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Abstract: Lucas and Fibonacci cubes are special subgraphs of the binary hypercubes that have been proposed as models

of interconnection networks. Since these families are closely related to hypercubes, it is natural to consider the nature of

the hypercubes they contain. Here we study a generalization of the enumerator polynomial of the hypercubes in Lucas

cubes, which q -counts them by their distance to the all 0 vertex. Thus, our bivariate polynomials refine the count of

the number of hypercubes of a given dimension in Lucas cubes and for q = 1 they specialize to the cube polynomials of

Klavžar and Mollard. We obtain many properties of these polynomials as well as the q -cube polynomials of Fibonacci

cubes themselves. These new properties include divisibility, positivity, and functional identities for both families.
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1. Introduction

The hypercube graph Qn = (Vn, En) of dimension n is one of the basic models for interconnection networks.

The vertex set Vn denotes the processors and the edge set En corresponds to the communication links between

processors in an ideal interconnection network. The vertices of Qn are represented by all binary strings of length

n with an edge between two vertices if and only if they differ in exactly one position. As the graph distance

between two vertices of a graph is the length of the shortest path in the graph connecting these vertices, in Qn

this distance coincides with the Hamming distance.

Due to their symmetry and recursive properties, Fibonacci cubes and Lucas cubes were introduced as a

new model of computation for interconnection networks in [3] and [7], respectively. Both families admit useful

decompositions that allow for recursive constructions. The Fibonacci cube Γn of dimension n is the induced

subgraph of Qn in which the vertices correspond to those in Vn without two consecutive 1s in their string

representation. The Lucas cube Λn is the induced subgraph of Qn (and also subgraph of Γn ), in which the

vertices correspond to those without two consecutive 1s when the string representation of the vertex is viewed

circularly. For convenience Γ0,Λ0 and Q0 is taken to be the graph with a single vertex and no edges.

In the literature many properties and applications of these families of graphs are presented. In [4] the

usage in theoretical chemistry and some results on the structure of Fibonacci cubes, including representations,

recursive construction, hamiltonicity, the nature of the degree sequence, and some enumeration results, are

given. The characterization of maximal induced hypercubes in Γn and Λn appears in [6]. Furthermore, the
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maximum number of disjoint hypercube subgraphs isomorphic to Qk (called subcubes) in Γn is considered in

[1, 9] and it is shown that asymptotically all vertices of Γn are covered by a maximum set of disjoint subcubes

in [9]. The cube polynomial of Λn and Γn , which is the starting point of this paper, is studied in [5]. This is

the polynomial whose coefficients enumerate subcubes of the given graph by their dimension. A q -analogue of

the cube polynomial of the Fibonacci cubes, which carries additional data on its subcubes, was constructed in

[8].

In this paper we q -count subcubes of Lucas cubes by their distance to the all 0 vertex, to be made precise

momentarily. The resulting polynomial is what we refer to as the q -analogue of the ordinary cube polynomial,

or the q -cube polynomial of Lucas cubes. This q -analogue, denoted by C(Λn, x; q), not only adds a geometric

meaning to the ordinary cube polynomial C(Λn, x) but also satisfies a simple recursion similar to the one for

the cube polynomial. As a consequence, its computation is relatively straightforward.

As an example, consider the Lucas cube Λ2 in Figure 1. We have

C(Λ2, x) = 3 + 2x,

indicating that Λ2 contains three Q0 s and two Q1 s. On the other hand,

C(Λ2, x; q) = 1 + 2q + 2x

expresses the fact that two of the three Q0 s are at distance 1 from 00 and the other at distance 0, contributing

1 + 2q ;, and both Q1 s in Λ2 are at distance 0 from 00 (i.e. they contain 00), contributing the term 2x .

Certain divisibility properties of the cube polynomials for Λn and Γn were noted in [5]. Our results

extend these and also include information about the nature of the quotients. Interestingly, the quotients as

polynomials in x have coefficients that are polynomials in q , which have nonnegative integral coefficients

themselves. This is parallel to the case of Fibonacci cubes [8, Theorem 2]. Furthermore, we obtain expressions

involving convolutions of the generalizations of the Fibonacci and Lucas numbers for the coefficients of the cube

polynomials for Λn (and for Γn ) and also show that they have certain derivative properties (see Section 4.3),

which are useful in the computation of the quotient polynomials.

The paper is organized as follows: in Section 2 we give some preliminaries. We present our q -cube

enumerator polynomial in Section 3 and investigate divisibility, special values, and other properties of the

coefficients in Section 4. We note that many of the results presented here extend those of Klavžar and Mollard

[5], as C(Λn, x; q) is a refinement of the cube polynomial C(Λn, x). Our approach and proofs follow along the

lines of the Fibonacci case treated in [8], though the q -analogues of the Lucas cube polynomials have certain

interesting properties in their own right.

2. Preliminaries

In this section we present some notation and preliminary notions. We start with the description of a hypercube.

The n-dimensional hypercube (or n -cube) Qn is the simple graph with vertex set

Vn = {b1b2 · · · bn | bi ∈ {0, 1}, 1 ≤ i ≤ n}.

The number of vertices in Qn is 2n . The Fibonacci cube Γn is the induced subgraph of Qn , obtained

from Qn by removing all vertices containing consecutive 1s. The number of vertices of Γn is fn+2 , where

f0 = 0, f1 = 1 and fn = fn−1 + fn−2 for n ≥ 2 are the Fibonacci numbers. If we remove the vertices with
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b1 = bn = 1 from Γn , then we obtain the Lucas cube Λn . For n ≥ 1, Λn has Ln vertices, where L0 = 2, L1 = 1

and Ln = Ln−1 + Ln−2 for n ≥ 2 are the Lucas numbers.

In Figure 1 the first four Lucas cubes are presented with their vertices labeled with the corresponding

binary strings in the hypercube graph.

Figure 1. Lucas cubes Λ1,Λ2,Λ3,Λ4 .

The following decompositions of Γn and Λn can be obtained easily from the definitions (see, for example,

[7]): for the Fibonacci cubes, one can classify the binary strings defining the vertices of Γn by whether or not

b1 = 0 or b1 = 1. In this way Γn decomposes into a subgraph Γn−1 whose vertices are denoted by the

strings that start with 0 and a subgraph Γn−2 whose vertices are denoted by the strings that start with 10.

This decomposition can be shown as Γn = 0Γn−1 + 10Γn−2 . Furthermore, Γn−1 in turn has a subgraph Γ′
n−2

(whose vertices start with 00) isomorphic to Γn−2 , with each vertex of Γ′
n−2 connected by an edge to its twin in

Γn−2 . This is the fundamental decomposition of Γn . Similarly, Λn has a fundamental decomposition that comes

from the classification of the binary strings defining the vertices in it: Λn has a subgraph Γn−1 whose vertices

are denoted by the corresponding strings starting with 0 and a subgraph Γn−3 whose vertices are given by the

strings that start with 10 and end with 0 in Λn . This decomposition is denoted by Λn = 0Γn−1 + 10Γn−30.

Furthermore, in this decomposition Γn−1 has a subgraph Γ′
n−3 (whose vertices start with 00 and end with 0)

isomorphic to Γn−3 , and each vertex of Γ′
n−3 is connected by an edge to its twin in Γn−3 . In the fundamental

decomposition for Fibonacci cubes, there are fn edges between Γ′
n−2 and Γn−2 . For Lucas cubes, there are

fn−1 edges between Γ′
n−3 and Γn−3 .

Since there is a close relationship between hypercubes, Fibonacci cubes, and Lucas cubes it is natural

to consider the number of k -dimensional hypercubes in Λn and Γn . The enumerator of these subgraphs was

considered in [5] and generalized in [8]. In this paper, we consider a generalization of the hypercube enumerator

polynomials of the Lucas cubes. Our polynomials involve an extra variable q (see Section 3), from which the

known numerical cases given in [5] can be obtained by the specialization q = 1.

Starting with the q -analogue of the Fibonacci numbers given by f0(q) = 0, f1(q) = 1, and

fn(q) = fn−1(q) + qfn−2(q) (1)

for n ≥ 2, the first few fn(q) for n ≥ 2 are computed as:

1, 1 + q, 1 + 2q, 1 + 3q + q2, 1 + 4q + 3q2, 1 + 5q + 6q2 + q3, . . .

We define Fn(q) = fn+2(q) for all n ≥ 0.

Similar to the case of the Fibonacci numbers, a q -analogue of the Lucas numbers can be defined by
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L0(q) = 2, L1(q) = 1, and

Ln(q) = Ln−1(q) + qLn−2(q) (2)

for n ≥ 2. Using (2), the first few Ln(q) for n ≥ 2 are:

1 + 2q, 1 + 3q, 1 + 4q + 2q2, 1 + 5q + 5q2, 1 + 6q + 9q2 + 2q3, . . .

It is well known that (see, for example, [10])

∑
n≥0

fnt
n =

t

1− t− t2
and

∑
n≥0

Lnt
n =

2− t

1− t− t2
.

Similarly, one can easily obtain the generating functions of fn(q) and Ln(q) as

∑
n≥0

fn(q)t
n =

t

1− t− qt2
and

∑
n≥0

Ln(q)t
n =

2− t

1− t− qt2
. (3)

These generating functions will be useful to derive the expressions we have for the coefficients of the

q -analogue as convolutions of the polynomials that involve fn(q) and Ln(q).

Let hn,k denote the number of k -dimensional hypercubes in the Lucas cube Λn . The cube polynomial,

or the cube enumerator polynomial C(Λn, x), is defined in [5] as

C(Λn, x) =
∑
k≥0

hn,kx
k . (4)

A few of these are given below:

C(Λ0, x) = 1,

C(Λ1, x) = 1,

C(Λ2, x) = 3 + 2x,

C(Λ3, x) = 4 + 3x,

C(Λ4, x) = 7 + 8x+ 2x2,

C(Λ5, x) = 11 + 15x+ 5x2,

C(Λ6, x) = 18 + 30x+ 15x2 + 2x3,

C(Λ7, x) = 29 + 56x+ 35x2 + 7x3.

Evidently the constant terms are the number of Q0 s, i.e. the number of vertices of Λn . Therefore, for n ≥ 1

we have C(Λn, 0) = Ln.

Many interesting results on C(Λn, x) and hn,k in (4) appear in [5]. It is observed in [5] that for n ≥ 3

the numbers in Table 1 satisfy the recursion

hn,k = hn−1,k + hn−2,k + hn−2,k−1 (5)

where hn,−1 = 0. The first column entries (k = 0) of the table are 1, L1, L2, L3, . . . ; the diagonal entries are

1, 0, 0, 0, . . . and h2,1 = 2. After these, the other entries can be filled row by row by using the recursion (5).
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Table 1. The table of coefficients of the cube polynomials C(Λn, x) by rows. The entry in row n , column k is the

coefficient hn,k , the number of k -dimensional hypercubes in the Lucas cube Λn .

n\k 0 1 2 3 4
0 1 0 0 0 0
1 1 0 0 0 0
2 3 2 0 0 0
3 4 3 0 0 0
4 7 8 2 0 0
5 11 15 5 0 0
6 18 30 15 2 0
7 29 56 35 7 0

3. q -counting subcubes in Λn

Recall that the distance between two subgraphs of a graph is the smallest distance between pairs of vertices

taken one from each. The polynomials C(Λn, x; q) of the Lucas cube Λn will be constructed by keeping track

of the distance of each k -dimensional hypercube in Λn to the all 0 vertex in Λn in the following fashion:

C(Λn, x; q) is defined as the sum of all terms of the form qdxk , one for each subcube of Λn . The exponent k

is the dimension of the subcube and the exponent d is the distance of the subcube to the all 0 vertex in Λn .

Similarly, the q -cube polynomial of Γn is defined as the bivariate polynomial cn(x; q) whose terms are of the

form qdxk as above [8].

It is useful to think of C(Λn, x; q) as a polynomial in x whose coefficients are polynomials in q . The

first few C(Λn, x; q) are as follows:

C(Λ0, x; q) = 1,

C(Λ1, x; q) = 1,

C(Λ2, x; q) = 1 + 2q + 2x,

C(Λ3, x; q) = 1 + 3q + 3x,

C(Λ4, x; q) = 1 + 4q + 2q2 + (4 + 4q)x+ 2x2,

C(Λ5, x; q) = 1 + 5q + 5q2 + (5 + 10q)x+ 5x2,

C(Λ6, x; q) = 1 + 6q + 9q2 + 2q3 + (6 + 18q + 6q2)x+ (9 + 6q)x2 + 2x3,

C(Λ7, x; q) = 1 + 7q + 14q2 + 7q3 + (7 + 28q + 21q2)x+ (14 + 21q)x2 + 7x3.

Now we illustrate the structure of C(Λ2, x; q) and C(Λ4, x; q) in more detail. Recall that there are three vertices

(Q0 ) and 2 edges (Q1 ) in the graph of Λ2 as shown in Figure 1. The Q0 s are the vertices of the graph. There

is a single vertex having distance 0 to the vertex 00 (i.e. 00 itself) and there are two vertices having distance 1.

Therefore, the coefficient of x0 in C(Λ2, x; q) is 1 + 2q . Similarly, 1-dimensional hypercubes Q1 are the edges

of the graph. In Λ2 there are a total of two of those, each having distance zero to the vertex 00. Therefore, the

coefficient of x is 2. This gives C(Λ2, x; q) = 1 + 2q + 2x .

Similarly, to construct C(Λ4, x; q) we consider all hypercubes in Λ4 having dimension k < 3 and their

distances to the 0000. Note that there are no higher dimensional hypercubes in Λ4 . For k = 0 we know that

there are seven vertices in the graph giving 0-dimensional hypercubes. The vertex 0000 has distance 0; the
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vertices 0001, 0010, 0100, and 1000 each have distance 1; and the vertices 0101 and 1010 have distance 2 to

0000. Thus, the coefficient of x0 is 1 + 4q + 2q2 .

Now consider k = 1, that is, 1-dimensional hypercubes in the graph. We know that they are the edges

of the graph and from Figure 2 we see that there are four edges with distance 0 and four edges with distance 1

to the vertex 0000. Thus, the coefficient of x in C(Λ4, x; q) is 4 + 4q .

Finally, there are only two 2-dimensional hypercubes in Λ4 and these hypercubes contain the vertex

0000. Thus, the total contribution from these 2-dimensional subcubes is 2x2 . Adding these contributions, we

get C(Λ4, x; q) = (1 + 4q + 2q2) + (4 + 4q)x + 2x2 . A graphical presentation of these hypercubes in Λ4 and

their individual contributions to C(Λ4, x; q) is presented in Figure 2.

Figure 2. The elements of the q -cube polynomial C(Λ4, x; q) = 1 + 4q + 2q2 + (4 + 4q)x+ 2x2 .

Next we present the basic recursion that allows for the calculation of the q -cube polynomials and is

central to what follows. We remark that the proof of this result is similar to the proof of [8, Lemma 1].

Lemma 1 For n ≥ 3 the q -cube polynomial C(Λn, x; q) satisfies the recursion

C(Λn, x; q) = C(Λn−1, x; q) + (q + x)C(Λn−2, x; q) (6)

with C(Λ1, x; q) = 1 and C(Λ2, x; q) = 1 + 2q + 2x .

Proof From the numerical values it is easy to see that the result is true for n ≤ 4. For n ≥ 5, first we show

that

C(Λn, x; q) = cn−1(x; q) + (q + x)cn−3(x; q) (7)

where cn(x; q) is the q -cube polynomial of Γn . We make use of the fundamental decomposition of Λn into

Γn−1 and Γn−3 [7]. Γn−1 contains an isomorphic copy of Γn−3 , which is denoted by Γ′
n−3 , with unique edges

between the corresponding vertices of the subgraph Γn−3 and this copy Γ′
n−3 . It follows that there are only

three kinds of hypercubes in Λn :
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Case 1: A k -dimensional hypercube in Γn−1 remains a k -dimensional hypercube in Λn and the distances

of these cubes to the all 0 vertex remain unchanged. By the induction hypothesis, these are enumerated by

cn−1(x; q).

Case 2: Any k -dimensional hypercube in Γn−3 is again a k -dimensional hypercube in Λn , and the distances of

these cubes in Λn to the all 0 vertex go up by 1 due to the edges identifying the corresponding vertices in Γn−3

and Γ′
n−3 . This increase in the distance to the all 0 vertex by 1 means multiplication by q . The contribution

of these hypercubes is qcn−3(x; q).

Case 3: A k -dimensional hypercube in Γn−3 has an isomorphic copy in Γ′
n−3 and all the corresponding

vertices of these k -dimensional hypercubes are connected by edges to their twins. Therefore, these two k -

dimensional hypercubes together with the edges connecting them form a (k+1)-dimensional hypercube in Λn .

Also, the distances of these cubes to the all 0 vertex remain unchanged. The contribution of these hypercubes

is xcn−3(x; q), since multiplication by x has the effect of increasing the dimension by 1. Adding up these three

contributions, we obtain (7).

Now by using (7) we complete the proof as follows. For n ≥ 5 we have

C(Λn−1, x; q) + (q + x)C(Λn−2, x; q) = [cn−2(x; q) + (q + x)cn−4(x; q)]

+(q + x) [cn−3(x; q) + (q + x)cn−5(x; q)]

= [cn−2(x; q) + (q + x)cn−3(x; q)]

+(q + x) [cn−4(x; q) + (q + x)cn−5(x; q)]

= cn−1(x; q) + (q + x)cn−3(x; q)

= C(Λn, x; q)

where we have used cn(x; q) = cn−1(x; q) + (q + x)cn−2(x; q) given in [8, Lemma 1]. 2

We next determine the generating function for the q -cube polynomial C(Λn, x; q) and relate it to the convolu-

tions involving the q -analogues of the Fibonacci numbers and Lucas numbers in (1) and (2).

Proposition 1 The generating function of the q -cube polynomial C(Λn, x; q) is

∑
n≥0

C(Λn, x; q)t
n =

1 + t2(q + x)

1− t− t2(q + x)
.

Proof Let S =
∑
n≥1

C(Λn, x; q)t
n . We know that C(Λ1, x; q) = 1, C(Λ2, x; q) = 1 + 2q + 2x and C(Λn, x; q)

satisfies recursion (6). Therefore, S satisfies

S − t− t2(1 + 2q + 2x) = t(S − t) + t2(q + x)S ,

which can be solved for S to compute the generating function as 1 + S . 2

The recursion in (6) can be solved directly to find C(Λn, x; q) in explicit form.
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SAYGI and EĞECİOĞLU/Turk J Math

Theorem 1 For any positive integer n , the q -cube polynomial C(Λn, x; q) of the Lucas cube has degree
⌊
n
2

⌋
in x and it is given explicitly as

C(Λn, x; q) =
1

2n−1

⌊n
2 ⌋∑

i=0

(
n

2i

)
(1 + 4(q + x))

i
. (8)

Proof We know that the characteristic equation of the recursion in (6) is

r2 − r − (q + x) = 0.

Using the Binet formula, this equation gives an explicit expression in the form

C(Λn, x; q) =
(1 + θ)n + (1− θ)n

2n
(9)

where θ =
√
1 + 4(q + x). Using binomial expansions for (1± θ)n and after some algebraic manipulation, we

obtain (8). 2

In particular, writing

C(Λn, x; q) =
∑
k≥0

hn,k(q)x
k ,

we obtain the following formula for the coefficient polynomials hn,k(q).

Corollary 1 For any positive integer n , the coefficient polynomials of the q -cube polynomial C(Λn, x; q) are

given by

hn,k(q) =
1

2n−1

(
4

1 + 4q

)k ⌊n
2 ⌋∑

i=k

(
n

2i

)(
i

k

)
(1 + 4q)i .

In particular,

Ln(q) = hn,0(q) =
1

2n−1

⌊n
2 ⌋∑

i=0

(
n

2i

)
(1 + 4q)i .

A few of the polynomials hn,k(q) are given in Table 2.

Using the properties of convolutions we also obtain the following result relating the coefficient polynomials

hn,k(q) of the q -cube polynomial C(Λn, x; q) and the q -analogues of the Fibonacci numbers and Lucas numbers

given in (1) and (2).

Proposition 2 For n ≥ 1 the coefficient polynomials hn,k(q) of the q -cube enumerator C(Λn, x; q) are given

by

hn,k(q) =
∑

i0,i1,...,ik≥0
i0+i1+···+ik=n−k

Li0(q)fi1(q) · · · fik(q).
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Table 2. The table of coefficients of the q -cube polynomials C(Λn, x; q) by rows. The entry in row n , column k is the
coefficient polynomial hn,k(q) .

n\k 0 1 2 3 4
0 1 0 0 0 0
1 1 0 0 0 0
2 1 + 2q 2 0 0 0
3 1 + 3q 3 0 0 0
4 1 + 4q + 2q2 4 + 4q 2 0 0
5 1 + 5q + 5q2 5 + 10q 5 0 0
6 1 + 6q + 9q2 + 2q3 6 + 18q + 6q2 9 + 6q 2 0
7 1 + 7q + 14q2 + 7q3 7 + 28q + 21q2 14 + 21q 7 0

Proof From Proposition 1 we know that the generating function of the C(Λn, x; q) is

∑
n≥0

C(Λn, x; q)t
n =

1 + t2(q + x)

1− t− t2(q + x)
. (10)

On the other hand, by (3) the convolution of Ln(q) with the k -fold convolutions of fn(q) has the generating

function

(2− t)tk

(1− t− qt2)k+1
.

Setting

gk(t; q) =
(2− t)t2k

(1− t− qt2)k+1

for k ≥ 1 with

g0(t; q) =
2− t

(1− t− qt2)
− 1

and calculating directly, we find

∑
k≥0

gk(t; q)x
k = −1 +

2− t

(1− t− qt2)

∑
k≥0

(
xt2

1− t− qt2

)k

=
1 + t2(q + x)

1− t− t2(q + x)
.

This is identical to the generating function of the C(Λn, x; q) of (10). It follows that the gk(t; q) are the

generating functions of the columns of Table 2. The proposition now follows by equating the coefficients of tnxk

in the two expressions as we have

∑
k≥0

gk(t; q)x
k =

∑
k≥0


∑

i0≥0

Li0(q)t
i0

∑
i≥0

fi(q)t
i

k
 tkxk =

∑
n≥0

∑
k≥0

hn,k(q)x
k

 tn .

2
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From [7] we know that there are

n

n− i

(
n− i

i

)
= 2

(
n− i

i

)
−

(
n− i− 1

i

)
(11)

different vertices in Λn , which contain i 1s (that is, vertices having weight i). Note that the distance between

a vertex having weight i and all zero vertex is obviously i . Using this information, the polynomials in the first

column (k = 0) of Table 2 can be written for n ≥ 1 as

Ln(q) = hn,0(q) =

⌊n
2 ⌋∑

i=0

n

n− i

(
n− i

i

)
qi . (12)

In general, we have the following expression for the entry in row n , column k :

Proposition 3 The coefficient polynomials hn,k(q) of the q -cube enumerator C(Λn, x; q) of the Lucas cube Λn

are given explicitly by

hn,k(q) =

⌊n
2 ⌋∑

i=k

n

n− i

(
n− i

i

)(
i

k

)
qi−k .

Proof From (11) we know that there are n
n−i

(
n−i
i

)
different vertices in Λn , which contain i 1s. For a

given subcube Qk of Λn , let u be the vertex of the Qk having maximum weight among all the vertices of

the Qk , say i . Then we know that there is set of k positions in u such that the Qk is induced by the 2k

vertices obtained by varying these k bits. Now, we know that each such vertex u gives
(
i
k

)
different sub-

cubes. Furthermore, there is a vertex of the Qk having minimum weight among all the vertices of the Qk ,

whose weight is i−k . That is, the distance of such Qk s to the all zero vertex is i−k . Then the result follows. 2

Note that Proposition 3 can also be proved directly from the recurrence in (6), by using induction on k and

verifying a binomial identity.

Remark 1 Equating the two different expressions for hn,k(q) in Corollary 1 and Proposition 3 gives the

following identity for n ≥ 1 and k ≤
⌊
n
2

⌋
:

1

2n−1

(
4

1 + 4q

)k ⌊n
2 ⌋∑

i=k

(
n

2i

)(
i

k

)
(1 + 4q)i =

⌊n
2 ⌋∑

i=k

n

n− i

(
n− i

i

)(
i

k

)
qi−k .

4. Further results

In this section we consider the divisibility properties of C(Λn, x; q) and present some special new results for the

case q = 1, which is the case considered in [5].

4.1. Divisibility properties of the q -cube polynomials

Consider the q -cube polynomials cn(x; q) and C(Λn, x; q) of the Fibonacci cubes Γn and the Lucas cubes Λn ,

respectively. Recall that the Binet formulas for these polynomials are obtained in [8, Equation 8] and (9) as

cn(x; q) =
(1 + θ)n+2 − (1− θ)n+2

2n+2θ
and C(Λn, x; q) =

(1 + θ)n + (1− θ)n

2n
(13)

where θ =
√
1 + 4(q + x). Using these expressions we immediately obtain the following divisibility results.
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SAYGI and EĞECİOĞLU/Turk J Math

Proposition 4 Let cn(x; q) and C(Λn, x; q) be the q -cube polynomials of the Fibonacci cubes Γn and the Lucas

cubes Λn , respectively. Then we have:

1. For any n,m ≥ 0 with m odd, C(Λn, x; q) divides C(Λmn, x; q) as a polynomial in x . Furthermore, the

coefficients of powers of x in this quotient are polynomials in q with nonnegative integer coefficients.

2. For any m ≥ 1 , c2m(x; q) = cm−1(x; q)C(Λm+1, x; q) .

3. For any n,m ≥ 1 with m even C(Λn, x; q) divides cmn−2(x; q) as a polynomial in x .

Proof Using (13) one can easily obtain all the divisibility parts. Here we only prove the second part of the

first result using induction on m (see also Remark 3).

For a fixed n , let us define

A = (1 + θ)n and B = (1− θ)n . (14)

By the definition of C(Λtn, x; q) and (13) we note that 2tn| (At +Bt) for all positive integers t . Hence, for the

quotient

C(Λmn, x; q)

C(Λn, x; q)
=

Am +Bm

2(m−1)n(A+B)

we only need to consider the coefficients of powers of x in

Qm(x; q) =
Am +Bm

A+B
. (15)

For m = 1 we have Q1(x; q) = 1 and assume that the result is true for Qm(x; q). We need to consider

Qm+2(x; q) and we can write

Qm+2(x; q) =
Am+2 +Bm+2

A+B

=
Am +Bm

A+B

(
A2 +B2

)
− Am−2 +Bm−2

A+B
A2B2

= Qm(x; q)
(
A2 +B2

)
−Qm−2(x; q)A

2B2 , (16)

where

A2 +B2 = (1 + θ)2n + (1− θ)2n

=

((
1 +

√
1 + 4(q + x)

)2n

+
(
1−

√
1 + 4(q + x)

)2n
)

=
∑
i≥0

2

(
2n

2i

)
(1 + 4(q + x))i , (17)

and

A2B2 = (1− θ2)n = ((−4(q + x))
n

, (18)
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which are polynomials in x and the coefficients of powers of x are polynomials in q with integer coefficients.

Then, using the induction assumption, we conclude that Qm+2(x; q) is a polynomial in x and the coefficients

of powers of x are polynomials in q with integer coefficients. Furthermore, using (16), (17), and (18) the

nonnegativity of coefficients is clear for odd positive integers n . For even n , the nonnegativity of coefficients

can be obtained using (14) and (15) directly. 2

Remark 2 Letting q = 1 , the results in Proposition 4 reduce to [5, Corollary 6.3, (i)] and [5, Corollary 6.3,

(iii)]. Note that the condition m odd is necessary in the first result in Proposition 4 although it is missing in

[5, Corollary 6.3, (iii)]. For example C(Λ2, x; 1) = 2x+ 3 does not divide C(Λ4, x; 1) = 2x2 + 8x+ 7 .

4.2. Results for q = 1

In this section we present some special results for the case q = 1, which is the case considered in [5]. By using

(11) and setting q = 1, Proposition 3 reduces to

hn,k(1) =

⌊n
2 ⌋∑

i=k

[
2

(
n− i

i

)
−
(
n− i− 1

i

)](
i

k

)

where hn,k(1) is the coefficient polynomial of the cube enumerator C(Λn, x; 1) of the Lucas cube Λn considered

in [5, Theorem 5.2] and [5, Corollary 5.3].∗

The constant term in C(Λn, x; 1) for n ≥ 1 is the number of vertices Ln of Λn , which is obtained by

taking x = 0 in (8). This gives the following curious result:

Proposition 5 The Lucas numbers L0 = 2, L1 = 1 , Ln = Ln−1 + Ln−2 are given by

Ln =
1

2n−1

⌊n
2 ⌋∑

i=0

(
n

2i

)
5i .

Note that a similar result for Fibonacci numbers is obtained in [8, Proposition 5], which is of the form

fn =
1

2n−1

⌊n+1
2 ⌋∑

i=0

(
n

2i+ 1

)
5i .

By combining these two expressions we obtain the well-known identity Ln + fn = 2fn+1 .

From the expression (8) for the C(Λn, x; q) we can immediately get other specializations. For instance,

taking x = −(1 + 4q)/4 gives

C

(
Λn,−

1 + 4q

4
; q

)
=

1

2n−1
(n ≥ 1).

This can of course be obtained from the original recursion (6) by setting x = −(1 + 4q)/4 and solving the

resulting recursion. This is the generalization of C
(
Λn,− 5

4 ; 1
)
= 1

2n−1 , for n ≥ 1 as given in [5, p. 103].

∗The second combinatorial parts of these results in [5] appear to contain a typo. The correct version of the corresponding parts(n−a+1
a

)
and

(n−i+1
i

)
in these results should be

(n−a−1
a

)
and

(n−i−1
i

)
.
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Incidentally, similar to the Fibonacci cube case, the values an = C (Λn, 1; 1) satisfy the recurrence

an = an−1 + 2an−2

with the initial values a0 = 1, a1 = 1, giving the shifted Jacobsthal sequence [2]:

1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731, . . .

4.3. Further properties of the q -cube polynomials

Using Corollary 1 (or Proposition 3) and [8, Proposition 3] it is possible to derive additional properties of the

coefficients of q -cube polynomials of C(Λn, x; q) and cn(x; q). Write

C(Λn, x; q) =
∑
k≥0

hn,k(q)x
k and cn(x; q) =

∑
k≥0

Hn,k(q)x
k

and let D : Z[q] → Z[q] denote the differentiation operator. We have the following result.

Proposition 6 The coefficient polynomials hn,k(q) and Hn,k(q) of the q -cube polynomials of C(Λn, x; q) and

cn(x; q) satisfy

1

k
Dhn,k−1(q) = hn,k(q) and

1

k
DHn,k−1(q) = Hn,k(q) .

In particular,

1

k!
Dkhn,0(q) = hn,k(q) and

1

k!
DkHn,0(q) = Hn,k(q) .

Using operator notation we can write

C(Λn, x; q) = exDLn(q) and cn(x; q) = exDFn(q) = exDfn+2(q) .

Therefore, Taylor’s theorem gives the following expressions for the q -cube polynomials.

Proposition 7 Let C(Λn, x; q) and cn(x; q) be the q -cube polynomials of the Lucas cubes Λn and the Fibonacci

cubes Γn , respectively. Then

C(Λn, x; q) = Ln(x+ q) and cn(x; q) = Fn(x+ q) = fn+2(x+ q)

where Ln(q) and fn(q) are as defined in (2) and (1).

Remark 3 From Proposition 4, we have that C(Λn, x; q) divides C(Λmn, x; q) . Assume that the quotient is

Q(x; q) =
∑

k≥0 ak(q)x
k , so that C(Λmn, x; q) = C(Λn, x; q)Q(x; q) . Since the coefficients of C(Λn, x; q) and

C(Λmn, x; q) satisfy the derivative properties given in Proposition 6 it is clear that the coefficients of Q(x; q)

also satisfy these properties; that is, 1
k!D

ka0(q) = ak(q) . Therefore, to compute the coefficients of the quotient

polynomial Q(x; q) , and especially to prove nonnegativity of the coefficients, it suffices to find

a0(q) =
C(Λmn, 0; q)

C(Λn, 0; q)
=

Lmn(q)

Ln(q)
.
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