for the kernel and the cosine es-
timators. We observed that the values of h were close to the values which gave the
minimum MISE for the given sample size. However, the values of m were signifi-
cantly lower than the values which gave the minimum MISE for the given sample
size, though the error involved itself was not much higher than the minimum MISE.
Thus, it appears that we can choose a suboptimal smoothing parameter in order to
increase the speed in the case of the cosine estimator.
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Fig. 5. Plot of time (in seconds) versus the MISE for the cosine and the kernel estimation of
data sampled from f(φ, θ) ∝ cos(θ) + 1/(8π). The points marked in o represent the kernel estimate.
The points marked in x represent the cosine estimate. (a) Data treated as axial. (b) Data treated
as directional.
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Fig. 6. Plot of density functions g(φ; s) = k cosh (s sinφ) for different values of s, where φ is
the elevation. The solid line denotes s = 8.0, the dashed line s = 4.0, the dash-dotted line s = 2.0,
and the dotted line s = 0.0.

6. Conclusions. In this paper, we have described a weight function estimator
for nonparametric estimation of probability density functions based on cosines, and
we provided conditions under which the estimate and its derivatives converge to the
actual functions. We have developed a scheme for the efficient computation of the
density and presented experimental results to check the performance of the estimator
for practical problems. These results are particularly relevant to certain fluid mechan-
ics calculations and, in general, to situations where the sample size can be controlled,
for example, though refinement of the discretization. We have also given an empir-
ical formula for choosing the weight function exponent parameter of the estimator.
Our experimental results suggest that the cosine estimator outperforms the kernel
estimator for both directional and axial data that are moderately uniform. It gives
performance comparable to the kernel estimator for highly nonuniform axial data,
while the kernel method is preferable for highly nonuniform directional data. There
is potential for further theoretical study of our estimator.

Appendix. Further test results. We present more test results in this section
in order to study the relative efficiencies of the cosine and the kernel techniques, as
the density function is varied systematically from being relatively uniform to being
sharply peaked on the unit sphere.

For these tests, we chose density functions g(φ; s) = k cosh (s sinφ), where s is a
constant that governs the sharpness of the density function, φ is the elevation, and
k = s/(4π sinh s) normalizes this to a probability density function. Figure 6 shows
the density as a function of the elevation alone for different values of the parameter s.
This function is symmetric about the center of the sphere, and thus we can use the
axial estimators, as in section 4. We can also ignore our knowledge of this symmetry
and use the general directional estimators.
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Fig. 7. Plot of MISE versus time for the density function g(φ; 0.5) = k cosh (0.5 sinφ). The
points marked by * are for the cosine estimator, and the points markeds by o are for the kernel
estimator. (a) Axial estimator. (b) Directional estimator.
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Fig. 8. Plot of MISE versus time for the density function g(φ; 1.0) = k cosh (1.0 sinφ). The
points marked by * are for the cosine estimator, and the points markeds by o are for the kernel
estimator. (a) Axial estimator. (b) Directional estimator.
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Fig. 9. Plot of MISE versus time for the density function g(φ; 2.0) = k cosh (2.0 sinφ). The
points marked by * are for the cosine estimator, and the points markeds by o are for the kernel
estimator. (a) Axial estimator. (b) Directional estimator.
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Fig. 10. Plot of MISE versus time for the density function g(φ; 4.0) = k cosh (4.0 sinφ). The
points marked by * are for the cosine estimator, and the points markeds by o are for the kernel
estimator. (a) Axial estimator. (b) Directional estimator.
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Fig. 11. Plot of MISE versus time for the density function g(φ; 8.0) = k cosh (8.0 sinφ). The
points marked by * are for the cosine estimator, and the points markeds by o are for the kernel
estimator. (a) Axial estimator. (b) Directional estimator.
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We present the results of the experiments as plots of time versus MISE for the
kernel estimator versus the cosine estimator, for both axial and directional data. The
kernel estimator is the one used in the empirical tests in section 4. The tests were
performed on an Intel Celeron 300MHz processor with 64 MB memory. The C code
was compiled with the gcc compiler at optimization level −O3.

We can see from Figures 7, 8, 9, 10, and 11 that when the density function
is not very sharp, the cosine estimator outperforms the kernel estimator for both
axial and directional data. As the density becomes sharper, the kernel method starts
outperforming the cosine estimator for directional data, though the latter is still
better for axial data. When the density becomes extremely sharp, the kernel method
becomes better for both types of data, though for axial data the two methods are still
comparable to a certain extent in terms of speed. These results follow the theoretically
predicted trends and demonstrate that these two methods complement each other for
different types of data.

Appendix. We thank the referees for their detailed comments and advice, espe-
cially for directing our attention to the current literature.
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