A Combinatorial Generalization of a Putnam Problem

Ömer Eg̃ecioğlu
Department of Computer Science
University of California
Santa Barbara, CA 93106

As a part of the thirty-fourth William Lowell Putnam Mathematical Competition, the following problem appeared in the Monthly [2]:

Let $a_{1}, a_{2}, \ldots, a_{2 n+1}$ be a sequence of integers such that, if any of them is removed, the remaining ones can be divided into two sets of n integers with equal sums. Prove $a_{1}=a_{2}=\cdots=a_{2 n+1}$.

Here we give a combinatorial proof of a generalization of this problem. The arguments rely on a matrix theoretic formulation of the original problem and elementary properties of cyclotomic polynomials.

Theorem 1 Let ξ be a primitive q-th root of unity where $q=p^{r}$, p prime. Suppose we are given a sequence S of $q n+1$ complex numbers $z_{1}, z_{2}, \ldots, z_{q n+1}$ with the property that for every i, $1 \leq i \leq q n+1, S \backslash\left\{z_{i}\right\}$ can be partitioned into q equal size subsets $S_{i, 0}, S_{i, 1}, \ldots, S_{i, q-1}$ with

$$
\begin{equation*}
\sum_{k=0}^{q-1} \xi^{k} \sum_{z_{j} \in S_{i, k}} z_{j}=0 . \tag{1}
\end{equation*}
$$

Then $z_{1}=z_{2}=\cdots=z_{q n+1}$.

Note that the original problem is a special case of Theorem 1 in which $p=2, r=1$ and each z_{i} is an integer.

Proof For each i fix a partition $S_{i, 0}, S_{i, 1}, \ldots, S_{i, q-1}$ of $S \backslash\left\{z_{i}\right\}$ satisfying (1). Let $N=q n$ and consider the $(N+1) \times(N+1)$ zero diagonal matrix $\mathbf{A}=\left\|a_{i j}\right\|$ where for $i \neq j, a_{i j}=\xi^{k}$ if and only if $z_{j} \in S_{i, k}$. If we put $\overline{\mathbf{z}}=\left[z_{1}, z_{2}, \ldots, z_{N+1}\right]^{T}$, then $\overline{\mathbf{z}}$ is a solution of the linear system $\mathbf{A z}=\mathbf{0}$.

Since $\sum_{k=0}^{q-1} \xi^{k}=0, \mathbf{A}$ is singular with zero row sums and $[1,1, \ldots, 1]^{T}$ is in the kernel of \mathbf{A}. Thus to prove the theorem, it suffices to show that $\operatorname{rank}(\mathbf{A})=N$.

Let $\left.f(x)\right|_{x^{k}}$ denote the coefficient of the term x^{k} in a polynomial $f(x)$. Then up to sign, $\left.\operatorname{det}(x \mathbf{I}-\mathbf{A})\right|_{x^{r}}$ is the sum of the $(N+1-r) \times(N+1-r)$ principal minors of \mathbf{A}. We will show that $\left.\operatorname{det}(x \mathbf{I}-\mathbf{A})\right|_{x}$ must be nonzero, and hence $\operatorname{rank}(\mathbf{A})=N$. We argue as follows.

Let M_{j} be the $N \times N$ principal minor of A corresponding to the j-th diagonal entry. In the expansion of M_{j} from first principles, we have

$$
\begin{equation*}
M_{j}=\sum_{\sigma}(-1)^{i(\sigma)} \prod_{\substack{i=1 \\ i \neq j}}^{N+1} a_{i \sigma_{i}} \tag{2}
\end{equation*}
$$

in which the summation is over all permutations (in fact derangements) σ of the index set $\{1, \ldots, j-$ $1, j+1, \ldots, N+1\}$, and $(-1)^{i(\sigma)}$ is the sign of σ. Clearly the nonzero terms in the sum in (2) are of the form $\pm \xi^{e}$, for various $e \in\{0,1, \ldots, q-1\}$. Since \mathbf{A} has zero diagonal and nonzero off-diagonal entries, the sum $\sum(-1)^{i(\sigma)}$ over such terms in M_{j} is given by

$$
\operatorname{det}(\mathbf{J}-\mathbf{I})=(-1)^{N-1}(N-1)
$$

where \mathbf{J} is the $N \times N$ matrix of 1 's and \mathbf{I} is the $N \times N$ identity matrix. Since this is true for every M_{j}, we conclude that

$$
\left.\operatorname{det}(x \mathbf{I}-\mathbf{A})\right|_{x}=\sum_{j=1}^{N+1} M_{j}=c_{q-1} \xi^{q-1}+\cdots+c_{1} \xi+c_{0}
$$

with

$$
\begin{equation*}
c_{q-1}+\cdots+c_{1}+c_{0}=(-1)^{N-1}(N-1)(N+1) . \tag{3}
\end{equation*}
$$

Now by way of contradiction, assume that

$$
c_{q-1} \xi^{q-1}+\cdots+c_{1} \xi+c_{0}=0
$$

Setting

$$
f(t)=c_{q-1} t^{q-1}+\cdots+c_{1} t+c_{0}
$$

we then have $f(\xi)=0$. Furthermore, $f(t)$ has integral coefficients. Therefore, the q-th cyclotomic polynomial $\Phi_{q}(t)$ must divide $f(t)$. Note also from (3) that $f(1) \equiv(-1)^{N}(\bmod p)$. Writing
$f(t)=\Phi_{q}(t) h(t)$, we must have that $\Phi_{q}(1) h(1) \equiv(-1)^{N} \quad(\bmod p)$. In particular, $\Phi_{q}(1) \not \equiv 0$ $(\bmod p)$. But we can easily show that for $m=p^{r}$ with $r>0$ and p prime, we must have $\Phi_{m}(1)=p$. To see this, recall that

$$
t^{m}-1=\prod_{d \mid m} \Phi_{d}(t)
$$

(see, for example, [3]), and thus, by Möbius inversion,

$$
\begin{equation*}
\Phi_{m}(t)=\prod_{d \mid m}\left(t^{d}-1\right)^{\mu\left(\frac{m}{d}\right)} \tag{4}
\end{equation*}
$$

In (4), μ is the Möbius function defined by

$$
\mu(m)= \begin{cases}1 & \text { if } m=1 \\ (-1)^{\nu} & \text { if } m \text { is a product of } \nu \text { distinct primes } \\ 0 & \text { otherwise }\end{cases}
$$

It immediately follows that for for $m=p^{r}, r>0$,

$$
\Phi_{m}(t)=\frac{t^{p^{r}}-1}{t^{p-1}-1}=1+t^{p^{r-1}}+t^{2 p^{r-1}}+\cdots+t^{(p-1) p^{r-1}}
$$

and so $\Phi_{m}(1)=1$. This gives us the desired contradiction.
We note that the property of $\Phi_{m}(1)$ for $m=p^{r}$ that we have made use of is a special case of the following more general result

$$
\Phi_{m}(1)= \begin{cases}0 & \text { iff } m=1 \\ p & \text { iff } m=p^{r}, p \text { prime, } r>0 \\ 1 & \text { iff } m \text { has two or more prime factors }\end{cases}
$$

which can be found in [1].

In proving Theorem 1 we used the fact that the row sums of the matrix \mathbf{A} vanish only to show that $\operatorname{rank}(\mathbf{A})<N+1$. The same argument used in the proof also provides a combinatorial proof of the following linear algebra result:

Theorem 2 Suppose \mathbf{A} is an $N \times N$ zero diagonal matrix whose off-diagonal entries are q-th roots of unity for some $q=p^{r}, p$ prime, $r>0$. If $N \not \equiv 1(\bmod p)$, then \mathbf{A} is nonsingular.

Remarks: Note that Theorem 2 and its proof apply more generally to a matrix whose diagonal entries are algebraic integers which are merely divisible by the prime p.

Furthermore, if q is not a prime power, then we can show that the conclusion of Theorem 1 is false. In this case $q=u v$ with $\operatorname{gcd}(u, v)=1$. Using the Chinese remainder theorem, pick $t<q$ with $t \equiv 0 \quad(\bmod u)$ and $t \equiv 1 \quad(\bmod v)$. Take $z_{1}=\cdots=z_{t}=1$ and $z_{t+1}=\cdots=z_{q n+1}=0$. Then the twin identities

$$
1+\xi^{v}+\cdots+\xi^{v(t-1)}=0, \quad 1+\xi^{u}+\cdots+\xi^{u(t-2)}=0
$$

show that no matter which z_{i} is discarded, the remaining ones can be multiplied by q-th roots of 1 using n copies of each root in such a way that they sum to 0 .

Finally, we can consider the variant of the problem in which the classes $S_{i, 0}, S_{i, 1}, \ldots, S_{i, q-1}$ are not required to have the same cardinality. In this case Theorem 2 implies that the solution, if it exists, must be unique up to scalar multiples. It is easy to see that the sequence $1,1,1,3,3$ for example, admits a solution in this general sense.

Acknowledgements: I would like to thank Professors A. Gerasoulis, A. Konheim, and the anonymous referees for helpful hints and suggestions.

References

[1] E.R. Berlekamp, Algebraic Coding Theory, revised 1984 edition, Aegean Park Press, p. 92.
[2] A.P. Hillman, "The William Lowell Putnam Mathematical Competition," Problem B-1, The Mathematical Monthly, Vol. 81, No. 10, pp. 1086-1094.
[3] K. Ireland and M.I. Rosen, Elements of Number Theory, Bogden \& Quigley, Inc., Publishers, New York, 1972, Ch. 2.

