
A Fast Non-Parametric Density Estimation Algorithm�OMER E�GECIO�GLU and ASHOK SRINIVASANDepartment of Computer Science, University of California Santa Barbara, CA 93106SUMMARYNon-parametric density estimation is the problem of approximating the values of a probability density func-tion, given samples from the associated distribution. Non-parametric estimation �nds applications in discriminantanalysis, cluster analysis, and 
ow calculations based on Smoothed Particle Hydrodynamics. Usual estimatorsmake use of kernel functions, and require on the order of n2 arithmetic operations to evaluate the density atn sample points. We describe a sequence of special weight functions which requires almost linear number ofoperations in n for the same computation.KEY WORDS: Non-parametric estimation, probability density, kernel method.1 INTRODUCTIONThe use of probability density estimation in data analysis is well established [15, 12, 11, 2]. In thenon-parametric case no assumption is made about the type of the distribution from which the samplesare drawn. This is in contrast to parametric estimation in which the density is assumed to come to froma given family, and the parameters are then estimated by various statistical methods. A comprehensivebibliography on non-parametric estimation can be found in Silverman [16], and Nadaraya [10]. Resultsof experimental comparison of some widely used methods appear in [5].An important application of non-parametric density estimation is in computational 
uid mechanics.When 
ow calculations are performed in a Lagrangian framework, a set of points in space are evolvedusing the governing equations. However in time this usually leads to mesh distortion and numericaldi�culties. Problems with mesh distortion can be eliminated to a certain extent by the use of SmoothedParticle Hydrodynamics (SPH) [9, 4]. SPH treats the points being tracked as samples drawn from anunknown probability distribution. Because of the iterative nature of SPH, density is estimated at everytime step, and the e�ciency of the computational aspects becomes even more important.We propose a cosine based estimator which is similar to kernel estimators in convergence properties,but computationally more e�cient. This estimator can be viewed as a special case of the class ofestimators that form a � sequence [17]. Conditions for the convergence of the method and experimentalveri�cation of its accuracy as compared to kernel based estimators for practical test cases are alsopresented. The experiments indicate how to choose the optimal estimator as a function of the numberof points while keeping the error small.
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2 METHODS OF ESTIMATIONVarious methods have been proposed for non-parametric density estimation, such as the kernel [11, 1]and the orthogonal series methods [13]. In the kernel method, the value of the density at x is estimatedas fn(x) = 1nAh nXi=1K(x�Xih )where Xi are the positions of the samples drawn from a probability distribution with an unknowndensity function f , K is a kernel function, h is the window width, and Ah is a normalization factor tomake fn into a probability density. One of the drawbacks of the kernel method is the computationalcost involved. Even though it is possible to reduce the cost using a series expansion of the kernel, thisapproach becomes problematic for narrow window widths.Our estimator for non-parametric density uses properties of the cosine function, has convergenceproperties which are similar to those of kernel based estimators, but at the same time has the easeof evaluation of a series expansion. The role of the window size parameter h of the kernel method isreplaced by a parameter m in our method, and fn is now of the formfn(x) = 1n nXi=1 cm(x�Xi) : (1)The de�nition of the function cm allows for the e�cient computation of the n valuesfn(X1); fn(X2); : : : ; fn(Xn) (2)using only O(m2n)1 arithmetic operations, where m need not be large as long as it increases withoutbound with n. This is in contrast to the O(n2) operations required by the kernel method. Afterthe computation of fn(X1); fn(X2); : : : ; fn(Xn) , our method requires only O(m2) operations for eachsubsequent evaluation fn(x) for an arbitrary x. This is in contrast to the O(n) operations required bythe kernel method. The factor m2 in this operation count is replaced by m1+d when the sample space isthe d-dimensional unit sphere Sd. Such sample spaces arise naturally in problems involving directionaldata.3 CONVERGENCE OF THE METHODLet Xj ; j = 1; 2; : : : be a sequence of independent, identically distributed random variables (observa-tions) with values on the real line IR. Suppose their common distribution function has density densityf(x). As an estimator to f(x), we consider a non-parametric estimator of the form (1), where m is tobe determined as a function of n. Letcm(x) = ( 1Am cos2m(x2 ) ; x 2 [��; �]0 otherwise, (3)where the factor Am normalizes cm to a probability density function. Two popular criteria for conver-gence that are usually considered are given below. The estimate converges to the true density under1f(n) = O(g(n)) means limn!1 f(n)=g(n) <1, and f(n) = o (g(n)) means limn!1 f(n)=g(n) = 0.2



the Mean Integrated Square Error (MISE) criterion ifZ E(fn(x)� f(x))2dx! 0as n!1. We have almost sure (a.s.) convergence to the true density ifsup jfn(x)� f(x)j ! 0almost surely as n ! 1. First, we state conditions for the almost sure convergence of the estimatesof the density and its derivatives on IR, and the convergence in the MISE sense on S1 and S2. Theconditions are similar to those required by kernel based methods. The proofs of these theorems appearelsewhere [3].Theorem 1 Suppose f(x) is uniformly continuous on IR, and fn(x) is as given in (1). If m!1 asn!1, and m = o ( nlog n), then supx2IR jfn(x)� f(x)j ! 0 a.s.Flow calculations often require the computation of the values of not only the unknown density f ,but also its derivatives. Let Cr(IR) denote r-fold continuously di�erentiable functions on IR. Assumethat f 2 Cr(IR). Denote the r-th derivative of f(x) by f (r)(x). As an estimator of f (r)(x) we takethe r-th derivative f (r)n (x) of fn(x). The conditions for almost sure convergence of the estimates of thederivatives of the density on IR are given by the following theorem.Theorem 2 Suppose f(x) 2 Cr(IR), f (r)(x) is uniformly continuous, and f (r)n (x) is as obtained bydi�erentiating (1). If m!1 as n!1, and m2r+1 = o ( nlog n), thensupx2IR jf (r)n (x)� f (r)(x)j ! 0 a.s.Consider the estimation of a density function de�ned on Sd. De�ne the weight function bycm(x) = 1Am cos2m(�x2 ) (4)where x 2 Sd and �x is the length of the shortest arc between x and a �xed point on Sd (which wetake to be the point ~0 ). As before Am is the normalization constant. Conditions for convergence ofthe MISE for this case are given byTheorem 3 Suppose f 2 C1(Sd), d = 1; 2, and let fn(x) be as given in (1) and (4). If m ! 1 asn!1 and m = o (n2=d), thenMISE = Z E(fn(x)� f(x))2dx! 0
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4 FAST COMPUTATION OF THE DENSITY ESTIMATORIn this section, we describe an e�cient algorithm for the computation of the values of the densityestimator fn(x) at a set of n observed points X1;X2; : : : ;Xn on the unit circle S1 (1-D case) and on theunit sphere S2 (2-D case). The idea of the 1-D case easily extends to IR. We also show that if the value offn at some arbitrary x is desired, then this is also easily accomplished once fn(X1); fn(X2); : : : ; fn(Xn)have been computed.We show that for any x, fn(x) can be expressed as a polynomial of total degree m in the coordinatesof x, and that the coe�cients of this polynomial can be determined in turn from the coordinates of theXi. Using the half angle formula for cosine, we obtain from (1) and (3)fn(x) = 1nAm nXi=1�1 + cos(x�Xi)2 �m : (5)Let x = (x1; x2) and Xi = (Xi1;Xi2) be the Cartesian coordinates of x and Xi, i = 1; 2; : : : ; n on S1 andlet <;> represent the standard inner product on IR2. Then cos(x �Xi) =< x;Xi > . Substitutingthis into (5) and using the multinomial theorem we getfn(x) = 12mAm Xr+s�m mr; s!M(r; s) xr1xs2 (6)where  mr; s! = m!r!s!(m� r � s)!and M(r; s) = 1n nXi=1Xri1Xsi2 :Now consider the number of operations required for the evaluation of fn(x) given the observationsX1;X2; : : : ;Xn on S1: The powers Xri1 and Xri2 for a �xed i and r = 1; 2; : : : ;m can be computedwith O(m) multiplications. Doing this for i = 1; 2; : : : ; n requires O(mn) multiplications. After theconclusion of this step, each of the O(m2) averages M(r; s) for a given r and s can be computed withan additional O(n) operations. Since there are a total of O(m2) terms in fn(x) corresponding to thepairs r; s with 0 � r; s � m, this means that the coe�cients of the polynomial in (6) can be computedwith a total of O(m2n) arithmetic operations. Once the coe�cients of fn(x) have been computed,to evaluate fn(x) with x = (x1; x2) we calculate the powers xr1 and xr2 for r = 1; 2; : : : ;m in O(m)operations. Since the coe�cients are already available, the remaining computation in (6) requires onlyan additional O(m2) multiplications and additions. Note that kernel based non-parametric estimatorsto the density require O(n2) arithmetic operations for the computation of the values in (2), since eachK(Xj�Xih ) needs to be evaluated for 1 � i; j � n.A fast algorithm for the evaluation of fn(x) de�ned on S2 is constructed similarly. In this case thevalues (2) of the approximate density can be evaluated in O(m3n) arithmetic operations. After thispreprocessing step, fn(x) can be computed for any x 2 S2 with only O(m3) additional operations.4



5 EXPERIMENTAL RESULTSFor our convergence conditions to be satis�ed, m must increase without bound with n, but not toofast. Theoretically, we can take m to be as slowly increasing as we like. The problem with this isthat the magnitude of m controls the error terms of the convergence proofs. This is a crucial pointwhich makes experimental results invaluable in determining good values of m in practice. With this inmind, numerical experiments were carried out to determine the error as a function of m and n usingvarious distributions. The results for two tested distributions are presented below. Comparisons werealso made with the following kernel estimator [8]:K(x) = 8>><>>: 1A (1� 1:5x2 + 0:75x3) ; x 2 [0; 1]1A 0:25(2 � x)3 ; x 2 [1; 2]0 otherwisewhere A is a normalization constant.Figure 1 compares the accuracy of the cosine and the kernel estimates for a normal distribution withmean � and standard deviation 1, generated by using the function randn ofMATLAB . The results givenare the mean of 50 trials. Note that the two curves are virtually identical, and they both underestimatethe real density near the mean.In the second experiment we compare the MISE versus di�erent values of m and n for the cosinemethod itself, where the distribution is again normal with mean � and standard deviation 1. Theresulting curves are given in Figure 2. In Figure 3 the same comparison is made for the derivative ofthe density function. In each case the MISE was determined by numerical integration using 250 points.In the determination of the MISE, trials were performed with 7 sets of samples each time, and themean is reported in the �gures given.As with most estimators, the estimation of bimodal distributions is more di�cult. We performedexperiments with a sum of � distributions in the form0:35�(6; 2) + 0:65�(2; 6)generated by the rejection-acceptance method. The � function was scaled to take values in [0; 2�]. Theresults are given in Figure 4. It is evident that compared with a unimodal distribution, more samplesare required to get accurate results.In iterative calculations, one can choose the sample size to obtain the desired accuracy in the results.In order to compare the computational e�ciency of the two methods, a reasonable criterion appearsto be to compare the time requirements of the two methods for the same error. The sample sizes maynot necessarily be the same in the two cases to obtain the same accuracy. Figures 5 and 6 comparethe computational e�ort required for the cosine weight function estimator and the kernel estimatorfor the normal density in this sense. The data was obtained by the following procedure: Estimateswere computed for various values of n, m, and h. The time required (in seconds) for the computation,together with the resulting MISE were determined. The lower envelope of the data was chosen as therepresentative curve for that particular estimator. Note that the cosine estimator performs substantiallybetter than the kernel estimator for the cases tested.5



6 REMARKSThe experiments show that the optimal values of m are su�ciently small for the distributions testedto make the proposed scheme faster than the kernel estimate. However, as the distribution functiongets more complicated (multimodal, for instance), we need higher values of m to get good estimates.Therefore such cases would require more computational e�ort than those with a more uniform distri-bution. If derivatives of the density are also required, then we are forced to increase m at a slower ratewith respect to n to avoid sharp peaks, but then the cosine method becomes even more advantageous.Plots of MISE versus m and n follow the expected trends. As the sample size increases, the error atthe optimal value ofm decreases. Besides, the optimal value ofm increases as the sample size increases,and it is smaller for the derivative than for the density estimation itself. It can also be seen that as thenumber of points increases, the range of m over which the estimate performs well also increases.Based on the experiments, we can perform a least squares analysis and approximate the magnitudeof m as kn1=2:5 for 1-D density estimation, and as kn1=(3+�) for the derivative, for some constant k. �can be any small number and is introduced in order to satisfy the upper bound for derivatives requiredfor convergence. Choosing m = kn1=3 appears to give reasonable estimates for density on S2. Themagnitude of k depends on the complexity of the density function itself, and it varies between 1 and 10for the distributions considered here. If a more automatic choice of m is desired, it should be possibleto make k a function of the variation. This can be done by choosing an initial value for m and andestimating the variation using the approximate density currently available. Next density estimationcomputations can then be performed using the new value of m. We are currently studying schemes forthe automatic determination of the best exponent.We remark that computations for the algorithm presented here parallelize easily by a straightforwarddistribution of the samples across the processors. Each processor computes the coe�cientsM(r; s) basedon only the samples locally present. Subsequently the corresponding coe�cients in each processor aresummed. This can be accomplished by a global reduction operation, for which e�cient library functionsare normally provided in parallel computers. In order to reduce inter-processor communication whileusing kernel estimators, it is necessary to redistribute the samples so that points that are close to eachother reside in the same processor. This overhead is avoided in the cosine based estimator.References[1] Bickel P.J. and M. Rosenblatt On some global measures of the deviations of density functionestimates, Annals of Statistics, 1 (1973) pp. 1071{1095.[2] Chentsov N.N. Estimation of unknown probability density based on observations, Dokl. Akad. NaukSSSR, 147 (1962) pp. 45{48 (in Russian).[3] E�gecio�glu �O. and Srinivasan A. E�cient Non-parametric Density Estimation on the Sphere, Tech-nical Report TRCS95-19, Department of Computer Science, University of California Santa Barbara(1995).[4] Hernquist L. and Katz N. TREESPH: A uni�cation of SPH with the hierarchical tree method,Astrophys. J. suppl., 70 (1989) pp. 419{446. 6
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Figure 1: Comparison of the cosine and kernel estimators for a normal density with mean � andstandard deviation 1. The solid line represents the normal density. The points marked by x representthe kernel estimate with h = 0:55. The points marked by o represent the cosine estimate with m = 15.The estimates are based on the mean of 50 trials with samples of size n = 250 each.
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Figure 2: MISE versus m and n for the normal density with mean � and standard deviation 1.
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Figure 3: MISE versus m and n for the derivative of the normal density with mean � and standarddeviation 1.
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Figure 4: Comparison of cosine and kernel estimators for a sum of � distributions on [0; 2�]. The solidline represents the true density. The points marked by x represent the kernel estimate with h = 0:4.The points marked by o represent the cosine estimate with m = 25. The estimates are based on themean of 50 trials with samples of size 500 each.
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Figure 5: Plot of time (in seconds) versus the MISE for the cosine estimation of the normal density.
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Figure 6: Plot of time (in seconds) versus the MISE for the kernel estimation of the normal density.
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