
A Parallel Algorithm for Generating Disrete Orthogonal Polynomials �
�Omer E~geio~gluDepartment of Computer Siene,University of California,Santa Barbara, CA 93106 C�etin K. Ko�Department of Eletrial EngineeringUniversity of HoustonHouston, TX 77204

AbstratA parallel algorithm that makes use of the lassial three-term reursion formula to onstrutan orthogonal family of polynomials with respet to a disrete inner produt is proposed. Thealgorithm requires O(N logN) parallel arithmeti steps on a distributed-memory multiproessorwith N + 1 proessors to onstrut the polynomials pi(x) for 0 � i � N . If hyperube topologyis assumed, the algorithm an be implemented with the additional overhead of O(N logN) routingsteps. In this ase the implementation is quite simple, requiring only salar single node broadastand aumulation proedures together with a Gray ode mapping. The limited proessor versionof the algorithm requires O(N2p +N log p) arithmeti and O(N log p) routing steps on a hyperubewith p � N + 1 nodes. We present some experimental results obtained on an Intel ube.Key Words: Disrete orthogonal polynomials, parallel algorithms, distributed-memory multipro-essor, hyperube.

�A portion of this work was presented in the Fourth Conferene on Hyperube Conurrent Computers and Appliations,Monterey, California, Marh 6{8, 1989. 0



1 IntrodutionWe onsider generation of polynomials fp0(x); p1(x); : : : ; pN (x)g orthogonal with respet to a non-degenerate disrete bilinear form< u(x); v(x) > = NXj=0wju(xj)v(xj) , (1)where pi(x) is a moni polynomial of degree i. In most appliations the weights wj are positive for0 � j � N , and (1) de�nes an inner-produt on polynomials of degree � N on the node pointsx0; x1; : : : ; xN . The orthogonal polynomials pi(x) for 0 � i � N an be generated using the lassialthree-term reursion formula [11℄pi+1(x) = (x� �i)pi(x)� �ipi�1(x) for 0 � i � N � 1 (2)with p�1(x) = 0 and p0(x) = 1 (3)where �i and �i are onstants determined as�i = < xpi(x); pi(x) >< pi(x); pi(x) > , �i = < pi(x); pi(x) >< pi�1(x); pi�1(x) > . (4)Orthogonal polynomials with respet to a disrete bilinear form have appliations in rational inter-polation, least-squares polynomial approximation, and smoothing of nonlinear funtions [4, 3, 9, 7, 1, 2℄.In some appliations it is preferable to use orthogonal polynomials than to solve a set of linear equa-tions. This is mainly due to numerial stability problems of the underlying linear systems. For example,the normal equations arising from weighted least-squares polynomial approximation problems resultin an ill-onditioned system. Thus, it beomes inevitable to use disrete orthogonal polynomials forleast-squares polynomial approximation problems [3, 7℄.Consider the (N +1)� (N +1) matrix P = [Pij ℄ of the values of the polynomials pi(x) at the nodepoints xj for 0 � i; j � N , i.e., Pij = pi(xj) for 0 � i; j � N . (5)The entries of P an be omputed by speializing the three-term reursion (2) by putting x = xjfor j = 0; 1; : : : ; N . Furthermore, (2) indues a doubly-indexed reursion on the oeÆients of thepolynomials pi(x) for 0 � i � N diretly. More preisely, let A = [Aik℄ be the (N +1)� (N +1) matrixin whih the ith row onsists of the oeÆients of the polynomial pi(x), i.e.,pi(x) = iXk=0Aikxk . (6)1



Then A is a lower triangular matrix with unit diagonal whose elements satisfy the reursionAi+1;k = Ai;k�1 � �iAik � �iAi�1;k for 0 � k � i � N (7)indued by (2). In (7) we takeAi;�1 = A�1;k = 0 for 0 � i; k � N � 1 . (8)In the generation of the oeÆients of the polynomials pi(x) for 0 � i � N using the reursion(7), the values of the polynomials pi(x) at the node points xj (i.e. Pij) are also required at eah stepto ompute quantities �i and �i. Thus it is neessary to generate the values and the oeÆients intandem. This an be done by iterating �rst the reursion (2) for the values and then the reursion (7)for the oeÆients.The proedure given in Figure 1 (PROCEDURE TTR) omputes the entries of matries P and Ausing reursions (2) and (7) together with the initial onditions (3) and (8). At the end of PROCEDURETTR, the oeÆients of the polynomials pi(x) are Aik for 0 � i; k � N , and the values pi(xj) are Pijfor 0 � i; j � N . Note that Aik = 0 for k > i.Lemma 1 The number of sequential arithmeti steps required by PROCEDURE TTR to ompute theentries of matries P and A is O(N2).Proof In step 1, the omputation of 0, �0, and �0 requires 2N + 1, N , and 1 arithmeti steps,respetively. In step 2, �rst we ompute the P1j 's using N + 1 steps. Then 1, �1, �1, and �1 areomputed using a total of 5N + 5 arithmeti operations. Similarly, step 3 requires (N � 1)(9N + 9)arithmeti steps. The omputation of Aik in step 4 requires 3(N�1)+4(1+2+� � �+N�1) = 2N2+N�5arithmeti steps. Thus a total of 11N2 + 10N � 6 = O(N2) (9)arithmeti steps are required by PROCEDURE TTR . 22 The Parallel AlgorithmIn this setion we onsider the implementation of PROCEDURE TTR on a message-passing multi-proessor. In this arhiteture, eah proessor has its own loal physial memory and a point-to-pointinterproessor ommuniation network provides a mehanism for ommuniation between proessors.The �rst generation message-passing multiproessors adopt a store-and-forward ommuniation meh-anism and most ommonly a hyperube topology. Seond generation multiproessors have more ad-vaned ommuniation mehanisms utilizing rossbar swithes at the nodes and the system an beassumed to be fully onneted for most pratial purposes.2



Sine the ommuniation overhead has a great impat on the performane of an algorithm, the om-muniation pattern of the parallel algorithm should be arefully designed to redue the ommuniationomplexity [5, 6, 10℄. We give an eÆient implementation of PROCEDURE TTR on the hyperubemultiproessor. This implementation makes use of hyperube spanning trees for data aumulationand broadast, and uses a Gray ode mapping to provide neighboring virtual labels for frequentlyommuniating proessors.Following the widely aepted nomenlature, we assume that in the hyperube multiproessor anode an send a data item to one of its d neighbors by issuing SEND (X; target node) where X isthe item and target node is the node to whih the data is being sent. The target node reeives thedata by exeuting RECEIVE (X). A SEND/RECEIVE pair onstitutes a routing step. We will reordthe number of parallel routing steps for the algorithms presented. A more detailed analysis of theommuniation requirements of the presented algorithms is in setion 4.To implement PROCEDURE TTR on a hyperube with 2d = N + 1 nodes we use the followingtwo proedures:1. PROCEDURE BROADCAST (X) broadasts data item X, whih is initially loated in node2d � 1, to all nodes. This algorithm makes use of a hyperube spanning tree [5, 10℄ rooted atnode 2d � 1. The spanning tree of a 3-ube rooted at node 7 is illustrated in Figure 2.2. PROCEDURE ACCUMULATE (Xj) omputes the sum S = P2d�1j=0 Xj where Xj is a dataitem initially loated in node j for 0 � j � 2d � 1. After the exeution of PROCEDUREACCUMULATE(Xj), the sum S an be found in node 2d � 1. This proedure also uses thespanning tree of the ube rooted at node 2d � 1.The proedures BROADCAST and ACCUMULATE are given in Figure 3. An inspetion shows thatPROCEDURE BROADCAST uses d parallel routing steps to omplete if X is a single oating-pointnumber. Similarly PROCEDURE ACCUMULATE takes d parallel routing and d parallel oating-pointaddition steps.These routines allow us to implement steps 1,2, and 3 of PROCEDURE TTR on the hyperube.The implementation of step 4 is a little more subtle and requires a Gray ode, G, of the node id 'sof the proessors. For our purposes, it suÆes to take G as a permutation of the set of node id 'sf0; 1; 2; : : : ; 2d� 1g suh that the Hamming distane between G(k) and G(k+1) is 1 for 0 � k � 2d� 2[8℄. In the implementation of PROCEDURE TTR on the hyperube, we perform the omputation ofthe kth olumn of matrix A in the proessor whose node id is G(k). Hene Ai+1;k is omputed at3



proessor G(k) for i = 0; 1; : : : ; N � 1. Note that the omputation of Ai+1;k requires quantities Ai;k�1,Aik, and Ai�1;k as well as �i and �i. After the values of the polynomials Pij are omputed, the vetors� and � are readily available at every node. The terms Aik and Ai�1;k themselves are loated in nodeG(k). The only term that is missing from the node G(k) for the omputation of Ai+1;k is Ai;k�1. Sinethis element is loated in proessor G(k� 1), whih is one of the neighbors of proessor G(k), we havefast aess to this element. Thus by making use of the Gray ode, we make sure that adjaent olumnsof the A matrix are omputed by neighboring nodes in the hyperube.In the implementation of PROCEDURE TTR on the hyperube, we assume for now that N+1 = 2dand for 0 � j � N , proessor j initially ontains the initial data x0; x1; : : : ; xN together with wj .PROCEDURE TTR CUBE is given in Figure 4.Theorem 1 PROCEDURE TTR CUBE omputes the entries of matries P and A using O(N logN)parallel arithmeti operations and O(N logN) routing steps on a hyperube with N + 1 nodes.Proof By ounting the number of arithmeti steps required for the exeution of ACCUMULATEand BROADCAST, and all of the remaining steps involved in PROCEDURE TTR CUBE, we �nd thenumber of arithmeti operations as2N log(N + 1) + 13N + 2 log(N + 1)� 5 = O(N logN) . (10)Similarly in PROCEDURE TTR CUBE, the subproedures ACCUMULATE and BROADCASTare alled 4 + 2(N � 1) and 3 + 2(N � 1) times, respetively. Also, for the omputation of Ai+1;k, weexeute SEND/RECEIVE pairs forN�1 times. Sine eah suh all to PROCEDURE ACCUMULATEand BROADCAST inurs d = log(N + 1) routing steps, the total number of routing steps is4N log(N + 1) +N + 3 log(N + 1)� 1 = O(N logN) . (11)Thus the total number of arithmeti and routing steps required by PROCEDURE TTR does notexeed O(N logN). 2In the above analysis we have not onsidered the initial loading of the ube, i.e., the loading of thedata from the host proessors to all nodes of the hyperube. This an be ahieved by �rst sending thedata xi; wi for i = 0; 1; : : : ; N from the host proessor to a partiular node of the ube, for example tonode 0. This will take 2(N +1) routing steps. Node 0 then proeeds to broadast the data to all nodesusing PROCEDURE BROADCAST. This step takes an additional 2(N +1)d routing steps. Thus, theinitial loading of the ube also requires O(N logN) routing operations, and does not inrease the orderof the running time of PROCEDURE TTR CUBE.4



3 Partitioning Large ProblemsHere we analyze the more realisti ase in whih the number of proessors p available on the hyperubedoes not math the size of the input, i.e., p 6= N +1. The most interesting situation is when p < N +1,sine there should be no diÆulty when p > N + 1 nodes are available. One an simply use a subsetof these nodes to implement PROCEDURE TTR CUBE. Thus, we onsider the ase p < N + 1. Forsimpliity assume that p divides N + 1, i.e., pm = N + 1 for some m > 1. We partition the matrix Pin a very simple manner: the �rst m olumns are omputed at node 0, the seond m olumns at node1, et. The partitioning of A is similar: �rst m olumns are omputed at proessor G(0), the seondat proessor G(1), the third at node G(2), and so on.This partitioning sheme allows us to ompute the values and the oeÆients of the orthogonalpolynomials in an eÆient manner.Theorem 2 PROCEDURE TTR CUBE omputes the entries of the matries P and A using O(N2p +N log p) parallel arithmeti and O(N2p +N log p) routing steps on a hyperube with p < N+1 proessors.Proof First we onsider the limited proessor implementation of PROCEDURE ACCUMULATE andPROCEDURE BROADCAST. We partitionN+1 elements to be summed suh that eah node ontainsm elements where pm = N + 1. First we perform sequential summation at eah node simultaneouslywhih will take m� 1 arithmeti steps to omplete. Then we use a binary tree addition proedure tosum these sum bloks of eah node to �nd the total sum. This step will take log p arithmeti and log prouting steps. Thus, PROCEDURE ACCUMULATE takes m � 1 + log p arithmeti operations andlog p routing operations to �nd the sum of N + 1 elements distributed on p nodes.Now we onsider limited proessor implementation of PROCEDURE BROADCAST, and its use inPROCEDURE TTR CUBE. We note at eah step in PROCEDURE TTR CUBE, an element (either �ior �i) is broadast to all the nodes on the ube. Sine we have only p < N+1 proessors available, thisproedure will take log p routing steps to omplete. For example, we ompute P1j = xj��0 at proessorq for j = qm+ 0; qm+ 1; : : : ; qm+m� 1. Thus for the omputation of P1j for qm < j < qm+m� 1we need to send �0 from the node p � 1 (at whih �0 is initially omputed using PROCEDUREACCUMULATE) to all nodes q = 0; 1; : : : ; p� 2 whih will take log p routing steps using the spanningtree in Figure 2.Thus for the omputation of the entries of the matrix P we ount the number of arithmeti androuting operations, and �nd 9Nm+ 2N log p+ 2 log p� 1 and 4N log p+ 3 log p, respetively.Note that we have partitioned the matrix A suh that the �rst m olumns are omputed at theproessor G(0), the seond group is omputed at the node G(1), and so on. Thus the element Ai;qm+k5



is omputed at the node G(q) for 0 � k � m� 1 and for i = 0; 1; : : : ; N .The analysis an be greatly simpli�ed by onsidering only those operations whih proessorG(0) hasto perform. Sine the elements Ai;0; Ai;1; : : : ; Ai;m�1 are omputed at the node G(0), there is no needto perform SEND/RECEIVE operations for i = 0; 1; : : : ;m�1. For i = m;m+1; : : : ; N , the proessorG(q) will send Ai;qm+m�1 to proessor G(q + 1) for the omputation of Ai+1;(q+1)m whih is the �rstelement to be omputed at this proessor. It follows from this observation that the omputation of theentries of A will take N �m parallel routing steps.Also at the �rst step proessor G(0) omputes quantities Ai;0; Ai;1; : : : ; Ai;m�1 for i = 0; 1; : : : ;m�1exept for A10 and Aii, 0 � i � m� 1. Eah of these operations takes 4 arithmeti steps in the lightof (7). The total number of arithmeti operations for this step beomes 4(1 + 2+ � � �+m)� 4� 4m =2m2 � 2m+ 4. The elements that follow, Ai;k for m � i � N and 0 � k � m� 1, are omputed usingloally available data. Therefore this step takes (N + 1�m)4m arithmeti steps.Thus we observe that the total number of arithmeti and routing operations for the omputationof the entries A beomes 4Nm� 2m2 + 2m� 4 and N �m, respetively.Hene, PROCEDURE TTR CUBE takes13Nm+ 2N log p+ 2 log p+ 2m� 2m2 � 5 = O(N2p +N log p) (12)parallel arithmeti steps, and4N log p+N + 3 log p�m = O(N log p) (13)parallel routing steps to ompute the entries of matries P and A on a hyperube with N +1 nodes. 2Note that the routing steps given by (13) do not take into aount the initial loading of the data,whih requires an additional 2(N + 1) + 2(N + 1) log p routing operations.4 EÆieny AnalysisWe de�ne �omp as the time required to perform a oating-point operation, and �omm the time requiredto transfer a oating-point number to a neighboring node for the system under onsideration. Usingequations (9), (10), and (11) and taking the initial loading step into aount, we �nd the sequentialand the parallel time required by PROCEDURE TTR in terms of the above parameters asTseq = �11N2 + 10N � 6� �omp , (14)Tpar = �13Nm+ 2N log p+ 2 log p+ 2m� 2m2 � 5� �omp+ (6N log p+ 3N + 5 log p�m+ 2) �omm , (15)6



where m = (N + 1)=p. The eÆieny of an implementation is a funtion of the input size N + 1,the number of proessors p, and also the parameter � = �omm=�omp. It is well known that thisparameter is very ruial in evaluating the performane of multiproessor systems. Usually � � 1, e.g.our experiments indiated that � > 25 on the �rst generation Intel hyperube. Figure 5 shows theeÆieny of the parallel algorithm presented as a funtion of N + 1 for � = 1; 5; 10; 50 and for p = 8.Thus we see that the eÆieny of our partiular implementation of PROCEDURE TTR on the ubeapproahes 0.80 when � is lose to 1 and N � p.We have implemented PROCEDURE TTR on a �rst generation Intel ube with 8 nodes (InteliPSC/d3 hyperube running XENIX 286 R3.4 and iPSC Software R3.1) and also performed experi-ments, similar to those mentioned in [6℄, to measure �omp and �omm. The experiments indiated that�omp � 0:058 milliseonds (if the oating-point operation is taken to be multipliation, addition, orsubtration) and �omm � 1:48 milliseonds, whih implies that � � 25:5. The �rst generation Intelube uses the store-and-forward ommuniation sheme whih is very slow. This seems to be the fun-damental reason for performane degradation. The timing results are shown in Table 1 for values of8 � N + 1 � 72. Using formulae (14) and (15) we also tabulate the estimated eÆieny of PROCE-DURE TTR. The table shows that our analysis of eÆieny is rather onservative; on a real mahine,one an obtain higher speedup and eÆieny than the estimation suggests.5 ConlusionsWe have presented a sequential algorithm and its parallel version to onstrut an orthogonal family ofpolynomials with respet to a given disrete inner produt. The algorithm makes use of the lassialthree-term reursion formula to generate both the oeÆients (matrix P ) and the values (matrix A) ofthe orthogonal polynomials pi(x) for 0 � i � N .The sequential version requires O(N2) arithmeti operations to onstrut the matries P and A.The parallel version of the algorithm requires O(N logN) parallel arithmeti steps on a distributed-memory multiproessor withN+1 proessors. If hyperube topology is assumed, then the algorithm anbe implemented with an additional overhead of O(N logN) routing steps. Thus in e�et, the parallelalgorithm in this ase onstruts eah orthogonal polynomial using O(logN) parallel arithmeti andO(logN) ommuniation steps. The implementation for the hyperube is quite simple, requiring onlysalar single node broadast and aumulation proedures together with a standard Gray ode mappingfor eÆient ommuniation.A straightforward partitioning sheme of the input allows for the implementation of the algorithmin the limited proessor ase. The limited proessor version of the algorithm is shown to require7



O(N2p +N log p) arithmeti and O(N log p) routing steps on a hyperube with p � N + 1 nodes.Finally, experimental results obtained on a �rst generation Intel ube with 8 nodes indiate betterperformane parameters of the limited proessor version of the parallel algorithm then our theoretialestimates suggest.
Referenes[1℄ �O. E~geio~glu and C� . K. Ko�. A fast algorithm for rational interpolation via orthogonal polynomials.Mathematis of Computation, 53(187):249{264, July 1989.[2℄ �O. E~geio~glu and C� . K. Ko�. Parallel rational interpolation. Intern. J. Computer Math., 32:217{231, 1990.[3℄ G. E. Forsythe. Generation and use of orthogonal polynomials for data-�tting with a digitalomputer. Journal of SIAM, 5(2):74{88, 1957.[4℄ F. B. Hildebrand. Introdution to Numerial Analysis. MGraw-Hill, 1956.[5℄ S. L. Johnsson. Communiation eÆient basi linear algebra omputations on hyperube arhi-tetures. Journal of Parallel and Distributed Computing, 4:133{172, 1987.[6℄ O. A. MBryan and E. F. Van de Velde. Hyperube algorithms and implementations. SIAMJournal on Sienti� and Statistial Computing, 8(2):s227{s227, Marh 1987.[7℄ A. Ralston and P. Rabinowitz. A First Course in Numerial Analysis. MGraw-Hill, 1985.[8℄ E. M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms. Prentie-Hall, 1977.[9℄ T. J. Rivlin. An Introdution to the Approximation of Funtions. Dover Publiations, In., 1969.[10℄ Y. Saad and M. H. Shultz. Topologial properties of hyperubes. IEEE Transations on Com-puters, 37(7):867{872, July 1988.[11℄ G. Szego. Orthogonal Polynomials. Amerian Mathematial Soiety, 1959.

8



Figure 1. Computation of Pij and Aik for 0 � i; j; k � N .PROCEDURE TTRInput: xj , wj for 0 � j � NOutput: Pij and Aik for 0 � i; j; k � NStep 1. Set P0j = 1 for 0 � j � N and �0 = 0, and ompute0 = NXj=0wjxj , �0 = NXj=0wj , and �0 = 0�0 .Step 2. Set P1j = xj � �0 for 0 � j � N , and ompute1 = NXj=0wjxjP 21j , �1 = NXj=0wjP 21j ,�1 = 1�1 , �1 = �1�0 .Step 3. For 1 � i � N � 1 omputePi+1;j = (xj � �i)Pij � �iPi�1;j for 0 � j � Ni+1 = NXj=0wjxjP 2i+1;j , �i+1 = NXj=0wjP 2i+1;j ,�i+1 = i+1�i+1 , �i+1 = �i+1�i .Step 4. Set Aii = 1 for 0 � i � N , and Aik = 0 for 0 � i < k � N . Set A10 = ��0. For all1 � k < i � N � 1 ompute Ai+1;k = Ai;k�1 � �iAik � �iAi�1;k

9



Figure 2. A hyperube spanning tree rooted at node (111)2.

010
011

000
100
110
111

001
101������	 ������	

������R?
? ?
?

k=2
k=2

k=2
k=1
k=0

k=2
k=1 � �����	 ??

�����	 �����	 �����	
111
101

110
100 011010

000 001
k=1k=0

k=2
k=2 k=1 k=2

k=2

10



Figure 3. The proedures for broadasting and aumulation.PROCEDURE BROADCAST(X)INPUT: X at node 2d � 1OUTPUT: X at all nodesj = node idFOR k = 0 TO d� 1 DOBEGINIF j � 2d � 2k THENSEND(X; j � 2k)IF 2d � 2k � 1 � j � 2d � 2k+1 THENRECEIVE(X)END FOREND BROADCASTPROCEDURE ACCUMULATE(Xj)INPUT: Xj at node j for 0 � j � 2d � 1OUTPUT: P2d�1j=0 Xj at node 2d � 1j = node idFOR k = d� 1 TO 0 DOBEGINIF 2d � 2k � 1 � j � 2d � 2k+1 THENSEND(X; j + 2k)IF j � 2d � 2k THENRECEIVE(TempX)X = X + TempXEND FOREND ACCUMULATE
11



Figure 4. Computation of the entries of P and A on a hyperube.PROCEDURE TTR CUBEINPUT: x0; : : : ; xN and wj at node jOUTPUT: Pij at node j, and Aik at node G(k) for 0 � i � N .j = node id0 =ACCUMULATE(wjxj) ; �0 =ACCUMULATE(wj)IF j = 2d � 1 THEN �0 = 0�0BROADCAST(�0)P1j = xj � �01 =ACCUMULATE(wjxjP 21j) ; �1 =ACCUMULATE(wjP 21j)IF j = 2d � 1 THEN �1 = 1�1 , �1 = �1�0BROADCAST(�1) ; BROADCAST(�1)FOR i = 1 TO N � 1 DOBEGINPi+1;j = (xj � �i)Pij � �iPi�1;ji+1 =ACCUMULATE(wjxjP 2i+1;j) ; �i+1 =ACCUMULATE(wjP 2i+1;j)IF j = 2d � 1 THEN �i+1 = i+1�i+1 , �i+1 = �i+1�iBROADCAST(�i+1) ; BROADCAST(�i+1)END FORk = G�1(node id)IF k = 0 THEN A00 = 1IF k > 0 THEN A0k = 0IF k = 0 THEN A10 = ��0 ; A11 = 1IF k > 1 THEN A1k = 0FOR i = 1 TO N � 1 DOBEGINIF k = i THEN Aik = 1IF k > i THEN Aik = 0IF k = 0 THEN Ai+1;0 = ��iAi0 � �iAi�1;0IF 0 � k � i� 1 THEN SEND(Aik; G(k + 1))IF 1 � k � i THENBEGINRECEIVE(temp Ai;k�1)Ai+1;k = temp Ai;k�1 � �iAik � �iAi�1;kEND IFEND FOREND TTR CUBE 12



Figure 5. EÆieny of PROCEDURE TTR.

13



Table 1. Time and eÆieny of PROCEDURE TTR on an Intel 3-ubeTime (ms) EÆienyN+1 p = 1 p = 8 Measured Estimated8 45 160 0.035 0.01816 185 455 0.051 0.03724 415 655 0.079 0.05532 740 920 0.101 0.07340 1160 1400 0.104 0.08948 1675 1180 0.177 0.10556 2285 1535 0.186 0.12164 2995 1775 0.211 0.13672 3815 2035 0.234 0.150

14


