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2 Canonial ReodingA signed-digit vetor D of E is a sparse reoding of E using digits from the set f1; 0; 1g. The reodingis anonial if D ontains no adjaent nonzero digits [13, 3, 8℄. Thus a anonial signed-digit vetor ofE is of the form D = (Dn�1Dn�2 � � �D0) with Di 2 f1; 0; 1g andDi �Di�1 = 0 for 1 � i � n� 1 .It an be shown that the anonial signed-digit vetor for E is unique if the binary expansion of Eis viewed as padded with an initial zero. This anonial signed-digit vetor an be onstruted by theanonial reoding algorithm of Reitwiesner [13℄. Reitwiesner's algorithm omputes D starting from theleast signi�ant digit and proeeding to the left. First the auxiliary arry variable C0 is set to 0 andsubsequently the binary expansion of E is sanned two bits at a time. The anonially reoded digitDi and the next value of the auxiliary binary variable Ci+1 for i = 0; 1; 2; : : : ; n are generated usingTable 1. Table 1: Canonial reoding.Ei+1 Ei Ci Di Ci+10 0 0 0 00 0 1 1 00 1 0 1 00 1 1 0 11 0 0 0 01 0 1 1 11 1 0 1 11 1 1 0 1As an example, when E = 3038, we ompute the anonial signed-digit vetor D asE = (0101111011110) = 211 + 29 + 28 + 27 + 26 + 24 + 23 + 22 + 21 ,D = (1010000100010) = 212 � 210 � 25 � 21 .Note that in this example the exponent E ontains 9 nonzero bits while its anonially reoded versionontains only 4 nonzero digits. Consequently, the binary method requires 11+8 = 19 multipliations toompute X3038 when applied to the binary expansion of E, but only 12 + 3 = 15 multipliations whenapplied to the anonial signed-digit vetor D. The anonial signed-digit vetor D is optimal in thesense that it has the minimum number of nonzero digits among all signed-digit vetors representing thesame number.3 The Standard m-ary MethodThe binary method an be generalized to the (standard) m-ary method [5, 12, 16℄ whih sans thedigits of E expressed in radix m. We restrit our attention to the ase when m = 2d for some d. LetE = (En�1En�2 � � �E1E0) be the binary expansion of the exponent. We will assume that the mostsigni�ant bit is equal to zero, i.e., En�1 = 0. This representation of E is partitioned into k bloks oflength d eah, for kd = n (if d does not divide n, the exponent is padded with at most d � 1 zeros).De�ne Fi = (Eid+d�1Eid+d�2 � � �Eid) = d�1Xr=0Eid+r2r . (1)2



Note that 0 � Fi � 2d � 1 and E = Pk�1i=0 Fi2id. In the preproessing phase of the m-ary method, thevalues of XF for F = 2; 3; : : : ; 2d � 1 orresponding to all possible values of the length d bit-setionsare omputed. Next, the bits of E are sanned d bits at a time from the most signi�ant to the leastsigni�ant. At eah step the partial result is raised to the 2d power and multiplied with XFi where Fiis the (nonzero) value of the urrent bit setion.Standard m-ary MethodInput: X;E; n; d where n = 1 + blog2E and n = kd for k � 1.Output: Y = XE .1. Deompose E into d-bit words Fi for i = 0; 1; 2; : : : ; k � 1.2. Compute and store XF for all F = 2; 3; 4; : : : ; 2d � 1.3. Y := XFk�14. for i = k � 2 downto 04a. Y := Y 2d4b. if Fi 6= 0 then Y := Y �XFi5. return YThe preproessing part in Step 2 of the m-ary method requires 2d�2 multipliations. The number ofsquaring operations in Step 4a is equal to (k�1)d. Multipliations in Step 4b are performed for nonzerovalues of Fi. Sine m� 1 out of m possible values of Fi are nonzero, the average number of subsequentmultipliations required is (k� 1) �m�1m �. Thus we �nd that on the average, the m-ary method requiresa total of Ts(n; d) = n� d+ �nd � 1��1� 12d�+ 2d � 2 (2)multipliations. The average number of squarings plus multipliations for the binary (d = 1), thequaternary (d = 2), and the otal (d = 3) methods are found from (2) asTs(n; 1) = 32 n� 32 , Ts(n; 2) = 118 n� 34 , Ts(n; 3) = 3124 n� 178 , (3)respetively.4 The Reoded m-ary MethodIn the reodedm-ary method, we partition the anonial signed-digit vetor D produed by Reitwiesner'salgorithm instead of the exponent E itself. In other words, in the reoded m-ary method the d-bit-at-a-time partitioning that determines the bit setions Fi in (1) is applied to the anonial signed-digitvetor D. Reoded m-ary MethodInput: X;X�1; E; n; d where n = 1 + blog2E and n = kd for k � 1.Output: Y = XE .1. Compute the anonial signed-digit reoding D of E using Reitwiesner's algorithm.2. Deompose D into d-bit words Fi for i = 0; 1; 2; : : : ; k � 1.3. Compute and store XF for all possible length d bit-setions of that an appear in D.4. Y := XFk�1 3



5. for i = k � 2 downto 05a. Y := Y 2d5b. if Fi 6= 0 then Y := Y �XFi6. return Y5 Analysis of the Reoded m-ary MethodIn the analysis of the reoded m-ary method we need the number of all possible length d setions F ofa anonial signed-digit vetor to estimate the work involved in Step 3 of the reoded m-ary method.To ompute this, denote by L the formal language of all words w over the alphabet f1; 0; 1g in whihnone of the patterns 1 1 ; 1 1 ; 1 1 ; 1 1appears. Thus the words w of length d in L orrespond to possible length d setions Fi of a anonialsigned-digit vetor. For d � 0, let �d denote the total number of words of length d in L. We have thefollowing result:Lemma 1 �d = 13 [2d+2 + (�1)d+1 ℄ : (4)Proof By onsidering the words in L aording to their �rst letter, we seeL = �+ 1 + 1 + 10L+ 10L+ 0L ; (5)where � denotes the empty word and + denotes disjoint union. Consider the generating funtionfL(t) = Xw2L tjwj = Xd�0 �d td :It follows from (5) that fL satis�esfL(t) = 1 + 2t+ 2t2fL(t) + tfL(t) ;and therefore fL(t) = 1 + 2t1� t� 2t2 = 43 � 11� 2t � 13 � 11 + t : (6)Now (4) follows by equating the oeÆient of td on both sides of (6). 2Sine we are interested in the ost of multipliations required in exponentiation, we do not onernourselves with the bit level preproessing required for the omputation of the anonial reoding D inStep 1 of the algorithm. The number of multipliations neessary in the preproessing stage Step 3 ofthe reoded m-ary method is given by the following lemma:Lemma 2 The number of multipliations required in the preproessing phase (Step 3) of the reodedm-ary method is �d � 3 = 13 [2d+2 + (�1)d+1 ℄� 3 .
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Proof We need to ompute the number of multipliations required to ompute XF for all length danonial signed-digit vetors F . First we ompute all quantities XF where F ontains only one nonzeroletter. Sine 1;X, and X�1 are already available, this step requires 2(d� 1) multipliations. After this,eah value XF where F ontains k > 1 nonzero digits an be omputed reursively from the alreadyomputed values of XF where F ontains fewer than k nonzero digits by a single multipliation. Fork � 0, let k denote the number of words of length d in L with exatly k nonzero letters. Then the totalnumber of multipliations required for the preproessing step is2(d� 1) + 2 + 3 + � � � .Sine 0 = 1, 1 = 2d and �d = 0 + 1 + 2 + � � � ,it follows that the total number of multipliations required is �d � (1 + 2d) + 2(d � 1) = �d � 3. 2Now we turn to the omputation of the probability that a length d anonially reoded bit-setionF onsists of d zeros, sine the multipliation in Step 5b of the reoded m-ary method is arried outonly for nonzero F . An n-bit binary number E uniformly distributed in the range [0; 2n � 1℄ an beviewed as the output of a random proess that generates one bit at a time. Eah bit assumes a valueof zero or one with equal probability and there is no dependeny between any two bits generated.Thus P(Ei = 0) = P(Ei = 1) = 12 for 0 � i � n � 1. The signed-digit numbers produed by theanonial reoding algorithm an be modeled using a �nite Markov hain. The state variables are takento be the triplets (Ei+1; Ei; Ci). There are 8 states for the 8 possible ombinations of input as givenin Table 1. The state transitions given in Table 2 are produed by onsidering all 8 states labeleds0 through s7 and their suessors from Table 1. As an example, onsider state s0 whih represents(Ei+1; Ei; Ci) = (0; 0; 0). We ompute the output (Di; Ci+1) as (0; 0) from Table 1. Thus the next stateis (Ei+2; Ei+1; Ci+1) = (Ei+2; 0; 0). Sine P(Ei+2 = 0) = P(Ei+2 = 1) = 12 , there are transitions fromstate s0 to the states s0 = (0; 0; 0) and s4 = (1; 0; 0), with equal probability.Table 2: State transition table for the anonial reoding algorithm.State Output Next Statesi (Ei+1; Ei; Ci) (Di; Ci+1) Ei+2 = 0 Ei+2 = 1s0 (0; 0; 0) (0; 0) s0 s4s1 (0; 0; 1) (1; 0) s0 s4s2 (0; 1; 0) (1; 0) s0 s4s3 (0; 1; 1) (0; 1) s1 s5s4 (1; 0; 0) (0; 0) s2 s6s5 (1; 0; 1) (1; 1) s3 s7s6 (1; 1; 0) (1; 1) s3 s7s7 (1; 1; 1) (0; 1) s3 s7Let Pij denote the probability that the suessor state of si is sj. From the above analysis P00 =P04 = 12 and P0j = 0 for j = 1; 2; 3; 5; 6; 7. After omputing the probabilities Pij for all i and j fromTable 2, we �nd that the one-step transition probability matrix of the hain is
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P = 26666666666664
1=2 0 0 0 1=2 0 0 01=2 0 0 0 1=2 0 0 01=2 0 0 0 1=2 0 0 00 1=2 0 0 0 1=2 0 00 0 1=2 0 0 0 1=2 00 0 0 1=2 0 0 0 1=20 0 0 1=2 0 0 0 1=20 0 0 1=2 0 0 0 1=2

37777777777775 . (7)
The limiting probability �i of state si an be found by solving the system of linear equations �P = �with �0 + �1 + � � �+ �7 = 1. This gives� = �16 ; 112 ; 112 ; 16 ; 16 ; 112 ; 112 ; 16� . (8)Having omputed �i and Pij for all 0 � i; j � 7, we an easily prove several properties of the anonialreoding algorithm. For example the probability that a digit in a anonial signed-digit number D isequal to zero is found by summing the limiting probabilities of the states for whih output Di = 0.From Table 2 and (8) we get P(Di = 0) = �0 + �3 + �4 + �7 = 23 :In partiular, the average number of nonzero digits in the anonially reoded binary number D is equalto n3 . Therefore the average number of squarings plus multipliations required by the reoded binarymethod for large n is 43n + O(1), whih is better than Ts(n; 1) = 32n + O(1) required by the standardbinary method.Theorem 1 The probability that a length d bit-setion F in a anonially reoded signed-digit vetorhas all bits equal to zero is �12�d�1 23 = 13 � 2d�2 :Proof We have already seen that P(Di = 0) = 23 . The probability that Di+1 = 0 when Di = 0 isfound as P(Di+1 = 0 j Di = 0) = Xj=0;3;4;7�0P0j + �3P3j + �4P4j + �7P7j�0 + �3 + �4 + �7 = 12 .It follows that for d � 1P(Di+d�1 = 0 j Di+d�2 = 0;Di+d�3 = 0; : : : ;Di = 0) = �12�d�1 23 : 2Combining Theorem 1 and the preproessing ost for the reoded m-ary method given in Lemma 2, we�nd that on the average the reoded m-ary method with m = 2d requires a total ofTr(n; d) = n� d+ �1� 13 � 2d�2� �nd � 1�+ 13 [2d+2 + (�1)d+1 ℄� 3 (9)6



squarings and multipliations. Figure 1 ompares the average number of multipliations required bythe standard and the reoded m-ary methods respetively as a funtion of n = 27; 28; : : : ; 216 andd = 1; 2; : : : ; 15.The average number of squarings plus multipliations for the reoded binary (d = 1), the reodedquaternary (d = 2), and the reoded otal (d = 3) methods are found from (9) asTr(n; 1) = 43 n� 43 ; Tr(n; 2) = 43 n� 23 ; Tr(n; 3) = 2318 n+ 7518 , (10)respetively.6 Comparison of Standard and Reoded m-ary MethodsFor large n and �xed d, the behavior of Tr(n; d) given in (9) and Ts(n; d) of the standard m-ary methodgiven in (2) is governed by the oeÆient of n. In Table 3 we ompare the values Tr(n; d)=n andTs(n; d)=n for large n.Table 3: The average number of multipliations for the reoded and standard m-ary methods.d = log2m 1 2 3 4 5 6 7 8Ts(n; d)=n 1:5 1:375 1:29167 1:23437 1:19375 1:16406 1:14174 1:12451Tr(n; d)=n 1:33333 1:33333 1:27778 1:22917 1:19167 1:16319 1:14137 1:12435We an ompute diretly from the expressions in (2) and (9) that for onstant dlimn!1 Tr(n; d)Ts(n; d) = (d+ 1)2d � 43(d+ 1)2d � 1 < 1 : (11)It is interesting to note that if we onsider the optimal values ds and dr of d (whih depend on n)whih minimize the average number of multipliations required by the standard and the reoded m-arymethods, respetively, then Tr(n; dr)Ts(n; ds) > 1 (12)for large n. To prove (12), we onsider the behavior of Ts(n; d) and Tr(n; d) for large n and ignore thelower order terms involving d in (2) and (9). By di�erentiation, the optimal values d = ds and d = drof the lengths of the bit-setions in the standard and the reoded m-ary methods that minimize thenumber of multipliations are found to bed222d log 2� d2 log 22d � d log 2� 1 = n and 4 d222d log 2� 4d2 log 23 2d � 4d log 2� 4 = n ;respetively. Sine d inreases without bound in eah of these equations as n gets large, ds and dr satisfyd2s 2ds log 2 � n and d2r 2dr log 2 � 34n : (13)The funtion d2 2d is an inreasing funtion of d and therefore dr < ds. Now from the expressions in (2)and (9) we get Tr(n; dr)Ts(n; ds) � 1 + 1dr1 + 1ds7



for large n, whih implies (12). Exat values of ds and dr for a given n an be obtained by enumeration.These optimal values of ds and dr are given in Table 4 together with the orresponding values of Ts andTr for eah n = 27; 28; : : : ; 216.Table 4: Optimal values of ds and dr together with Ts and Tr.n ds Ts(n; ds) dr Tr(n; dr)128 4 168 3 168256 4 326 4 328512 5 636 4 6431024 5 1247 5 12552048 6 2440 6 24584096 7 4795 7 48368192 8 9457 7 951116384 8 18669 8 1875132768 9 36902 9 3707065536 10 73095 10 734337 RemarksAlgorithms for omputing XE using as few multipliations as possible are ruial in many importantappliations in omputer siene and engineering. Reent appliations in ryptography, for example,the RSA algorithm [14℄, the ElGamal signature sheme [2℄, and the reently proposed digital signaturestandard (DSS) of National Institute for Standards and Tehnology [11℄, require the omputation of XE(mod M) for large values of E (usually n = log2E � 512). The reoded m-ary method an be usefulfor these partiular appliations if X�1 an be supplied without too muh extra ost. Even though theinverse X�1 (mod M) an easily be omputed using the extended Eulid algorithm, the ost of thisomputation far exeeds the time gained by the use of the reoding tehnique in exponentiation. Thus,at this time the reoding tehniques do not seem to be partiularly appliable to these ryptosystems.However, the reoding tehniques may be useful for omputations on ellipti urves over �nite �eldssine in these ases the inverse is available at no additional ost [10, 6℄. In this ontext, one omputesE � X where E is a large integer and X is a point on the ellipti urve. The multipliation operatoris determined by the group law of the ellipti urve. An algorithm for omputing XE is easily on-verted to an algorithm for omputing E �X, where we replae multipliation by addition and division(multipliation with the inverse) by subtration.Referenes[1℄ A. D. Booth. A signed binary multipliation tehnique. Q. J. Meh. Appl. Math., 4(2):236{240,1951. (Also reprinted in [15℄, pp. 100{104).[2℄ T. ElGamal. A publi key ryptosystem and a signature sheme based on disrete logarithms.IEEE Transations on Information Theory, 31(4):469{472, July 1985.[3℄ K. Hwang. Computer Arithmeti, Priniples, Arhiteture, and Design. New York, NY: John Wiley& Sons, 1979. 8
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Figure 1: The standard versus reoded m-ary methods.
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