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tThe 
anoni
al bit re
oding te
hnique 
an be used to redu
e the average number of multipli
ationsrequired to 
ompute XE provided that X�1 is supplied along with X . We model the generation ofthe digits of the 
anoni
al re
oding D of an n-bit long exponent E as a Markov 
hain, and showthat binary, quaternary, and o
tal methods applied to D require 43 n, 43 n, and 2318 n multipli
ations,
ompared to 32 n, 118 n, and 3124n required by these methods applied to E. We show that in general the
anoni
ally re
oded m-ary method for 
onstant m requires fewer multipli
ations than the standardm-ary method. However, when m is pi
ked optimally for ea
h method for a given n, then the averagenumber of multipli
ations required by the standard method is fewer than those required by there
oded version.Key Words: Exponentiation, binary method, m-ary method, 
anoni
al re
oding.1 Introdu
tionThe binary method [5℄ 
omputes Y = XE using n � 1 squarings and as many multipli
ations as oneless than the number of nonzero bits in the binary expansion of the exponent, where n = 1 + blog2E
.It is well-known that n� 1 is a lower bound for the number of squaring operations required. However,it is possible to redu
e the number of subsequent multipli
ations using a re
oding of the the exponent[4, 10, 7, 6, 16℄. Re
oding te
hniques (Booth re
oding, bit-pair re
oding, et
.) for sparse representationsof binary numbers have been e�e
tively used in multipli
ation algorithms [3, 17℄. For example, theoriginal Booth re
oding te
hnique [1℄ s
ans the bits of the multiplier one bit at a time, and adds orsubtra
ts the multipli
and to or from the partial produ
t, depending on the value of the 
urrent bitand the previous bit. The modi�ed versions of the Booth algorithm s
an the bits of the multipliertwo bits at a time [9℄ or three bits at a time [17℄. These te
hniques are equivalent in the sense that asigned-digit representation whi
h is based on the identity 2i+j � 2i = 2i+j�1 + 2i+j�2 � � � + 2i+1 + 2i isused to 
ollapse blo
ks of 1's appearing in a binary representation. In a signed-digit number with radix2, three symbols f1; 0; 1g are allowed for the digit set, in whi
h 1 and 1 in bit position i represent +2iand �2i, respe
tively.Bit re
oding te
hniques applied to E 
an be used for the exponentiation problem provided that X�1is supplied along with X. Throughout this paper, we will ignore the prepro
essing time required for the
omputation of X�1 and treat it as part of the input.�Supported in part by RSA Data Se
urity In
., Redwood City, California.1



2 Canoni
al Re
odingA signed-digit ve
tor D of E is a sparse re
oding of E using digits from the set f1; 0; 1g. The re
odingis 
anoni
al if D 
ontains no adja
ent nonzero digits [13, 3, 8℄. Thus a 
anoni
al signed-digit ve
tor ofE is of the form D = (Dn�1Dn�2 � � �D0) with Di 2 f1; 0; 1g andDi �Di�1 = 0 for 1 � i � n� 1 .It 
an be shown that the 
anoni
al signed-digit ve
tor for E is unique if the binary expansion of Eis viewed as padded with an initial zero. This 
anoni
al signed-digit ve
tor 
an be 
onstru
ted by the
anoni
al re
oding algorithm of Reitwiesner [13℄. Reitwiesner's algorithm 
omputes D starting from theleast signi�
ant digit and pro
eeding to the left. First the auxiliary 
arry variable C0 is set to 0 andsubsequently the binary expansion of E is s
anned two bits at a time. The 
anoni
ally re
oded digitDi and the next value of the auxiliary binary variable Ci+1 for i = 0; 1; 2; : : : ; n are generated usingTable 1. Table 1: Canoni
al re
oding.Ei+1 Ei Ci Di Ci+10 0 0 0 00 0 1 1 00 1 0 1 00 1 1 0 11 0 0 0 01 0 1 1 11 1 0 1 11 1 1 0 1As an example, when E = 3038, we 
ompute the 
anoni
al signed-digit ve
tor D asE = (0101111011110) = 211 + 29 + 28 + 27 + 26 + 24 + 23 + 22 + 21 ,D = (1010000100010) = 212 � 210 � 25 � 21 .Note that in this example the exponent E 
ontains 9 nonzero bits while its 
anoni
ally re
oded version
ontains only 4 nonzero digits. Consequently, the binary method requires 11+8 = 19 multipli
ations to
ompute X3038 when applied to the binary expansion of E, but only 12 + 3 = 15 multipli
ations whenapplied to the 
anoni
al signed-digit ve
tor D. The 
anoni
al signed-digit ve
tor D is optimal in thesense that it has the minimum number of nonzero digits among all signed-digit ve
tors representing thesame number.3 The Standard m-ary MethodThe binary method 
an be generalized to the (standard) m-ary method [5, 12, 16℄ whi
h s
ans thedigits of E expressed in radix m. We restri
t our attention to the 
ase when m = 2d for some d. LetE = (En�1En�2 � � �E1E0) be the binary expansion of the exponent. We will assume that the mostsigni�
ant bit is equal to zero, i.e., En�1 = 0. This representation of E is partitioned into k blo
ks oflength d ea
h, for kd = n (if d does not divide n, the exponent is padded with at most d � 1 zeros).De�ne Fi = (Eid+d�1Eid+d�2 � � �Eid) = d�1Xr=0Eid+r2r . (1)2



Note that 0 � Fi � 2d � 1 and E = Pk�1i=0 Fi2id. In the prepro
essing phase of the m-ary method, thevalues of XF for F = 2; 3; : : : ; 2d � 1 
orresponding to all possible values of the length d bit-se
tionsare 
omputed. Next, the bits of E are s
anned d bits at a time from the most signi�
ant to the leastsigni�
ant. At ea
h step the partial result is raised to the 2d power and multiplied with XFi where Fiis the (nonzero) value of the 
urrent bit se
tion.Standard m-ary MethodInput: X;E; n; d where n = 1 + blog2E
 and n = kd for k � 1.Output: Y = XE .1. De
ompose E into d-bit words Fi for i = 0; 1; 2; : : : ; k � 1.2. Compute and store XF for all F = 2; 3; 4; : : : ; 2d � 1.3. Y := XFk�14. for i = k � 2 downto 04a. Y := Y 2d4b. if Fi 6= 0 then Y := Y �XFi5. return YThe prepro
essing part in Step 2 of the m-ary method requires 2d�2 multipli
ations. The number ofsquaring operations in Step 4a is equal to (k�1)d. Multipli
ations in Step 4b are performed for nonzerovalues of Fi. Sin
e m� 1 out of m possible values of Fi are nonzero, the average number of subsequentmultipli
ations required is (k� 1) �m�1m �. Thus we �nd that on the average, the m-ary method requiresa total of Ts(n; d) = n� d+ �nd � 1��1� 12d�+ 2d � 2 (2)multipli
ations. The average number of squarings plus multipli
ations for the binary (d = 1), thequaternary (d = 2), and the o
tal (d = 3) methods are found from (2) asTs(n; 1) = 32 n� 32 , Ts(n; 2) = 118 n� 34 , Ts(n; 3) = 3124 n� 178 , (3)respe
tively.4 The Re
oded m-ary MethodIn the re
odedm-ary method, we partition the 
anoni
al signed-digit ve
tor D produ
ed by Reitwiesner'salgorithm instead of the exponent E itself. In other words, in the re
oded m-ary method the d-bit-at-a-time partitioning that determines the bit se
tions Fi in (1) is applied to the 
anoni
al signed-digitve
tor D. Re
oded m-ary MethodInput: X;X�1; E; n; d where n = 1 + blog2E
 and n = kd for k � 1.Output: Y = XE .1. Compute the 
anoni
al signed-digit re
oding D of E using Reitwiesner's algorithm.2. De
ompose D into d-bit words Fi for i = 0; 1; 2; : : : ; k � 1.3. Compute and store XF for all possible length d bit-se
tions of that 
an appear in D.4. Y := XFk�1 3



5. for i = k � 2 downto 05a. Y := Y 2d5b. if Fi 6= 0 then Y := Y �XFi6. return Y5 Analysis of the Re
oded m-ary MethodIn the analysis of the re
oded m-ary method we need the number of all possible length d se
tions F ofa 
anoni
al signed-digit ve
tor to estimate the work involved in Step 3 of the re
oded m-ary method.To 
ompute this, denote by L the formal language of all words w over the alphabet f1; 0; 1g in whi
hnone of the patterns 1 1 ; 1 1 ; 1 1 ; 1 1appears. Thus the words w of length d in L 
orrespond to possible length d se
tions Fi of a 
anoni
alsigned-digit ve
tor. For d � 0, let �d denote the total number of words of length d in L. We have thefollowing result:Lemma 1 �d = 13 [2d+2 + (�1)d+1 ℄ : (4)Proof By 
onsidering the words in L a

ording to their �rst letter, we seeL = �+ 1 + 1 + 10L+ 10L+ 0L ; (5)where � denotes the empty word and + denotes disjoint union. Consider the generating fun
tionfL(t) = Xw2L tjwj = Xd�0 �d td :It follows from (5) that fL satis�esfL(t) = 1 + 2t+ 2t2fL(t) + tfL(t) ;and therefore fL(t) = 1 + 2t1� t� 2t2 = 43 � 11� 2t � 13 � 11 + t : (6)Now (4) follows by equating the 
oeÆ
ient of td on both sides of (6). 2Sin
e we are interested in the 
ost of multipli
ations required in exponentiation, we do not 
on
ernourselves with the bit level prepro
essing required for the 
omputation of the 
anoni
al re
oding D inStep 1 of the algorithm. The number of multipli
ations ne
essary in the prepro
essing stage Step 3 ofthe re
oded m-ary method is given by the following lemma:Lemma 2 The number of multipli
ations required in the prepro
essing phase (Step 3) of the re
odedm-ary method is �d � 3 = 13 [2d+2 + (�1)d+1 ℄� 3 .
4



Proof We need to 
ompute the number of multipli
ations required to 
ompute XF for all length d
anoni
al signed-digit ve
tors F . First we 
ompute all quantities XF where F 
ontains only one nonzeroletter. Sin
e 1;X, and X�1 are already available, this step requires 2(d� 1) multipli
ations. After this,ea
h value XF where F 
ontains k > 1 nonzero digits 
an be 
omputed re
ursively from the already
omputed values of XF where F 
ontains fewer than k nonzero digits by a single multipli
ation. Fork � 0, let 
k denote the number of words of length d in L with exa
tly k nonzero letters. Then the totalnumber of multipli
ations required for the prepro
essing step is2(d� 1) + 
2 + 
3 + � � � .Sin
e 
0 = 1, 
1 = 2d and �d = 
0 + 
1 + 
2 + � � � ,it follows that the total number of multipli
ations required is �d � (1 + 2d) + 2(d � 1) = �d � 3. 2Now we turn to the 
omputation of the probability that a length d 
anoni
ally re
oded bit-se
tionF 
onsists of d zeros, sin
e the multipli
ation in Step 5b of the re
oded m-ary method is 
arried outonly for nonzero F . An n-bit binary number E uniformly distributed in the range [0; 2n � 1℄ 
an beviewed as the output of a random pro
ess that generates one bit at a time. Ea
h bit assumes a valueof zero or one with equal probability and there is no dependen
y between any two bits generated.Thus P(Ei = 0) = P(Ei = 1) = 12 for 0 � i � n � 1. The signed-digit numbers produ
ed by the
anoni
al re
oding algorithm 
an be modeled using a �nite Markov 
hain. The state variables are takento be the triplets (Ei+1; Ei; Ci). There are 8 states for the 8 possible 
ombinations of input as givenin Table 1. The state transitions given in Table 2 are produ
ed by 
onsidering all 8 states labeleds0 through s7 and their su

essors from Table 1. As an example, 
onsider state s0 whi
h represents(Ei+1; Ei; Ci) = (0; 0; 0). We 
ompute the output (Di; Ci+1) as (0; 0) from Table 1. Thus the next stateis (Ei+2; Ei+1; Ci+1) = (Ei+2; 0; 0). Sin
e P(Ei+2 = 0) = P(Ei+2 = 1) = 12 , there are transitions fromstate s0 to the states s0 = (0; 0; 0) and s4 = (1; 0; 0), with equal probability.Table 2: State transition table for the 
anoni
al re
oding algorithm.State Output Next Statesi (Ei+1; Ei; Ci) (Di; Ci+1) Ei+2 = 0 Ei+2 = 1s0 (0; 0; 0) (0; 0) s0 s4s1 (0; 0; 1) (1; 0) s0 s4s2 (0; 1; 0) (1; 0) s0 s4s3 (0; 1; 1) (0; 1) s1 s5s4 (1; 0; 0) (0; 0) s2 s6s5 (1; 0; 1) (1; 1) s3 s7s6 (1; 1; 0) (1; 1) s3 s7s7 (1; 1; 1) (0; 1) s3 s7Let Pij denote the probability that the su

essor state of si is sj. From the above analysis P00 =P04 = 12 and P0j = 0 for j = 1; 2; 3; 5; 6; 7. After 
omputing the probabilities Pij for all i and j fromTable 2, we �nd that the one-step transition probability matrix of the 
hain is
5



P = 26666666666664
1=2 0 0 0 1=2 0 0 01=2 0 0 0 1=2 0 0 01=2 0 0 0 1=2 0 0 00 1=2 0 0 0 1=2 0 00 0 1=2 0 0 0 1=2 00 0 0 1=2 0 0 0 1=20 0 0 1=2 0 0 0 1=20 0 0 1=2 0 0 0 1=2

37777777777775 . (7)
The limiting probability �i of state si 
an be found by solving the system of linear equations �P = �with �0 + �1 + � � �+ �7 = 1. This gives� = �16 ; 112 ; 112 ; 16 ; 16 ; 112 ; 112 ; 16� . (8)Having 
omputed �i and Pij for all 0 � i; j � 7, we 
an easily prove several properties of the 
anoni
alre
oding algorithm. For example the probability that a digit in a 
anoni
al signed-digit number D isequal to zero is found by summing the limiting probabilities of the states for whi
h output Di = 0.From Table 2 and (8) we get P(Di = 0) = �0 + �3 + �4 + �7 = 23 :In parti
ular, the average number of nonzero digits in the 
anoni
ally re
oded binary number D is equalto n3 . Therefore the average number of squarings plus multipli
ations required by the re
oded binarymethod for large n is 43n + O(1), whi
h is better than Ts(n; 1) = 32n + O(1) required by the standardbinary method.Theorem 1 The probability that a length d bit-se
tion F in a 
anoni
ally re
oded signed-digit ve
torhas all bits equal to zero is �12�d�1 23 = 13 � 2d�2 :Proof We have already seen that P(Di = 0) = 23 . The probability that Di+1 = 0 when Di = 0 isfound as P(Di+1 = 0 j Di = 0) = Xj=0;3;4;7�0P0j + �3P3j + �4P4j + �7P7j�0 + �3 + �4 + �7 = 12 .It follows that for d � 1P(Di+d�1 = 0 j Di+d�2 = 0;Di+d�3 = 0; : : : ;Di = 0) = �12�d�1 23 : 2Combining Theorem 1 and the prepro
essing 
ost for the re
oded m-ary method given in Lemma 2, we�nd that on the average the re
oded m-ary method with m = 2d requires a total ofTr(n; d) = n� d+ �1� 13 � 2d�2� �nd � 1�+ 13 [2d+2 + (�1)d+1 ℄� 3 (9)6



squarings and multipli
ations. Figure 1 
ompares the average number of multipli
ations required bythe standard and the re
oded m-ary methods respe
tively as a fun
tion of n = 27; 28; : : : ; 216 andd = 1; 2; : : : ; 15.The average number of squarings plus multipli
ations for the re
oded binary (d = 1), the re
odedquaternary (d = 2), and the re
oded o
tal (d = 3) methods are found from (9) asTr(n; 1) = 43 n� 43 ; Tr(n; 2) = 43 n� 23 ; Tr(n; 3) = 2318 n+ 7518 , (10)respe
tively.6 Comparison of Standard and Re
oded m-ary MethodsFor large n and �xed d, the behavior of Tr(n; d) given in (9) and Ts(n; d) of the standard m-ary methodgiven in (2) is governed by the 
oeÆ
ient of n. In Table 3 we 
ompare the values Tr(n; d)=n andTs(n; d)=n for large n.Table 3: The average number of multipli
ations for the re
oded and standard m-ary methods.d = log2m 1 2 3 4 5 6 7 8Ts(n; d)=n 1:5 1:375 1:29167 1:23437 1:19375 1:16406 1:14174 1:12451Tr(n; d)=n 1:33333 1:33333 1:27778 1:22917 1:19167 1:16319 1:14137 1:12435We 
an 
ompute dire
tly from the expressions in (2) and (9) that for 
onstant dlimn!1 Tr(n; d)Ts(n; d) = (d+ 1)2d � 43(d+ 1)2d � 1 < 1 : (11)It is interesting to note that if we 
onsider the optimal values ds and dr of d (whi
h depend on n)whi
h minimize the average number of multipli
ations required by the standard and the re
oded m-arymethods, respe
tively, then Tr(n; dr)Ts(n; ds) > 1 (12)for large n. To prove (12), we 
onsider the behavior of Ts(n; d) and Tr(n; d) for large n and ignore thelower order terms involving d in (2) and (9). By di�erentiation, the optimal values d = ds and d = drof the lengths of the bit-se
tions in the standard and the re
oded m-ary methods that minimize thenumber of multipli
ations are found to bed222d log 2� d2 log 22d � d log 2� 1 = n and 4 d222d log 2� 4d2 log 23 2d � 4d log 2� 4 = n ;respe
tively. Sin
e d in
reases without bound in ea
h of these equations as n gets large, ds and dr satisfyd2s 2ds log 2 � n and d2r 2dr log 2 � 34n : (13)The fun
tion d2 2d is an in
reasing fun
tion of d and therefore dr < ds. Now from the expressions in (2)and (9) we get Tr(n; dr)Ts(n; ds) � 1 + 1dr1 + 1ds7



for large n, whi
h implies (12). Exa
t values of ds and dr for a given n 
an be obtained by enumeration.These optimal values of ds and dr are given in Table 4 together with the 
orresponding values of Ts andTr for ea
h n = 27; 28; : : : ; 216.Table 4: Optimal values of ds and dr together with Ts and Tr.n ds Ts(n; ds) dr Tr(n; dr)128 4 168 3 168256 4 326 4 328512 5 636 4 6431024 5 1247 5 12552048 6 2440 6 24584096 7 4795 7 48368192 8 9457 7 951116384 8 18669 8 1875132768 9 36902 9 3707065536 10 73095 10 734337 RemarksAlgorithms for 
omputing XE using as few multipli
ations as possible are 
ru
ial in many importantappli
ations in 
omputer s
ien
e and engineering. Re
ent appli
ations in 
ryptography, for example,the RSA algorithm [14℄, the ElGamal signature s
heme [2℄, and the re
ently proposed digital signaturestandard (DSS) of National Institute for Standards and Te
hnology [11℄, require the 
omputation of XE(mod M) for large values of E (usually n = log2E � 512). The re
oded m-ary method 
an be usefulfor these parti
ular appli
ations if X�1 
an be supplied without too mu
h extra 
ost. Even though theinverse X�1 (mod M) 
an easily be 
omputed using the extended Eu
lid algorithm, the 
ost of this
omputation far ex
eeds the time gained by the use of the re
oding te
hnique in exponentiation. Thus,at this time the re
oding te
hniques do not seem to be parti
ularly appli
able to these 
ryptosystems.However, the re
oding te
hniques may be useful for 
omputations on ellipti
 
urves over �nite �eldssin
e in these 
ases the inverse is available at no additional 
ost [10, 6℄. In this 
ontext, one 
omputesE � X where E is a large integer and X is a point on the ellipti
 
urve. The multipli
ation operatoris determined by the group law of the ellipti
 
urve. An algorithm for 
omputing XE is easily 
on-verted to an algorithm for 
omputing E �X, where we repla
e multipli
ation by addition and division(multipli
ation with the inverse) by subtra
tion.Referen
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Figure 1: The standard versus re
oded m-ary methods.
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