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As a part of the thirty-fourth William Lowell Putnam Mathematical Competition, the following

problem appeared in the Monthly [2]:

Let ay, a9, ..., ao,41 be a sequence of integers such that, if any of them is removed,

the remaining ones can be divided into two sets of n integers with equal sums. Prove

] =az = -+ = Gp+1.

Here we give a combinatorial proof of a generalization of this problem. The arguments rely
on a matrix theoretic formulation of the original problem and elementary properties of cyclotomic

polynomials.

Theorem 1 Let & be a primitive g-th root of unity where ¢ = p", p prime. Suppose we are
given a sequence S of gn + 1 complex numbers 21, za, ..., 2Zgn+1 with the property that for every i,
1 <i<gn+1, S\{z} can be partitioned into q equal size subsets S;o,Si1,...,Siq-1 with
q—1
k
2. D0 =0 (1)
k=0 zJ‘ESi,k

Then z1 = 2o = -+ = Zgn+y1-

Note that the original problem is a special case of Theorem 1 in which p = 2, r = 1 and each

z; is an integer.

Proof For each i fix a partition S;0,S;1,...,Si4-1 of S\ {z} satisfying (1). Let N = gn and
consider the (N + 1) x (N + 1) zero diagonal matrix A = |a;;|| where for i # j, a;; = &* if and

only if z; € S; . If we put Z = [21, 29, ..., zN+]]T, then z is a solution of the linear system Az = 0.



Since ZZ;B ¢k =0, A is singular with zero row sums and [1,1,..., 1]T is in the kernel of A. Thus
to prove the theorem, it suffices to show that rank(A) = N.

Let f(z) |« denote the coefficient of the term z* in a polynomial f(z). Then up to sign,
det(zI — A)|,» is the sum of the (N +1 —r) x (N + 1 — r) principal minors of A. We will show
that det(zI — A) |, must be nonzero, and hence rank(A) = N. We argue as follows.

Let M; be the N x N principal minor of A corresponding to the j-th diagonal entry. In the

expansion of M; from first principles, we have

) N+1
M=) ] ai, (2)
g .
1=1
P F ]
in which the summation is over all permutations (in fact derangements) o of the index set {1,...,7—

1,j+1,...,N+1}, and (—1)"“) is the sign of o. Clearly the nonzero terms in the sum in (2) are of
the form +£¢, for various e € {0,1,...,q — 1}. Since A has zero diagonal and nonzero off-diagonal

entries, the sum Z(fl)i(”) over such terms in M; is given by
det(J —T) = (-1)V YN - 1)

where J is the NV x N matrix of 1’s and I is the N x N identity matrix. Since this is true for every

M;, we conclude that

N1
det(zI — A)|, = Z Mj = cg 167"+ e+,
j=1
with
g1+t te=CDNHN )N+ . (3)

Now by way of contradiction, assume that
g 1€ o d et =0.

Setting
ft) =co 1t '+ tette

we then have f(¢) = 0. Furthermore, f(¢) has integral coefficients. Therefore, the ¢-th cyclotomic
polynomial ®,(¢) must divide f(¢). Note also from (3) that f(1) = (=1)" (mod p). Writing



f(t) = ®,(t)h(t), we must have that ®,(1)h(1) = (-1)Y (mod p). In particular, ®,(1) # 0
(mod p). But we can easily show that for m = p” with » > 0 and p prime, we must have ®,,(1) = p.

To see this, recall that

" —1= ] ®a(t)

d|m

(see, for example, [3]), and thus, by M&bius inversion,

B(t) = I (#* - 1)), (4)
d|m
In (4), p is the Mobius function defined by
1 ifm=1
pu(m) =49 (—1)” if m is a product of v distinct primes ,
0 otherwise .

It immediately follows that for for m = p", r > 0,

-1

r—1

D,,(t) = = 14 T e

and so ®,,(1) = 1. This gives us the desired contradiction.
We note that the property of ®,,(1) for m = p” that we have made use of is a special case of

the following more general result
0 iffm=1
O,(1) =9 p iff m=p", p prime, r >0
1 iff m has two or more prime factors,
which can be found in [1]. 0
In proving Theorem 1 we used the fact that the row sums of the matrix A vanish only to show

that rank(A) < N + 1. The same argument used in the proof also provides a combinatorial proof

of the following linear algebra result:

Theorem 2 Suppose A is an N X N zero diagonal matriz whose off-diagonal entries are q-th roots

of unity for some q = p", p prime, r > 0. If N Z1 (mod p), then A is nonsingular.



Remarks: Note that Theorem 2 and its proof apply more generally to a matrix whose diagonal
entries are algebraic integers which are merely divisible by the prime p.

Furthermore, if ¢ is not a prime power, then we can show that the conclusion of Theorem 1 is
false. In this case ¢ = uv with ged(u,v) = 1. Using the Chinese remainder theorem, pick ¢ < ¢
witht#=0 (modu)andt=1 (modwv). Take z; = - =2 =1and 241 = -+ = 2Zgpy1 = 0.

Then the twin identities
1+£1)+”‘+£’1)(t71):0’ 1_‘_511,_‘____4_511,(1572):0

show that no matter which z; is discarded, the remaining ones can be multiplied by g—th roots of
1 using n copies of each root in such a way that they sum to 0.

Finally, we can consider the variant of the problem in which the classes S; o, S;1,...,Siq—1 are
not required to have the same cardinality. In this case Theorem 2 implies that the solution, if it
exists, must be unique up to scalar multiples. It is easy to see that the sequence 1, 1, 1, 3, 3 for

example, admits a solution in this general sense.
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