A Parallel Algorithm for Generating Discrete Orthogonal Polynomials *

Omer Ejecioglu Cetin K. Koc¢
Department of Computer Science, Department of Electrical Engineering
University of California, University of Houston
Santa Barbara, CA 93106 Houston, TX 77204
Abstract

A parallel algorithm that makes use of the classical three-term recursion formula to construct
an orthogonal family of polynomials with respect to a discrete inner product is proposed. The
algorithm requires O(N log N) parallel arithmetic steps on a distributed-memory multiprocessor
with N + 1 processors to construct the polynomials p;(z) for 0 < i < N. If hypercube topology
is assumed, the algorithm can be implemented with the additional overhead of O(N log N) routing
steps. In this case the implementation is quite simple, requiring only scalar single node broadcast
and accumulation procedures together with a Gray code mapping. The limited processor version
of the algorithm requires ()(NT2 + N logp) arithmetic and O(N logp) routing steps on a hypercube
with p < N 4 1 nodes. We present some experimental results obtained on an Intel cube.

Key Words: Discrete orthogonal polynomials, parallel algorithms, distributed-memory multipro-
cessor, hypercube.

* A portion of this work was presented in the Fourth Conference on Hypercube Concurrent Computers and Applications,
Monterey, California, March 6-8, 1989.

1 Introduction

We consider generation of polynomials {pg(z),p1(z),...,pn(z)} orthogonal with respect to a non-

degenerate discrete bilinear form
N
< u(z),v(z) >= iju(xj)v(xj) , (1)
j=0

where p;(z) is a monic polynomial of degree i. In most applications the weights w; are positive for
0 < j < N, and (1) defines an inner-product on polynomials of degree < N on the node points
Zg,Z1,---,2ZN. The orthogonal polynomials p;(x) for 0 < i < N can be generated using the classical

three-term recursion formula [11]

pit1(z) = (z — ai)pi(z) — Bipi-1(z) for 0<i< N -1 (2)
with
p-1(z) =0 and po(z) =1 (3)
where «; and ; are constants determined as

L < xpl(x)apl(x) > /6 _ < pl(x)apl(x) >
Co<pi(e).pi(z) > T <piala),pia(z) >

Orthogonal polynomials with respect to a discrete bilinear form have applications in rational inter-

(4)

polation, least-squares polynomial approximation, and smoothing of nonlinear functions [4, 3, 9, 7, 1, 2].
In some applications it is preferable to use orthogonal polynomials than to solve a set of linear equa-
tions. This is mainly due to numerical stability problems of the underlying linear systems. For example,
the normal equations arising from weighted least-squares polynomial approximation problems result
in an ill-conditioned system. Thus, it becomes inevitable to use discrete orthogonal polynomials for
least-squares polynomial approximation problems [3, 7].

Consider the (N +1) x (N + 1) matrix P = [P;;] of the values of the polynomials p;(z) at the node
points z; for 0 <4,5 < N, i.e.,

Fij = pi(xj) for 0 <i,j <N . (5)

The entries of P can be computed by specializing the three-term recursion (2) by putting z = x;
for 5 = 0,1,..., N. Furthermore, (2) induces a doubly-indexed recursion on the coefficients of the
polynomials p;(z) for 0 < i < N directly. More precisely, let A = [A;;] be the (N +1) x (N 4 1) matrix

in which the ith row consists of the coefficients of the polynomial p;(z), i.e.,

pilr) = 3 Ay (6)
k=0

Then A is a lower triangular matrix with unit diagonal whose elements satisfy the recursion
Aiprg = Ajp1 — oA, — BiAi 1 for 0<E<i<N (7)
induced by (2). In (7) we take
A 1 =Ap=0for 0<i k< N-1. (8)

In the generation of the coefficients of the polynomials p;(z) for 0 < i < N using the recursion
(7), the values of the polynomials p;(x) at the node points z; (i.e. P;;) are also required at each step
to compute quantities «; and ;. Thus it is necessary to generate the values and the coefficients in
tandem. This can be done by iterating first the recursion (2) for the values and then the recursion (7)
for the coefficients.

The procedure given in Figure 1 (PROCEDURE TTR) computes the entries of matrices P and A
using recursions (2) and (7) together with the initial conditions (3) and (8). At the end of PROCEDURE
TTR, the coefficients of the polynomials p;(z) are A;;, for 0 < i,k < N, and the values p;(z;) are P;;
for 0 <14,5 < N. Note that A;; =0 for k > 4.

Lemma 1 The number of sequential arithmetic steps required by PROCEDURE TTR to compute the
entries of matrices P and A is O(N?).

Proof In step 1, the computation of vy, 0y, and «ag requires 2N 4+ 1, N, and 1 arithmetic steps,
respectively. In step 2, first we compute the P;’s using N + 1 steps. Then vy, 61, a1, and g; are
computed using a total of 5N + 5 arithmetic operations. Similarly, step 3 requires (N — 1)(9N + 9)
arithmetic steps. The computation of A;; in step 4 requires 3(N —1)+4(1+2+---+N—1) = 2N?4+N -5
arithmetic steps. Thus a total of

11N? + 10N — 6 = O(N?) (9)

arithmetic steps are required by PROCEDURE TTR. . O

2 The Parallel Algorithm

In this section we consider the implementation of PROCEDURE TTR on a message-passing multi-
processor. In this architecture, each processor has its own local physical memory and a point-to-point
interprocessor communication network provides a mechanism for communication between processors.
The first generation message-passing multiprocessors adopt a store-and-forward communication mech-
anism and most commonly a hypercube topology. Second generation multiprocessors have more ad-
vanced communication mechanisms utilizing crossbar switches at the nodes and the system can be

assumed to be fully connected for most practical purposes.

Since the communication overhead has a great impact on the performance of an algorithm, the com-
munication pattern of the parallel algorithm should be carefully designed to reduce the communication
complexity [5, 6, 10]. We give an efficient implementation of PROCEDURE TTR on the hypercube
multiprocessor. This implementation makes use of hypercube spanning trees for data accumulation
and broadcast, and uses a Gray code mapping to provide neighboring virtual labels for frequently
communicating processors.

Following the widely accepted nomenclature, we assume that in the hypercube multiprocessor a
node can send a data item to one of its d neighbors by issuing SEND (X, target_node) where X is
the item and target_node is the node to which the data is being sent. The target node receives the
data by executing RECEIVE (X). A SEND/RECEIVE pair constitutes a routing step. We will record
the number of parallel routing steps for the algorithms presented. A more detailed analysis of the
communication requirements of the presented algorithms is in section 4.

To implement PROCEDURE TTR on a hypercube with 2¢ = N 4 1 nodes we use the following

two procedures:

1. PROCEDURE BROADCAST (X) broadcasts data item X, which is initially located in node
2% — 1, to all nodes. This algorithm makes use of a hypercube spanning tree [5, 10] rooted at

node 2¢ — 1. The spanning tree of a 3-cube rooted at node 7 is illustrated in Figure 2.

2. PROCEDURE ACCUMULATE (X;) computes the sum S = Z?d;[]l X; where X, is a data
item initially located in node j for 0 < j < 2¢ — 1. After the execution of PROCEDURE
ACCUMULATE(X;), the sum S can be found in node 2¢ — 1. This procedure also uses the

spanning tree of the cube rooted at node 2¢ — 1.

The procedures BROADCAST and ACCUMULATE are given in Figure 3. An inspection shows that
PROCEDURE BROADCAST uses d parallel routing steps to complete if X is a single floating-point
number. Similarly PROCEDURE ACCUMULATE takes d parallel routing and d parallel floating-point
addition steps.

These routines allow us to implement steps 1,2, and 3 of PROCEDURE TTR on the hypercube.
The implementation of step 4 is a little more subtle and requires a Gray code, G, of the node_id’s
of the processors. For our purposes, it suffices to take G as a permutation of the set of node_id’s
{0,1,2,...,2% — 1} such that the Hamming distance between G (k) and G(k+1)is 1 for 0 < k < 29 -2
8]

In the implementation of PROCEDURE TTR on the hypercube, we perform the computation of

the kth column of matrix A in the processor whose node_id is G(k). Hence A;;;y is computed at

processor G(k) for i =0,1,..., N — 1. Note that the computation of A;;; requires quantities A; 1,
Aji, and A;_q 1, as well as a; and ;. After the values of the polynomials P;; are computed, the vectors
a and g are readily available at every node. The terms A;;, and A;_;; themselves are located in node
G(k). The only term that is missing from the node G(k) for the computation of A, ; is A; 1. Since
this element is located in processor G(k — 1), which is one of the neighbors of processor G(k), we have
fast access to this element. Thus by making use of the Gray code, we make sure that adjacent columns
of the A matrix are computed by neighboring nodes in the hypercube.

In the implementation of PROCEDURE TTR on the hypercube, we assume for now that N+1 = 2¢
and for 0 < j < N, processor j initially contains the initial data zg,z1,...,zn together with w;.

PROCEDURE TTR_CUBE is given in Figure 4.

Theorem 1 PROCEDURE TTR_CUBE computes the entries of matrices P and A using O(N log N)
parallel arithmetic operations and O(N log N) routing steps on a hypercube with N + 1 nodes.

Proof By counting the number of arithmetic steps required for the execution of ACCUMULATE
and BROADCAST, and all of the remaining steps involved in PROCEDURE TTR_CUBE, we find the

number of arithmetic operations as
2N log(N + 1) + 13N + 2log(N +1) =5 =0O(Nlog N) . (10)

Similarly in PROCEDURE TTR_CUBE, the subprocedures ACCUMULATE and BROADCAST
are called 4 + 2(N — 1) and 3 + 2(N — 1) times, respectively. Also, for the computation of A;y, we
execute SEND /RECEIVE pairs for N —1 times. Since each such call to PROCEDURE ACCUMULATE
and BROADCAST incurs d = log(N + 1) routing steps, the total number of routing steps is

4N log(N +1) + N +3log(N +1) —1=0O(NlogN) . (11)

Thus the total number of arithmetic and routing steps required by PROCEDURE TTR does not
exceed O(N log N). O

In the above analysis we have not considered the initial loading of the cube, i.e., the loading of the
data from the host processors to all nodes of the hypercube. This can be achieved by first sending the
data x;,w; for =0,1,..., N from the host processor to a particular node of the cube, for example to
node 0. This will take 2(N + 1) routing steps. Node 0 then proceeds to broadcast the data to all nodes
using PROCEDURE BROADCAST. This step takes an additional 2(N + 1)d routing steps. Thus, the
initial loading of the cube also requires O (N log N) routing operations, and does not increase the order

of the running time of PROCEDURE TTR_CUBE.

3 Partitioning Large Problems

Here we analyze the more realistic case in which the number of processors p available on the hypercube
does not match the size of the input, i.e., p # N + 1. The most interesting situation is when p < N + 1,
since there should be no difficulty when p > N + 1 nodes are available. One can simply use a subset
of these nodes to implement PROCEDURE TTR_CUBE. Thus, we consider the case p < N + 1. For
simplicity assume that p divides N + 1, i.e., pm = N + 1 for some m > 1. We partition the matrix P
in a very simple manner: the first m columns are computed at node 0, the second m columns at node
1, etc. The partitioning of A is similar: first m columns are computed at processor G(0), the second
at processor G(1), the third at node G(2), and so on.

This partitioning scheme allows us to compute the values and the coefficients of the orthogonal

polynomials in an efficient manner.

Theorem 2 PROCEDURE TTR_CUBE computes the entries of the matrices P and A using O(NT2 +
N log p) parallel arithmetic and O(NT2 + N log p) routing steps on a hypercube with p < N +1 processors.

Proof First we consider the limited processor implementation of PROCEDURE ACCUMULATE and
PROCEDURE BROADCAST. We partition N +1 elements to be summed such that each node contains
m elements where pm = N + 1. First we perform sequential summation at each node simultaneously
which will take m — 1 arithmetic steps to complete. Then we use a binary tree addition procedure to
sum these sum blocks of each node to find the total sum. This step will take logp arithmetic and log p
routing steps. Thus, PROCEDURE ACCUMULATE takes m — 1 + log p arithmetic operations and
log p routing operations to find the sum of N 4+ 1 elements distributed on p nodes.

Now we consider limited processor implementation of PROCEDURE BROADCAST, and its use in
PROCEDURE TTR_CUBE. We note at each step in PROCEDURE TTR_CUBE, an element (either «;
or (3;) is broadcast to all the nodes on the cube. Since we have only p < N + 1 processors available, this
procedure will take log p routing steps to complete. For example, we compute P; = z;— g at processor
qfor j =gm+0,gm+1,...,gqm +m — 1. Thus for the computation of P;; for gm < j <gm+m — 1
we need to send «q from the node p — 1 (at which « is initially computed using PROCEDURE
ACCUMULATE) to all nodes ¢ =0,1,...,p — 2 which will take log p routing steps using the spanning
tree in Figure 2.

Thus for the computation of the entries of the matrix P we count the number of arithmetic and
routing operations, and find 9Nm 4 2N logp + 2logp — 1 and 4N log p + 3log p, respectively.

Note that we have partitioned the matrix A such that the first m columns are computed at the

processor G(0), the second group is computed at the node G (1), and so on. Thus the element A; 44

is computed at the node G(q) for 0 <k <m —1 and for i =0,1,...,N.

The analysis can be greatly simplified by considering only those operations which processor G(0) has
to perform. Since the elements A; o, A;1,..., Ajm—1 are computed at the node G(0), there is no need
to perform SEND/RECEIVE operations for i = 0,1,...,m—1. For i = m,m+1,..., N, the processor
G(q) will send A; gymim-—1 to processor G(q + 1) for the computation of Ay (441)m Which is the first
element to be computed at this processor. It follows from this observation that the computation of the
entries of A will take N — m parallel routing steps.

Also at the first step processor G(0) computes quantities A; o, A;1,..., Ajm1 fori=0,1,...,m—1
except for Ajg and A;;, 0 <1 < m — 1. Each of these operations takes 4 arithmetic steps in the light
of (7). The total number of arithmetic operations for this step becomes 4(14+2+---4+m) —4 —4m =
2m? — 2m + 4. The elements that follow, A form <i< N and 0 <k <m — 1, are computed using
locally available data. Therefore this step takes (N 4+ 1 — m)4m arithmetic steps.

Thus we observe that the total number of arithmetic and routing operations for the computation
of the entries A becomes 4Nm — 2m? 4+ 2m — 4 and N — m, respectively.

Hence, PROCEDURE TTR_CUBE takes
NQ
13Nm + 2N logp +2logp +2m —2m? -5 = O(— + Nlogp) (12)
p
parallel arithmetic steps, and
4Nlogp+ N +3logp—m = O(N logp) (13)

parallel routing steps to compute the entries of matrices P and A on a hypercube with N + 1 nodes. O

Note that the routing steps given by (13) do not take into account the initial loading of the data,
which requires an additional 2(N + 1) + 2(N + 1) log p routing operations.

4 Efficiency Analysis

We define 7.4m; as the time required to perform a floating-point operation, and 7., the time required
to transfer a floating-point number to a neighboring node for the system under consideration. Using
equations (9), (10), and (11) and taking the initial loading step into account, we find the sequential
and the parallel time required by PROCEDURE TTR in terms of the above parameters as

Ty = (111\72 + 10N — 6) Teomp » (14)
Tpar = (13Nm +2Nlogp + 2logp + 2m — 2m?2 — 5) Teomp
+ (6N logp + 3N + 5logp — m =+ 2) Teomm (15)

where m = (N + 1)/p. The efficiency of an implementation is a function of the input size N + 1,
the number of processors p, and also the parameter 7 = Teomm/Teomp- It is well known that this
parameter is very crucial in evaluating the performance of multiprocessor systems. Usually 7 > 1, e.g.
our experiments indicated that 7 > 25 on the first generation Intel hypercube. Figure 5 shows the
efficiency of the parallel algorithm presented as a function of N 4+ 1 for 7 = 1,5,10,50 and for p = 8.
Thus we see that the efficiency of our particular implementation of PROCEDURE TTR on the cube
approaches 0.80 when 7 is close to 1 and N > p.

We have implemented PROCEDURE TTR on a first generation Intel cube with 8 nodes (Intel
iPSC/d3 hypercube running XENIX 286 R3.4 and iPSC Software R3.1) and also performed experi-
ments, similar to those mentioned in [6], to measure 7.y, and Teomm. The experiments indicated that
Teomp ~ 0.058 milliseconds (if the floating-point operation is taken to be multiplication, addition, or
subtraction) and Teomm, ~ 1.48 milliseconds, which implies that 7 =~ 25.5. The first generation Intel
cube uses the store-and-forward communication scheme which is very slow. This seems to be the fun-
damental reason for performance degradation. The timing results are shown in Table 1 for values of
8 < N + 1 < 72. Using formulae (14) and (15) we also tabulate the estimated efficiency of PROCE-
DURE TTR. The table shows that our analysis of efficiency is rather conservative; on a real machine,

one can obtain higher speedup and efficiency than the estimation suggests.

5 Conclusions

We have presented a sequential algorithm and its parallel version to construct an orthogonal family of
polynomials with respect to a given discrete inner product. The algorithm makes use of the classical
three-term recursion formula to generate both the coefficients (matrix P) and the values (matrix A) of
the orthogonal polynomials p;(z) for 0 <i < N.

The sequential version requires O(N?) arithmetic operations to construct the matrices P and A.
The parallel version of the algorithm requires O(N log N) parallel arithmetic steps on a distributed-
memory multiprocessor with N+1 processors. If hypercube topology is assumed, then the algorithm can
be implemented with an additional overhead of O(N log N) routing steps. Thus in effect, the parallel
algorithm in this case constructs each orthogonal polynomial using O(log N) parallel arithmetic and
O(log N) communication steps. The implementation for the hypercube is quite simple, requiring only
scalar single node broadcast and accumulation procedures together with a standard Gray code mapping
for efficient communication.

A straightforward partitioning scheme of the input allows for the implementation of the algorithm

in the limited processor case. The limited processor version of the algorithm is shown to require

()(NT2 + N logp) arithmetic and O(N logp) routing steps on a hypercube with p < N + 1 nodes.
Finally, experimental results obtained on a first generation Intel cube with 8 nodes indicate better
performance parameters of the limited processor version of the parallel algorithm then our theoretical

estimates suggest.

References

1] 0. Egecioglu and C. K. Kog. A fast algorithm for rational interpolation via orthogonal polynomials.

Mathematics of Computation, 53(187):249-264, July 1989.

2] 0. Egecioglu and . K. Kog. Parallel rational interpolation. Intern. J. Computer Math., 32:217
231, 1990.

[3] G. E. Forsythe. Generation and use of orthogonal polynomials for data-fitting with a digital
computer. Journal of SIAM, 5(2):74-88, 1957.

[4] F. B. Hildebrand. Introduction to Numerical Analysis. McGraw-Hill, 1956.

[5] S. L. Johnsson. Communication efficient basic linear algebra computations on hypercube archi-

tectures. Journal of Parallel and Distributed Computing, 4:133-172, 1987.

[6] O. A. McBryan and E. F. Van de Velde. Hypercube algorithms and implementations. SIAM
Journal on Scientific and Statistical Computing, 8(2):s227 s227, March 1987.

[7] A. Ralston and P. Rabinowitz. A First Course in Numerical Analysis. McGraw-Hill, 1985.
[8] E. M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms. Prentice-Hall, 1977.
[9] T.J. Rivlin. An Introduction to the Approximation of Functions. Dover Publications, Inc., 1969.

[10] Y. Saad and M. H. Schultz. Topological properties of hypercubes. IEEE Transactions on Com-
puters, 37(7):867-872, July 1988.

[11] G. Szego. Orthogonal Polynomials. American Mathematical Society, 1959.

Figure 1. Computation of P;; and A;; for 0 <4¢,5,k < N.

PROCEDURE TTR
Input: z;, wj for 0 <j7 < N
Output: Pj; and A;, for 0 <4,j,k <N

Step 1. Set Pp; =1 for 0 <j < N and 8y = 0, and compute

N N "

0
Yo = ijr[;j , By = ij , and ag= e
j=0 j=0 0

Step 2. Set Pj; = z; — ap for 0 < 7 < N, and compute

N N
— 2 _ 2
v = E wizi P, 6= E wi Py,

Jj=0 j=0

. n bt
a1 = 91) /8] - 90 -
Step 3. For 1 <7 < N — 1 compute

Pii1j=(r; —)Py — BiP1j for 0<j<N

N N
_ 2 _ 2
Yirr = Y wiziPhy . O =) wiPhy
j=0 j=0

o it b
Qi1 = 0 y Biv1 = 0.
i+1 i

Step 4. Set A;; = 1 for 0 < i < N, and A, = 0for 0 < i < k < N. Set Ajg = —«g. For all
1<k<i<N -1 compute

Aiji e = Ajp—1 — A — BiAi_1k

Figure 2. A hypercube spanning tree rooted at node (111),.

111
h 110 4y 111
il k= k=
011 110 101 h= k=1
010 =
k=2 011
100
k=1 k=2 Y Y 101
k=2
4 k=2
1 1 1
010 00 00 000
001
k=2
Y
000

10

Figure 3. The procedures for broadcasting and accumulation.

PROCEDURE BROADCAST(X)
INPUT: X at node 2¢ — 1
OUTPUT: X at all nodes

7 = node_id
FOR k=0TO d—-1DO
BEGIN

IF j > 2¢ — 28 THEN
SEND(X,j — 2F)
IF 24 — 2k 1 > j > 2¢ _ 2k+1 THEN
RECEIVE(X)
END FOR
END BROADCAST

PROCEDURE ACCUMULATE(X))
INPUT: X; at node j for 0 < j <29 -1
OUTPUT: Y2 ! X; at node 2% — 1

j = node_id
FOR k=d—-1TO 0 DO
BEGIN

IF 24 — 2k — 1 > j > 2¢ _ 2k+1 THEN
SEND(X, j + 2F)
IF j > 2¢ — 2¥ THEN
RECEIVE(TempX)
X =X+TempX
END FOR
END ACCUMULATE

11

Figure 4. Computation of the entries of P and A on a hypercube.

PROCEDURE TTR_CUBE
INPUT: z,...,zy and w; at node j
OUTPUT: P;; at node j, and A;, at node G(k) for 0 <i < N.

j = node_id
Yo =ACCUMULATE(wj;z;) ; 6y =ACCUMULATE(w;)
IFj:2d71THENa0:%
0
BROADCAST (ap)

Py ==z —
071 :ACCUMULATE(wj.'I;jPIQj) ;0 :ACCUMULATE(11)jP12j)
0
IFj=2 1THEN oy = 1L, B =L
01 0y
BROADCAST(a1) ; BROADCAST(S;)
FORi=1TO N -1 DO
BEGIN
Piirj = (zj — ;) Pij — BiPivj
Yi+1 :ACCUMULATE(U)J‘.’I}jPia]7]-) N 97;_|_1 :ACCUMULATE(U)J‘PZaLj)

i 0;
IF j = 2¢ 1 THEN a;j = 250 | gy = !
Oit1 0;
BROADCAST(;41) ; BROADCAST(Bis1)

END FOR
k = G '(node_id)
IF Kk =0 THEN Agpy =1
IF k> 0 THEN Ag — 0
IF k=0 THEN Ajg = —ap : Ay =1
IF k> 1 THEN Ay, = 0
FORi=1TO N -1 DO
BEGIN
IF k — i THEN Ay — 1
IF k> i THEN Ay =0
IF k=0 THEN A;j10= A0 — Bidi10
IF 0 <k <i—1THEN SEND(Az, G(k + 1))
IF 1 < k <3 THEN
BEGIN
RECEIVE(temp_A; ;1)
Aijrp =temp A; p y — a;Aig — BiAi—1k
END IF
END FOR
END TTR_CUBE

12

Figure 5. Efficiency of PROCEDURE TTR.

13

Table 1. Time and efficiency of PROCEDURE TTR on an Intel 3-cube

Time (ms) Efficiency
N+1 || p=1| p=8 | Measured | Estimated
8 45 160 0.035 0.018
16 185 455 0.051 0.037
24 415 655 0.079 0.055
32 740 920 0.101 0.073
40 1160 | 1400 0.104 0.089
48 1675 | 1180 0.177 0.105
56 2285 | 1535 0.186 0.121
64 2995 | 1775 0.211 0.136
72 3815 | 2035 0.234 0.150

14

