
A Parallel Algorithm for Generating Dis
rete Orthogonal Polynomials �
�Omer E~ge
io~gluDepartment of Computer S
ien
e,University of California,Santa Barbara, CA 93106 C�etin K. Ko�
Department of Ele
tri
al EngineeringUniversity of HoustonHouston, TX 77204

Abstra
tA parallel algorithm that makes use of the 
lassi
al three-term re
ursion formula to 
onstru
tan orthogonal family of polynomials with respe
t to a dis
rete inner produ
t is proposed. Thealgorithm requires O(N logN) parallel arithmeti
 steps on a distributed-memory multipro
essorwith N + 1 pro
essors to 
onstru
t the polynomials pi(x) for 0 � i � N . If hyper
ube topologyis assumed, the algorithm 
an be implemented with the additional overhead of O(N logN) routingsteps. In this 
ase the implementation is quite simple, requiring only s
alar single node broad
astand a

umulation pro
edures together with a Gray 
ode mapping. The limited pro
essor versionof the algorithm requires O(N2p +N log p) arithmeti
 and O(N log p) routing steps on a hyper
ubewith p � N + 1 nodes. We present some experimental results obtained on an Intel 
ube.Key Words: Dis
rete orthogonal polynomials, parallel algorithms, distributed-memory multipro-
essor, hyper
ube.

�A portion of this work was presented in the Fourth Conferen
e on Hyper
ube Con
urrent Computers and Appli
ations,Monterey, California, Mar
h 6{8, 1989. 0



1 Introdu
tionWe 
onsider generation of polynomials fp0(x); p1(x); : : : ; pN (x)g orthogonal with respe
t to a non-degenerate dis
rete bilinear form< u(x); v(x) > = NXj=0wju(xj)v(xj) , (1)where pi(x) is a moni
 polynomial of degree i. In most appli
ations the weights wj are positive for0 � j � N , and (1) de�nes an inner-produ
t on polynomials of degree � N on the node pointsx0; x1; : : : ; xN . The orthogonal polynomials pi(x) for 0 � i � N 
an be generated using the 
lassi
althree-term re
ursion formula [11℄pi+1(x) = (x� �i)pi(x)� �ipi�1(x) for 0 � i � N � 1 (2)with p�1(x) = 0 and p0(x) = 1 (3)where �i and �i are 
onstants determined as�i = < xpi(x); pi(x) >< pi(x); pi(x) > , �i = < pi(x); pi(x) >< pi�1(x); pi�1(x) > . (4)Orthogonal polynomials with respe
t to a dis
rete bilinear form have appli
ations in rational inter-polation, least-squares polynomial approximation, and smoothing of nonlinear fun
tions [4, 3, 9, 7, 1, 2℄.In some appli
ations it is preferable to use orthogonal polynomials than to solve a set of linear equa-tions. This is mainly due to numeri
al stability problems of the underlying linear systems. For example,the normal equations arising from weighted least-squares polynomial approximation problems resultin an ill-
onditioned system. Thus, it be
omes inevitable to use dis
rete orthogonal polynomials forleast-squares polynomial approximation problems [3, 7℄.Consider the (N +1)� (N +1) matrix P = [Pij ℄ of the values of the polynomials pi(x) at the nodepoints xj for 0 � i; j � N , i.e., Pij = pi(xj) for 0 � i; j � N . (5)The entries of P 
an be 
omputed by spe
ializing the three-term re
ursion (2) by putting x = xjfor j = 0; 1; : : : ; N . Furthermore, (2) indu
es a doubly-indexed re
ursion on the 
oeÆ
ients of thepolynomials pi(x) for 0 � i � N dire
tly. More pre
isely, let A = [Aik℄ be the (N +1)� (N +1) matrixin whi
h the ith row 
onsists of the 
oeÆ
ients of the polynomial pi(x), i.e.,pi(x) = iXk=0Aikxk . (6)1



Then A is a lower triangular matrix with unit diagonal whose elements satisfy the re
ursionAi+1;k = Ai;k�1 � �iAik � �iAi�1;k for 0 � k � i � N (7)indu
ed by (2). In (7) we takeAi;�1 = A�1;k = 0 for 0 � i; k � N � 1 . (8)In the generation of the 
oeÆ
ients of the polynomials pi(x) for 0 � i � N using the re
ursion(7), the values of the polynomials pi(x) at the node points xj (i.e. Pij) are also required at ea
h stepto 
ompute quantities �i and �i. Thus it is ne
essary to generate the values and the 
oeÆ
ients intandem. This 
an be done by iterating �rst the re
ursion (2) for the values and then the re
ursion (7)for the 
oeÆ
ients.The pro
edure given in Figure 1 (PROCEDURE TTR) 
omputes the entries of matri
es P and Ausing re
ursions (2) and (7) together with the initial 
onditions (3) and (8). At the end of PROCEDURETTR, the 
oeÆ
ients of the polynomials pi(x) are Aik for 0 � i; k � N , and the values pi(xj) are Pijfor 0 � i; j � N . Note that Aik = 0 for k > i.Lemma 1 The number of sequential arithmeti
 steps required by PROCEDURE TTR to 
ompute theentries of matri
es P and A is O(N2).Proof In step 1, the 
omputation of 
0, �0, and �0 requires 2N + 1, N , and 1 arithmeti
 steps,respe
tively. In step 2, �rst we 
ompute the P1j 's using N + 1 steps. Then 
1, �1, �1, and �1 are
omputed using a total of 5N + 5 arithmeti
 operations. Similarly, step 3 requires (N � 1)(9N + 9)arithmeti
 steps. The 
omputation of Aik in step 4 requires 3(N�1)+4(1+2+� � �+N�1) = 2N2+N�5arithmeti
 steps. Thus a total of 11N2 + 10N � 6 = O(N2) (9)arithmeti
 steps are required by PROCEDURE TTR . 22 The Parallel AlgorithmIn this se
tion we 
onsider the implementation of PROCEDURE TTR on a message-passing multi-pro
essor. In this ar
hite
ture, ea
h pro
essor has its own lo
al physi
al memory and a point-to-pointinterpro
essor 
ommuni
ation network provides a me
hanism for 
ommuni
ation between pro
essors.The �rst generation message-passing multipro
essors adopt a store-and-forward 
ommuni
ation me
h-anism and most 
ommonly a hyper
ube topology. Se
ond generation multipro
essors have more ad-van
ed 
ommuni
ation me
hanisms utilizing 
rossbar swit
hes at the nodes and the system 
an beassumed to be fully 
onne
ted for most pra
ti
al purposes.2



Sin
e the 
ommuni
ation overhead has a great impa
t on the performan
e of an algorithm, the 
om-muni
ation pattern of the parallel algorithm should be 
arefully designed to redu
e the 
ommuni
ation
omplexity [5, 6, 10℄. We give an eÆ
ient implementation of PROCEDURE TTR on the hyper
ubemultipro
essor. This implementation makes use of hyper
ube spanning trees for data a

umulationand broad
ast, and uses a Gray 
ode mapping to provide neighboring virtual labels for frequently
ommuni
ating pro
essors.Following the widely a

epted nomen
lature, we assume that in the hyper
ube multipro
essor anode 
an send a data item to one of its d neighbors by issuing SEND (X; target node) where X isthe item and target node is the node to whi
h the data is being sent. The target node re
eives thedata by exe
uting RECEIVE (X). A SEND/RECEIVE pair 
onstitutes a routing step. We will re
ordthe number of parallel routing steps for the algorithms presented. A more detailed analysis of the
ommuni
ation requirements of the presented algorithms is in se
tion 4.To implement PROCEDURE TTR on a hyper
ube with 2d = N + 1 nodes we use the followingtwo pro
edures:1. PROCEDURE BROADCAST (X) broad
asts data item X, whi
h is initially lo
ated in node2d � 1, to all nodes. This algorithm makes use of a hyper
ube spanning tree [5, 10℄ rooted atnode 2d � 1. The spanning tree of a 3-
ube rooted at node 7 is illustrated in Figure 2.2. PROCEDURE ACCUMULATE (Xj) 
omputes the sum S = P2d�1j=0 Xj where Xj is a dataitem initially lo
ated in node j for 0 � j � 2d � 1. After the exe
ution of PROCEDUREACCUMULATE(Xj), the sum S 
an be found in node 2d � 1. This pro
edure also uses thespanning tree of the 
ube rooted at node 2d � 1.The pro
edures BROADCAST and ACCUMULATE are given in Figure 3. An inspe
tion shows thatPROCEDURE BROADCAST uses d parallel routing steps to 
omplete if X is a single 
oating-pointnumber. Similarly PROCEDURE ACCUMULATE takes d parallel routing and d parallel 
oating-pointaddition steps.These routines allow us to implement steps 1,2, and 3 of PROCEDURE TTR on the hyper
ube.The implementation of step 4 is a little more subtle and requires a Gray 
ode, G, of the node id 'sof the pro
essors. For our purposes, it suÆ
es to take G as a permutation of the set of node id 'sf0; 1; 2; : : : ; 2d� 1g su
h that the Hamming distan
e between G(k) and G(k+1) is 1 for 0 � k � 2d� 2[8℄. In the implementation of PROCEDURE TTR on the hyper
ube, we perform the 
omputation ofthe kth 
olumn of matrix A in the pro
essor whose node id is G(k). Hen
e Ai+1;k is 
omputed at3



pro
essor G(k) for i = 0; 1; : : : ; N � 1. Note that the 
omputation of Ai+1;k requires quantities Ai;k�1,Aik, and Ai�1;k as well as �i and �i. After the values of the polynomials Pij are 
omputed, the ve
tors� and � are readily available at every node. The terms Aik and Ai�1;k themselves are lo
ated in nodeG(k). The only term that is missing from the node G(k) for the 
omputation of Ai+1;k is Ai;k�1. Sin
ethis element is lo
ated in pro
essor G(k� 1), whi
h is one of the neighbors of pro
essor G(k), we havefast a

ess to this element. Thus by making use of the Gray 
ode, we make sure that adja
ent 
olumnsof the A matrix are 
omputed by neighboring nodes in the hyper
ube.In the implementation of PROCEDURE TTR on the hyper
ube, we assume for now that N+1 = 2dand for 0 � j � N , pro
essor j initially 
ontains the initial data x0; x1; : : : ; xN together with wj .PROCEDURE TTR CUBE is given in Figure 4.Theorem 1 PROCEDURE TTR CUBE 
omputes the entries of matri
es P and A using O(N logN)parallel arithmeti
 operations and O(N logN) routing steps on a hyper
ube with N + 1 nodes.Proof By 
ounting the number of arithmeti
 steps required for the exe
ution of ACCUMULATEand BROADCAST, and all of the remaining steps involved in PROCEDURE TTR CUBE, we �nd thenumber of arithmeti
 operations as2N log(N + 1) + 13N + 2 log(N + 1)� 5 = O(N logN) . (10)Similarly in PROCEDURE TTR CUBE, the subpro
edures ACCUMULATE and BROADCASTare 
alled 4 + 2(N � 1) and 3 + 2(N � 1) times, respe
tively. Also, for the 
omputation of Ai+1;k, weexe
ute SEND/RECEIVE pairs forN�1 times. Sin
e ea
h su
h 
all to PROCEDURE ACCUMULATEand BROADCAST in
urs d = log(N + 1) routing steps, the total number of routing steps is4N log(N + 1) +N + 3 log(N + 1)� 1 = O(N logN) . (11)Thus the total number of arithmeti
 and routing steps required by PROCEDURE TTR does notex
eed O(N logN). 2In the above analysis we have not 
onsidered the initial loading of the 
ube, i.e., the loading of thedata from the host pro
essors to all nodes of the hyper
ube. This 
an be a
hieved by �rst sending thedata xi; wi for i = 0; 1; : : : ; N from the host pro
essor to a parti
ular node of the 
ube, for example tonode 0. This will take 2(N +1) routing steps. Node 0 then pro
eeds to broad
ast the data to all nodesusing PROCEDURE BROADCAST. This step takes an additional 2(N +1)d routing steps. Thus, theinitial loading of the 
ube also requires O(N logN) routing operations, and does not in
rease the orderof the running time of PROCEDURE TTR CUBE.4



3 Partitioning Large ProblemsHere we analyze the more realisti
 
ase in whi
h the number of pro
essors p available on the hyper
ubedoes not mat
h the size of the input, i.e., p 6= N +1. The most interesting situation is when p < N +1,sin
e there should be no diÆ
ulty when p > N + 1 nodes are available. One 
an simply use a subsetof these nodes to implement PROCEDURE TTR CUBE. Thus, we 
onsider the 
ase p < N + 1. Forsimpli
ity assume that p divides N + 1, i.e., pm = N + 1 for some m > 1. We partition the matrix Pin a very simple manner: the �rst m 
olumns are 
omputed at node 0, the se
ond m 
olumns at node1, et
. The partitioning of A is similar: �rst m 
olumns are 
omputed at pro
essor G(0), the se
ondat pro
essor G(1), the third at node G(2), and so on.This partitioning s
heme allows us to 
ompute the values and the 
oeÆ
ients of the orthogonalpolynomials in an eÆ
ient manner.Theorem 2 PROCEDURE TTR CUBE 
omputes the entries of the matri
es P and A using O(N2p +N log p) parallel arithmeti
 and O(N2p +N log p) routing steps on a hyper
ube with p < N+1 pro
essors.Proof First we 
onsider the limited pro
essor implementation of PROCEDURE ACCUMULATE andPROCEDURE BROADCAST. We partitionN+1 elements to be summed su
h that ea
h node 
ontainsm elements where pm = N + 1. First we perform sequential summation at ea
h node simultaneouslywhi
h will take m� 1 arithmeti
 steps to 
omplete. Then we use a binary tree addition pro
edure tosum these sum blo
ks of ea
h node to �nd the total sum. This step will take log p arithmeti
 and log prouting steps. Thus, PROCEDURE ACCUMULATE takes m � 1 + log p arithmeti
 operations andlog p routing operations to �nd the sum of N + 1 elements distributed on p nodes.Now we 
onsider limited pro
essor implementation of PROCEDURE BROADCAST, and its use inPROCEDURE TTR CUBE. We note at ea
h step in PROCEDURE TTR CUBE, an element (either �ior �i) is broad
ast to all the nodes on the 
ube. Sin
e we have only p < N+1 pro
essors available, thispro
edure will take log p routing steps to 
omplete. For example, we 
ompute P1j = xj��0 at pro
essorq for j = qm+ 0; qm+ 1; : : : ; qm+m� 1. Thus for the 
omputation of P1j for qm < j < qm+m� 1we need to send �0 from the node p � 1 (at whi
h �0 is initially 
omputed using PROCEDUREACCUMULATE) to all nodes q = 0; 1; : : : ; p� 2 whi
h will take log p routing steps using the spanningtree in Figure 2.Thus for the 
omputation of the entries of the matrix P we 
ount the number of arithmeti
 androuting operations, and �nd 9Nm+ 2N log p+ 2 log p� 1 and 4N log p+ 3 log p, respe
tively.Note that we have partitioned the matrix A su
h that the �rst m 
olumns are 
omputed at thepro
essor G(0), the se
ond group is 
omputed at the node G(1), and so on. Thus the element Ai;qm+k5



is 
omputed at the node G(q) for 0 � k � m� 1 and for i = 0; 1; : : : ; N .The analysis 
an be greatly simpli�ed by 
onsidering only those operations whi
h pro
essorG(0) hasto perform. Sin
e the elements Ai;0; Ai;1; : : : ; Ai;m�1 are 
omputed at the node G(0), there is no needto perform SEND/RECEIVE operations for i = 0; 1; : : : ;m�1. For i = m;m+1; : : : ; N , the pro
essorG(q) will send Ai;qm+m�1 to pro
essor G(q + 1) for the 
omputation of Ai+1;(q+1)m whi
h is the �rstelement to be 
omputed at this pro
essor. It follows from this observation that the 
omputation of theentries of A will take N �m parallel routing steps.Also at the �rst step pro
essor G(0) 
omputes quantities Ai;0; Ai;1; : : : ; Ai;m�1 for i = 0; 1; : : : ;m�1ex
ept for A10 and Aii, 0 � i � m� 1. Ea
h of these operations takes 4 arithmeti
 steps in the lightof (7). The total number of arithmeti
 operations for this step be
omes 4(1 + 2+ � � �+m)� 4� 4m =2m2 � 2m+ 4. The elements that follow, Ai;k for m � i � N and 0 � k � m� 1, are 
omputed usinglo
ally available data. Therefore this step takes (N + 1�m)4m arithmeti
 steps.Thus we observe that the total number of arithmeti
 and routing operations for the 
omputationof the entries A be
omes 4Nm� 2m2 + 2m� 4 and N �m, respe
tively.Hen
e, PROCEDURE TTR CUBE takes13Nm+ 2N log p+ 2 log p+ 2m� 2m2 � 5 = O(N2p +N log p) (12)parallel arithmeti
 steps, and4N log p+N + 3 log p�m = O(N log p) (13)parallel routing steps to 
ompute the entries of matri
es P and A on a hyper
ube with N +1 nodes. 2Note that the routing steps given by (13) do not take into a

ount the initial loading of the data,whi
h requires an additional 2(N + 1) + 2(N + 1) log p routing operations.4 EÆ
ien
y AnalysisWe de�ne �
omp as the time required to perform a 
oating-point operation, and �
omm the time requiredto transfer a 
oating-point number to a neighboring node for the system under 
onsideration. Usingequations (9), (10), and (11) and taking the initial loading step into a

ount, we �nd the sequentialand the parallel time required by PROCEDURE TTR in terms of the above parameters asTseq = �11N2 + 10N � 6� �
omp , (14)Tpar = �13Nm+ 2N log p+ 2 log p+ 2m� 2m2 � 5� �
omp+ (6N log p+ 3N + 5 log p�m+ 2) �
omm , (15)6



where m = (N + 1)=p. The eÆ
ien
y of an implementation is a fun
tion of the input size N + 1,the number of pro
essors p, and also the parameter � = �
omm=�
omp. It is well known that thisparameter is very 
ru
ial in evaluating the performan
e of multipro
essor systems. Usually � � 1, e.g.our experiments indi
ated that � > 25 on the �rst generation Intel hyper
ube. Figure 5 shows theeÆ
ien
y of the parallel algorithm presented as a fun
tion of N + 1 for � = 1; 5; 10; 50 and for p = 8.Thus we see that the eÆ
ien
y of our parti
ular implementation of PROCEDURE TTR on the 
ubeapproa
hes 0.80 when � is 
lose to 1 and N � p.We have implemented PROCEDURE TTR on a �rst generation Intel 
ube with 8 nodes (InteliPSC/d3 hyper
ube running XENIX 286 R3.4 and iPSC Software R3.1) and also performed experi-ments, similar to those mentioned in [6℄, to measure �
omp and �
omm. The experiments indi
ated that�
omp � 0:058 millise
onds (if the 
oating-point operation is taken to be multipli
ation, addition, orsubtra
tion) and �
omm � 1:48 millise
onds, whi
h implies that � � 25:5. The �rst generation Intel
ube uses the store-and-forward 
ommuni
ation s
heme whi
h is very slow. This seems to be the fun-damental reason for performan
e degradation. The timing results are shown in Table 1 for values of8 � N + 1 � 72. Using formulae (14) and (15) we also tabulate the estimated eÆ
ien
y of PROCE-DURE TTR. The table shows that our analysis of eÆ
ien
y is rather 
onservative; on a real ma
hine,one 
an obtain higher speedup and eÆ
ien
y than the estimation suggests.5 Con
lusionsWe have presented a sequential algorithm and its parallel version to 
onstru
t an orthogonal family ofpolynomials with respe
t to a given dis
rete inner produ
t. The algorithm makes use of the 
lassi
althree-term re
ursion formula to generate both the 
oeÆ
ients (matrix P ) and the values (matrix A) ofthe orthogonal polynomials pi(x) for 0 � i � N .The sequential version requires O(N2) arithmeti
 operations to 
onstru
t the matri
es P and A.The parallel version of the algorithm requires O(N logN) parallel arithmeti
 steps on a distributed-memory multipro
essor withN+1 pro
essors. If hyper
ube topology is assumed, then the algorithm 
anbe implemented with an additional overhead of O(N logN) routing steps. Thus in e�e
t, the parallelalgorithm in this 
ase 
onstru
ts ea
h orthogonal polynomial using O(logN) parallel arithmeti
 andO(logN) 
ommuni
ation steps. The implementation for the hyper
ube is quite simple, requiring onlys
alar single node broad
ast and a

umulation pro
edures together with a standard Gray 
ode mappingfor eÆ
ient 
ommuni
ation.A straightforward partitioning s
heme of the input allows for the implementation of the algorithmin the limited pro
essor 
ase. The limited pro
essor version of the algorithm is shown to require7



O(N2p +N log p) arithmeti
 and O(N log p) routing steps on a hyper
ube with p � N + 1 nodes.Finally, experimental results obtained on a �rst generation Intel 
ube with 8 nodes indi
ate betterperforman
e parameters of the limited pro
essor version of the parallel algorithm then our theoreti
alestimates suggest.
Referen
es[1℄ �O. E~ge
io~glu and C� . K. Ko�
. A fast algorithm for rational interpolation via orthogonal polynomials.Mathemati
s of Computation, 53(187):249{264, July 1989.[2℄ �O. E~ge
io~glu and C� . K. Ko�
. Parallel rational interpolation. Intern. J. Computer Math., 32:217{231, 1990.[3℄ G. E. Forsythe. Generation and use of orthogonal polynomials for data-�tting with a digital
omputer. Journal of SIAM, 5(2):74{88, 1957.[4℄ F. B. Hildebrand. Introdu
tion to Numeri
al Analysis. M
Graw-Hill, 1956.[5℄ S. L. Johnsson. Communi
ation eÆ
ient basi
 linear algebra 
omputations on hyper
ube ar
hi-te
tures. Journal of Parallel and Distributed Computing, 4:133{172, 1987.[6℄ O. A. M
Bryan and E. F. Van de Velde. Hyper
ube algorithms and implementations. SIAMJournal on S
ienti�
 and Statisti
al Computing, 8(2):s227{s227, Mar
h 1987.[7℄ A. Ralston and P. Rabinowitz. A First Course in Numeri
al Analysis. M
Graw-Hill, 1985.[8℄ E. M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms. Prenti
e-Hall, 1977.[9℄ T. J. Rivlin. An Introdu
tion to the Approximation of Fun
tions. Dover Publi
ations, In
., 1969.[10℄ Y. Saad and M. H. S
hultz. Topologi
al properties of hyper
ubes. IEEE Transa
tions on Com-puters, 37(7):867{872, July 1988.[11℄ G. Szego. Orthogonal Polynomials. Ameri
an Mathemati
al So
iety, 1959.

8



Figure 1. Computation of Pij and Aik for 0 � i; j; k � N .PROCEDURE TTRInput: xj , wj for 0 � j � NOutput: Pij and Aik for 0 � i; j; k � NStep 1. Set P0j = 1 for 0 � j � N and �0 = 0, and 
ompute
0 = NXj=0wjxj , �0 = NXj=0wj , and �0 = 
0�0 .Step 2. Set P1j = xj � �0 for 0 � j � N , and 
ompute
1 = NXj=0wjxjP 21j , �1 = NXj=0wjP 21j ,�1 = 
1�1 , �1 = �1�0 .Step 3. For 1 � i � N � 1 
omputePi+1;j = (xj � �i)Pij � �iPi�1;j for 0 � j � N
i+1 = NXj=0wjxjP 2i+1;j , �i+1 = NXj=0wjP 2i+1;j ,�i+1 = 
i+1�i+1 , �i+1 = �i+1�i .Step 4. Set Aii = 1 for 0 � i � N , and Aik = 0 for 0 � i < k � N . Set A10 = ��0. For all1 � k < i � N � 1 
ompute Ai+1;k = Ai;k�1 � �iAik � �iAi�1;k

9



Figure 2. A hyper
ube spanning tree rooted at node (111)2.

010
011

000
100
110
111

001
101������	 ������	

������R?
? ?
?

k=2
k=2

k=2
k=1
k=0

k=2
k=1 � �����	 ??

�����	 �����	 �����	
111
101

110
100 011010

000 001
k=1k=0

k=2
k=2 k=1 k=2

k=2

10



Figure 3. The pro
edures for broad
asting and a

umulation.PROCEDURE BROADCAST(X)INPUT: X at node 2d � 1OUTPUT: X at all nodesj = node idFOR k = 0 TO d� 1 DOBEGINIF j � 2d � 2k THENSEND(X; j � 2k)IF 2d � 2k � 1 � j � 2d � 2k+1 THENRECEIVE(X)END FOREND BROADCASTPROCEDURE ACCUMULATE(Xj)INPUT: Xj at node j for 0 � j � 2d � 1OUTPUT: P2d�1j=0 Xj at node 2d � 1j = node idFOR k = d� 1 TO 0 DOBEGINIF 2d � 2k � 1 � j � 2d � 2k+1 THENSEND(X; j + 2k)IF j � 2d � 2k THENRECEIVE(TempX)X = X + TempXEND FOREND ACCUMULATE
11



Figure 4. Computation of the entries of P and A on a hyper
ube.PROCEDURE TTR CUBEINPUT: x0; : : : ; xN and wj at node jOUTPUT: Pij at node j, and Aik at node G(k) for 0 � i � N .j = node id
0 =ACCUMULATE(wjxj) ; �0 =ACCUMULATE(wj)IF j = 2d � 1 THEN �0 = 
0�0BROADCAST(�0)P1j = xj � �0
1 =ACCUMULATE(wjxjP 21j) ; �1 =ACCUMULATE(wjP 21j)IF j = 2d � 1 THEN �1 = 
1�1 , �1 = �1�0BROADCAST(�1) ; BROADCAST(�1)FOR i = 1 TO N � 1 DOBEGINPi+1;j = (xj � �i)Pij � �iPi�1;j
i+1 =ACCUMULATE(wjxjP 2i+1;j) ; �i+1 =ACCUMULATE(wjP 2i+1;j)IF j = 2d � 1 THEN �i+1 = 
i+1�i+1 , �i+1 = �i+1�iBROADCAST(�i+1) ; BROADCAST(�i+1)END FORk = G�1(node id)IF k = 0 THEN A00 = 1IF k > 0 THEN A0k = 0IF k = 0 THEN A10 = ��0 ; A11 = 1IF k > 1 THEN A1k = 0FOR i = 1 TO N � 1 DOBEGINIF k = i THEN Aik = 1IF k > i THEN Aik = 0IF k = 0 THEN Ai+1;0 = ��iAi0 � �iAi�1;0IF 0 � k � i� 1 THEN SEND(Aik; G(k + 1))IF 1 � k � i THENBEGINRECEIVE(temp Ai;k�1)Ai+1;k = temp Ai;k�1 � �iAik � �iAi�1;kEND IFEND FOREND TTR CUBE 12



Figure 5. EÆ
ien
y of PROCEDURE TTR.

13



Table 1. Time and eÆ
ien
y of PROCEDURE TTR on an Intel 3-
ubeTime (ms) EÆ
ien
yN+1 p = 1 p = 8 Measured Estimated8 45 160 0.035 0.01816 185 455 0.051 0.03724 415 655 0.079 0.05532 740 920 0.101 0.07340 1160 1400 0.104 0.08948 1675 1180 0.177 0.10556 2285 1535 0.186 0.12164 2995 1775 0.211 0.13672 3815 2035 0.234 0.150

14


