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ABSTRACT 

Identities generalizing the well-known formula relating the leng& of the sides 
and the diagonals of a parallelogram in the plane are given. These generalizations 
al1 have the flavor of the parallelogram law, and specialize to formulas involving 
sums of roots of unity, trigonometrie functions, binomial coefficients, and permu- 
tations over the symmetrie and the alternating groups. 

The parallelogram law in the complex plane is 

2tIz112 + k212) = IZl + al2 + 1.q - z212, (1) 

where zi = zi + iyi, .q = 22 + iyz, and 21, yr, 22, y2 are real numbers. The 
parallelogram law relates the lengths of the diagonals of a parallelogram 
with vertices (0, O), (21, YI), (3~2, YZ), and (zi + 22, y1 + ys) to the lengths 
of its sides (Figure 1). In general, a Hilbert space is a Banach space whose 
norm Ilzll satisfies the parallelogram property 

2 (11412 + llYl12> = 112 + Yl12 + 112 - Yl12. 
Consider the binomial identity 

(n + l)(m + l)n 
( > 

” 

=o<i,ici <m [(-l$g +(-1(y) +-.+w(;)]2. 
3 9 >n_ 
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FIG. 1. The parallelogram law in the plane. 

and the identity 

(n - 2)! ---n3 = c lwl+~l + w2+az + . . . + Wn+un 12, 
2 

oEd, 
(3) 

where d, is the alternating group of degree n and w is a primitive nth root 
of unity. It is not immediately clear why (2) or (3) should have any relation 
to the parallelogram law. However if we first write (1) in an equivalent 
form as 

2 

4x kil2 = (4 
i=l ai, raiq EA 

where A = (-1, l}, then the right-hand sides of (2), (3), and (4) become 
sums of squares of norms of certain vectors. Generalizations of complex- 
number identities of this type based on length-preserving properties of uni- 
tary transformations were considered by Klamkin and Murty [6]. In this 
paper, we take the formulation (4) for the parallelogram law as the starting 
point, and give elementary proofs as wel1 as a number of specializations of 
the following theorems of similar flavor. 

THEOREM 1. Assume A = (~1, CQ,. . . , a,} is a set of complex num- 
bers with ~1 + QZ + . . . + cq,, = 0. Then for any n complex numbers 
~li~Z,..~r~n, 

mn-l( p2) (@) 

= c lailzl + cx,,22 + ... + <Yi,Z,12. (5) 
ai1 <asZ ,...,a,,EA 

THEOREM 2. Assume A = {al, ~2,. . . , q} is a set of complex num- 
bers with cz1 + CQ + ’ . . + Q, = 0, and let S,, denote the symmetrie group 
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of degree n. Then for any n complex numbers zl, zz,. . . , z,, 

(n - 2)! ( ) C ((~1~ 
CYEA = c I%Zl i 

UES, 

nelZil’- I Zl + z2 + . ‘. + 2,12 
. i=l 1 - (-Y,,zz + . . . + cy,,z,12. (6) 

More generally, 

THEOREM 3. Assume A = {Q~, CQ,. . . , 12,) is a set of complex num- 
bers with ~1 + (~2 + ... + a, = 0, and let Ç be a doubly transitive group of 
permutations of degree n. Let g2 denote the size of a stabilizer subgroup of 
a pair, and let g1 denote the size of the stabilizer subgroup of a single point. 
Then for any n complex numbers ~1, zz,. . , z,, 

Q2 c bl2 
( )[ CYEA 

~~lzi12-IzI+z2+~“+2.1~ 
2=1 1 

=Cl (Y,,Zl +Ly,,z2 +-~+a,,z,,2. (7) 
UEÇ 

Before giving the proofs, we look at some special cases. First, some conse- 
quences of Theorem 1: 

EXAMPLE 1.1. Take A = {-l,l} and n = 2. Then (5) reads 

2 (2)(Iz112 + lz212) = IZl + z212 + IZl - 2212 

+l-Zl - z212 + I-Zl + z212 

= 2121 + z212 + 2lZl - 2212, 

which simplifies to 

w2 + lb212) = IZl + 2212 + IZl - z212. 

EXAMPLE 1.2. Take A = {-l,l} and n = 3. Then 

8(Iz112 + lM2 + M2) = Ia + z2 + 2312 + IZl + z2 - x312 

+ Ia - zz + z# + 1z1 - z2 - z# 

+ 1-21 - 22 - z312 + 1-21 - z2 + 2312 

fl-z1 + 752 - al2 + I-z1 + z2 + 2312 
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and therefore 

4&112 + lH2 + lQ12) = IZl + Z2 + Z312 + [Zl + Z2 - 2312 

+ IZl - Z2 + Z312 + 121 - Z2 - 2312. 

ExAMpLE 1.3. Let w be a primitive tube root of unity and A = 
(1, W, w”}. For n = 2 we have 

q1 + lul2 + bJ212) (IA2 + lz212) 
= Ia + -2212 + 121 + wz2l2 + 1w.q + 2212 

+ IWZl + WZ212 + IWZl + W2Z212 + jW2Zl + WZ2i2 

+ lW2Z1 + W2Z212 + lW2Z1 + 4 + [Zl + W2Z212. 

Thus 

3(k112 + lb212) = Ia + z212 + IZl + WZ2/2 + IWZl + Z212. 

ExAMpLE 1.4. Take A EIS in Example 1.3 and 72 = 3. Then 

9(lz112 + lz212 + lz313) 

= IZl + Z2 + Z312 + IZl + Z2 + wz312 + IZl + wz + 2312 

+IWZ1-Z2-z312+~z1+z2+W2Z3~2+~Z1+W2Z2+z3~2 

+~W2Z1+Z2+Z3~2+~Zl+WZ2+W2Z3~2+~Zl+W2Z2+WZ3~2. 

EXAMPLE 1.5. Let 

A={(-l)i(T) li=O,l,..., m}, modd. 

Then 

p2 = g ($ = (“> 
by the Vandermonde identity [2, 71. Thus 

(m + 1)” ‘z 2 Izi12 
( > i=o 

= o<v,,i-_ ~(-lP(~)zo + (61P ($1 +. + (-l)i(;)zn~2. 
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In particular, taking zo = z1 = . . . = Z, = 1, 

which is the identity (2), and taking n = m with 

m 
zi = 0 i ’ 

i=O,l,..., m, 

one bas 

Next we consider a number of special cases of Theorem 2: 

EXAMPLE 2.1. Take A = {-1,l). Then (6) reads 

4(lz112 + lz212) - qz1 + z212 = 1z1 - z212 + I-z1 + z212. 

Consequently 

2(lz112 + Iz212) = IZl + z212 + 1x1 - z212, 

which is again the parallelogram law for the plane. 

EXAMPLE 2.2. Let w be a primitive nth root of unity and A = (1, W, 

. . . 7 unml}. Then Theorem 2 gives 

(n - 2)!7? 5 (z# 
i=l 

EXAMPLE 2.3. Let w be a primitive nth root of unity, and take Z, = wz 
for i = 1,2,. . . , n. Then 

(n - 2)!n2 c lal2 = c Ia,,w + cy,,w2 +. . . + Oi,nWy (8) 
CZEA o‘ssn 
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for any set of complex numbers A = {ai, (YZ, . , a,} whose sum is zero. 
In particular 

(n - 2)!n3 = 1 IUi+gl + &j2+02 + . . . + Wn+o, 12, 
oes, 

EXAMPLE 2.4. Let CY~ = ..Q = cos(27rlc/n) for k = 1,2,. . . , n. Then 

Since 
k=l k=l 

n 

c cos2 kx = ; + 
cos(n + 1)~ sinnz 

k=l 
2 sinx 

(see [5], for example), we have 

2 ,Qk,2 = 2 ,Zk,2 = ;. 
k=l k=l 

This gives the identity 

(n _ 2)!T = & [co, + cos $ + cos % cos ; + + cos F Pnr 2 cos - n ] 

Similarly, since 

n 

c sin2 kx = 2 - 
cos (n + 1)x sin nx 

k=l 
2 2sina: ’ 

by taking ok = cos (27rk/n), zk = sin (2rk/n) we obtain the trigonometrie 
identity 

(n - 2)! T = og [sin T cos $ + sin % cos ; + + sin + cos - ‘T] 2 , 
n 

and by taking ok = sin (2rk/n), zk = sin (2rk/n) for k = 1,2,. . . , n, we 
obtain the identity 

(n - 2)!: = oz_, [sin + sin E + sin + 

EXAMPLE 2.5. Let 

2nn 2 
sin - 

n 1 

A={~-l)i(~) (i=O,l,..., n}, nodd. 
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If we take 

i=O,l,..., n, 

and use the Vandermonde convolution identity, we find that 

where S(c,r ,_,,, n) denotes the permutation group on (0, 1, . . . , TL}. Taking 

n 
Zi = 0 i ’ 

i=O,l,..., 72, 

we obtain 

Finally we consider some special cases of Theorem 3: 

EXAMPLE 3.1. Let C = S,. Then g2 = (n - 2)!,gr = (n - l)!, and 
Theorem 3 specializes to Theorem 2. 

EXAMPLE 3.2. Take cq = Zi = w’ for i = 1,2,. . . , n, where w is a 
primitive nth root of unity. Then 

n2(gl + g2) = c IJ+01 + w2+oz + . . . + &Jn+-L (2 
OEÇ 

for any doubly transitive group of permutations C of degree n. 

EXAMPLE 3.3. Let Ç = d, be the alternating group of degree n. Then 
g2 = (n - 2)!/2,gr = (n - 1)!/2, and (7) becomes 

=Cl Q,,Zl + q+a + ... + cY,,J,12. 
uEd, 
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Taking zi = wi for i = 1,2, . . . , n, where w is a primitive nth root of 
unity, analogous to (8) we obtain 

for any set of complex numbers A = ((~1, cq,. . . , a,} whose sum is zero. 
In particular 

(n_2)! = 
2 Cl 

J+ul + W2+u2 + . . . + Wn+a,, 12, 
aEd, 

which is the identity given in (3). 
Now we give proofs of Theorems 1-3. These proofs are essentially based 

on the fact that unitary transformations are length-preserving. 

Proof of Theorem 1. Consider the mn x n matrix M whose rows con- 
sists of al1 distinct vectors ((uil ,cY,~, . , . , ai,) with cqb E A, k = 1,2,. . . , TL. 
Let z = (~1, z2,. . , z,) T. Then the right-hand side of (5) is simply 

llMzl12. (9) 

Let u = (ui, 212,. . , u,%)~ and v = (ui,v2,. . ,vmrL)T denote two dis- 
tinct columns of M. Let x(S) be the indicator of the statement 5’: x(S) = 1 
if S is true and x(S) = 0 if S is false. Then for any (Y E A 

C x(a = ui) = m+‘. 
i=l 

Similarly, given Q, /3 E A, 
m” 

Now 

Thus 

i=l 

(LI, v) = guic = c )-, E c&(a = uJx@ = Ui). 
i=l aEA 4EA i=l 

(u, v, = C C nar X(cy = Ui)X(p = Vi) 
aEA PEA i=l 

= C C apmne2 
aEA PEA 

= mn-2(al + a2 + . . + f2,12 = 0. (10) 
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On the other hand, 

9 

(u, 4 = 1 CCYBCx(U:=P=tL) 
CIEA BEA i=l 

CYEA i=l 

It follows that 

M’M = 

CTEA 

where M’ is the conjugate transpose of M and 1 is the n x n identity 
matrix. Since [3] 

IIMz~~~ = (Mz, Mz) = (M*Mz, z), (12) 

combining (lO), (ll), and (12), we have 

which is the content of Theorem 1. H 

Proof of Theorem 2. For this proof we take M to be the n! x n matrix 
with rows (cY,~, CY,~, . . , a,, ), for a E S,. Let z = (zi, zz, . , z,)~. The 
right-hand side of (6) is again given by (9). Let u = (~1, uz,. , u,!)~ and 
v = (V1,~2,...,%!) T denote two distinct columns of M. Then for any 
f2EA 

fJ x(a = ui) = (n - l)!, 
i=l 

and for any distinct pair (Y, /3 E A, 

1 

2 x(o = ‘LLi)X(p = Ui) = (n - 2)!. 
a=l 
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Similar to the computation of (10) and (ll), we find that 

CXEA 

= -(n - 2)! c [cX12 
(rEA 

and 

Thus 

M*M = 

where 1 is the n x n identity matrix and J is the n x n matrix of 1’s. Since 

(Jz,z) = 1~1 +z2+-.+z,12, 

we have 

IIM zl12 = (M z, M z) = (M*M z, z) 

= 

Consequently 

which proves Theorem 2. W 

Proof of Theorem 3. If Ç is doubly transitive, then the stabilizers of 
pairs of points are al1 conjugate subgroups of Ç. Similarly, the subgroups 
fixing a point are al1 conjugates. Thus it makes sense to talk about gz and 
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gl. Let M to be the ]Ç] x n matrix with rows (Q,, , cy,, , . . . , ag, ), for c E Ç. 
Then for any two column vectors u, v of M and o E A 

Cx(a=w) =L71, 

a=l 

and for any distinct pair c-y, p E A, 

101 
c x(a = Ui)X(B = Ui) = 572. 
i=l 

In this case we compute that 

(u, v) = -Q2 c bl2 and (u, 4 = gl c bl2 
CXEA LIGA 

Thus 

M*M = [(Sl + ga)I - gaJ]. 

Therefore 

/]M z]12 = (M*M z, z) 

= Clal” 
( IC 

(91+92)~ILi12-g21Z1+12+...+2,/2 
CXEA i=l ) 

Now Theorem 3 follows from the relation 

91 + Q2 = %lGl 
91 

satisfied by every doubly transitive permutation group Ç [4]. ??

REMARKS. The identities derived here are of the same type as conse- 
quences of a genera1 theorem of Brauer and Coxeter [l]: 

THEOREM 4. Suppose Ç is an absolutely irreducible finite group of 
homogeneous linear transformations of an n-dimensional complex vector 
space U. Pi& an h-dimensional subspace Vl together with its complemen- 
tary subspace Wi, and suppose the pairs {(Vl, W’I), (VZ, WZ), . . , (Vk, Wk)} 
fom an orbit under Ç. If pi denotes the vector of Vi obtained fiom a given 
vector z E U by projection parallel to Wi, then 

hz = i(Pl + p2 +. . n ’ + Pk). (13) 
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As an example of a special case of this result, Brauer and Coxeter obtain 
Schönhardt’s theorem [8] that if a vector z in the plane is projected orthog- 
onally on the sides of a regular Ic-gon, then the arithmetic mean of these IC 
projections is z/2. If in Theorem 4 the group Ç and the subspace Vl can be 
picked in such a way as to guarantee that the subspaces Vl, Vz,. . , VJ are 
pairwise orthogonal, then (pi, pj) = 0 for i # j and from (13) we obtain 

which would furnish further identities of the type given here. 

I would like to thank the referee who pointed out the relevante of the references 
[l] and [6]. 
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