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ABSTRACTThe Smith-Waterman algorithm for loal sequene align-ment is one of the most important tehniques in om-putational moleular biology. This ingenious dynamiprogramming approah was designed to reveal the high-ly onserved fragments by disarding poorly onservedinitial and terminal segments. However, the existingnotion of loal similarity has a serious aw: it does notdisard poorly onserved intermediate segments. TheSmith-Waterman algorithm �nds the loal alignmentwith maximal sore but it is unable to �nd loal align-ment with maximum degree of similarity (e.g., maximalperent of mathes). Moreover, there is still no eÆientalgorithm that answers the following natural question:do two sequenes share a (suÆiently long) fragmen-t with more than 70% of similarity? As a result, theloal alignment sometimes produes a mosai of well-onserved fragments arti�ially onneted by poorly-onserved or even unrelated fragments. This may leadto problems in omparison of long genomi sequenesand omparative gene predition as reently pointed outby Zhang et al., 1999 [33℄. In this paper we propose anew sequene omparison algorithm (normalized loalalignment) that reports the regions with maximum de-gree of similarity. The algorithm is based on frationalprogramming and its running time is O(n2 log n). Inpratie, normalized loal alignment is only 3-5 timesslower than the standard Smith-Waterman algorithm.�Supported in part by a UCSB{COR grant.ySupported in part by NSF Grant No. CCR{9821038.

1. BACKGROUNDGene predition in human genome often amounts tousing related proteins from other speies as lues for�nding exon-intron strutures (Gelfand et al., 1996 [16℄,Birney et al., 1996 [11℄, Pahter et al., 1999 [22℄). Re-ently, a related paradigm, motivated by availabilityof omplete genomes, has emerged (Batzoglou et al.,2000 [10℄, Bafna and Huson, 2000 [9℄). In this new ap-proah, human genes are predited based on other (e.g.,mouse) un-annotated genomi sequenes. The idea ofthis method is that similarity between nuleotide se-quenes of related human and mouse exons is 85% onaverage, while similarity between introns is 35% on av-erage. This observation motivates the following sim-ple approah: use loal alignment algorithm (Smith andWaterman, 1981 [27℄) to �nd the most similar segmentsin human and mouse genomi sequenes and use thesefragments as potential exons at the further stages.Unfortunately, this approah faes serious diÆulties.Smith-Waterman algorithm was developed 20 years agofor a di�erent problem and it is not well suitable forsequene omparison at genomi sale. Surprisingly e-nough, we still don't have an eÆient algorithm that�nds the loal alignment with the best degree of se-quene similarity. The following example illustrates thispoint.It is well-known that the statistial signi�ane of theloal alignment depends on both its sore and length(Altshul and Erison, 1986 [3℄, 1988 [4℄). However,the sore of a loal alignment is not normalized over thelength of the mathing region. As a result, a loal align-ment with sore 1,000 and length 10,000 (long alignmen-t) will be hosen over a loal alignment with sore 998and length 1,000 (short alignment), although the lat-ter one is probably more important biologially. More-over, if the orresponding alignment paths overlap, themore biologially important \short" alignment won't bedeteted even by suboptimal sequene alignment algo-



rithm (shadow e�et). Another unfortunate property ofthe Smith-Waterman algorithm is that it was designedto exlude non-similar initial and terminal fragments insequene alignment but it was not designed to exludenon-similar internal fragments. This aw with Smith-Waterman loal similarity approah (Figure 1) leads toinlusion of arbitrarily poor internal fragments (mosaie�et). As a result, appliations of the Smith-Watermanalgorithm to omparison of related genomes (partiular-ly with short introns as C. elegans and C. briggsae) maylead to problems (Zhang et al., 1999 [33℄).The attempts to �x the problem of mosai e�et under-taken by Goad and Kanehisa, 1982 [17℄ (who introduedalignment with minimal mismath density) and Seller-s, 1984 [25℄ did not lead to suessful algorithms andwere later abandoned. The mosai e�et was �rst an-alyzed by Webb Miller (personal ommuniation) andled to some studies trying to �x this problem at thepost-proessing stage (Huang et al., 1994 [18℄, Zhanget al., 1999 [33℄). Zhang et al., 1999 [33℄ proposed todeompose a loal alignment into sub-alignments thatavoid the mosai e�et. However, the post-proessingapproah may miss the alignments with the best degreeof similarity if the Smith-Waterman algorithm missedthem. As a result, highly similar fragments may beignored if they are not parts of larger alignments dom-inating other loal similarities. Another approah to�xing the problems with the Smith-Waterman algorith-m is based on the notion of X-drop, a region withinan alignment that sores below X. The alignmentsthat ontain no X-drops are alled X-alignments. Al-though X-alignments are expensive to ompute in pra-tie, Altshul et al., 1997 [5℄ and Zhang et al., 1998 [32℄used some heuristis for searhing databases with thisapproah. Other attempts to �x the problem of mo-sai e�et involve modi�ations of the loal alignmentalgorithm that allow insertions of very long gaps.Another de�ieny of the loal alignment was reentlyrevealed by Alexandrov and Solovyev, 1998 [2℄. Theyasked if the Smith-Waterman algorithm orretly �ndsthe most biologially adequate relative in a benhmarksample of di�erent protein families. The answer to thisquestion was negative, and Alexandrov and Solovyev,1998 [2℄ \blamed" it on the fat that the Smith-Watermanalgorithm does not take into aount the length of thealignment. They proposed to normalize the alignmentsore by its length and demonstrated that this new ap-proah leads to better protein lassi�ation. However,omputing normalized sores in alignments may be veryexpensive when there is a onstraint on length.The idea of normalization has been studied in the on-text of edit distanes where the objetive is a minimiza-tion de�ned over the set of sequene of edit operationstransribing one string to the other of the two givenstrings. We may think of adapting similar solutions tonormalized loal alignment problem where the objetive

is to reveal loal similarities by maximizing the soresamong the substrings of the original strings. The algo-rithm developed by Marzal and Vidal, 1993 [19℄ om-putes the normalized edit distane between two givenstrings. The normalized edit distane problem seeks fora sequene of edit operations with minimum amortizedweight, i.e. the total weight divided by the number ofedit operations. The algorithm in [19℄ uses dynamiprogramming to ompute the minimum edit distanesfor all lengths. Similarly, we an modify the Smith-Waterman loal alignment algorithm ([27℄) to onsiderloal sores of all lengths whih requires ubi time andquadrati spae, very high omplexities for pratial ap-pliations. Various parallel algorithms for normalizededit distane problem were developed by E�geio�glu andIbel, 1996 [15℄. In this paper, we only onsider serialomputations. The algorithms by Oommen and Zhang,1996 [21℄, Vidal et al., 1995 [29℄, Arslan and E�geio�glu,1999 [7℄, 2000 [8℄ do not aim to satisfy a onstraint onthe length, therefore they annot diretly be adapted tothe omputation of normalized sores when lengths arerestrited.In this paper, we propose a new pratial algorithm thatprodues loal alignment with maximum degree of sim-ilarity by extending the ideas presented in [7℄ and [8℄.To reet the length of the loal alignment in soring,the sore s(I; J) of loal alignment involving substringsI and J may be adjusted by dividing s(I; J) by thetotal length of the aligned regions: s(I; J)=(jIj + jJ j).The normalized loal alignment problem is to �nd sub-strings I and J that maximize s(I; J)=(jIj+ jJ j) amongall substrings I and J with jIj+ jJ j � T , where T is athreshold for the minimal overall length of I and J . Forthe same problem with no restrition on overall length,the answer would be short substrings that are not bi-ologially meaningful (in this ase normalized sore ismaximized by a single math). We use a slightly dif-ferent objetive to normalized alignment. We aim tomaximize s(I; J)=(jIj + jJ j + L) for a given parameterL . Our purpose is to provide a way of ontrol over thedegree of normalization by varying L, and at the sametime still being able to use frational programming teh-nique for fast omputation.
2. NORMALIZED LOCAL ALIGNMEN-

T ALGORITHMSLet a = a1a2 � � � an and b = b1b2 � � � bm be two sequenesof symbols over an alphabet � with n � m . The Align-ment Graph Ga;b (Edit Graph in the ontext of stringediting) is used to represent all possible alignments (Wa-terman, 1995 [30℄) between a and b . It is a diretedayli graph having (n+1)(m+1) lattie points (u; v)for 0 � u � n, and 0 � v � m as verties (Figure2). The diagonal ars are either mathing (au = bv), ormismathing (au 6= bv).Consider a direted path p between two verties (i �1; j � 1) and (k; l) on Ga;b where i � k and j � l .
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Sequence 2

Sequence 1

SCORE > XSCORE > X SCORE = - XFigure 1: The inlusion of an arbitrarily poor region in an alignment (Zhang et al., 1999). If a region ofnegative sore �X is sandwihed between two regions soring more than X, then the Smith-Watermanalgorithm will join the three regions into a single alignment that may not be biologially adequate.
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a nFigure 2: The alignment graph Ga;b where ai � � � ak = ATTGT and bj � � � bl = AGGACAT . Mathingdiagonal ars are drawn as solid lines while mismathing diagonal ars are shown by dashed lines.Dotted lines used for horizontal and vertial ars orrespond to indels. An example alignment pathis shown. Only the weights of the ars in this path are inluded.We all eah suh path an alignment path sine tra-ing the ars of p, and performing the orresponding editoperations in ai � � � ak, we obtain the segment bj � � � blas follows : for a horizontal ar ((u; v � 1); (u; v)), in-sert bv immediately before au; for a vertial ar ((u �1; v); (u; v)) delete au; for a mismathing diagonal ar((u� 1; v � 1); (u; v)), substitute bv for au. In the on-text of sequene alignment, insertions (horizontal ars)and deletions (vertial ars) are both alled indels, andthe names math, and mismath, are used to refer tomathing diagonal, and mismathing diagonal ars.The objetive of sequene alignment is to quantify thesimilarity between two strings. There are various s-oring shemes for this purpose. In one simple suhmethod, the ars of Ga;b have weights determined bypositive reals Æ (mismath penalty) and � (indel or gappenalty) as shown in Figure 2. We assume that a mathhas a sore of 1, a mismath penalty is Æ, and an indelhas a penalty of �. Existene of an alignment path witha large total weight between the verties (i�1; j�1) and(k; l) indiates a high similarity between the segmentsai � � � ak and bj � � � bl.For larity of exposition, we assume this simple soringsheme in setting up the de�nitions. We address theissue of extending the results to more omplex soring

shemes in the next setion.We say that (x; y; z) is an alignment vetor for ai � � � akand bj � � � bl , if there is an alignment path between theverties (i� 1; j � 1) and (k; l) in Ga;b with x mathes,y mismathes, and z indels. In Figure 2, (3; 1; 4) is analignment vetor orresponding to the path shown in the�gure. Let AV i;j;k;l(a; b) denote the set of all suh align-ment vetors, i.e. AV i;j;k;l(a; b) = f(x; y; z) j (x; y; z) isan alignment vetor for ai � � � ak and bj � � � blg :Similarly we all (x; y; z) an alignment vetor if it is analignment vetor for some pair ai � � � ak and bj � � � bl .We de�ne AV (a; b) as the set of all alignment vetors,over all i � k and j � l. An alignment vetor (x; y; z)has a sore de�ned by Æ, and � :SCORE(x; y; z) = x� Æy � �z (1)The maximum sore between segments ai � � � ak andbj � � � bl is the sore of an alignment vetor whose sore isthe maximum among all the alignment vetors betweenthese two sequenes.SÆ;�(ai � � � ak; bj � � � bk) =maxfSCORE(x; y; z) j (x; y; z) 2 AV i;j;k;l(a; b)g (2)



In this paper, we denote by P� the optimum value ofproblem P . Loal Alignment (LA) problem seeks fortwo segments with the highest similarity sore:LA�Æ;�(a; b) = maxi � k;j � l fSÆ;�(ai � � � ak; bj � � � bk)g (3)Let LENGTHL(ai � � � ak; bj � � � bl) = (k � i + 1) + (l �j+1)+L where L is a positive onstant. A normalizedsore NSL of two segments ai � � � ak, bj � � � bl is thenNSÆ;�;L(ai � � � ak; bj � � � bl) =SÆ;�(ai���ak;bj ���bl)LENGTHL(ai���ak;bj ���bl) (4)Normalized Loal Alignment (NLA) problem seeks fortwo segments ai � � � ak and bj � � � bl for whih the nor-malized sore is the highest among all possible pairs ofsegments as expressed below:NLA�Æ;�;L(a; b) = maxi � k;j � l fNSÆ;�;L(ai � � � ak; bj � � � bl)gObserve that if (x; y; z) is an alignment vetor for ai : : : akand bj : : : bl then (k� i+1)+ (l� j+1) = 2x+2y+ z.Using this relation, we see that the funtion LENGTHLan be given on the set of alignment vetors (x; y; z) 2AV (a; b) by the expressionLENGTHL(x; y; z) = 2x+ 2y + z + L (5)By using the de�nition of AV (a; b) with (1), (2), (4),and (5) we express the objetive of the NLA problem inthe domain of alignment vetors asNLA�Æ;�;L(a; b) =maxn SCORE(x;y;z)LENGTHL(x;y;z) j (x; y; z) 2 AV (a; b)o (6)Figure 3 shows some possible problem ases for LAfor whih NLA disriminates an alignment with higherperent mathes from the one determined by the LAproblem. Part (i) inludes an example for the mosa-i e�et, and parts (ii), and (iii) have examples withnon-overlapping and overlapping alignments respetive-ly. For L < 600 , in eah ase, the shorter alignmen-t(s) with a sore of 80 has a larger normalized sore( 80200+L ) than the longer alignment whih has a sore of120 (whose normalized sore is 120600+L ) .The loal and normalized alignment problems we havede�ned by stating their objetives are learly optimiza-tion problems of linear funtions over the same domain.In other words, using equations (1) and (5), and de�-nitions (3) and (6) we an rewrite LA and NLA as thefollowing maximization problems :

LAÆ;�(a; b) : maximize x� Æy � �zs.t.(x; y; z) 2 AV (a; b)NLAÆ;�;L(a; b) : maximize x�Æy��z2x+2y+z+Ls.t.(x; y; z) 2 AV (a; b)For a given �, we de�ne a problem whih we all theparametri loal alignment problemLAÆ;�;L(�)(a; b) :maximize x� Æy � �z � �(2x+ 2y + z + L)s.t. (x; y; z) 2 AV (a; b)In order not to repeat the formal parameters in theproblem desriptions when they are the same, in the restof the paper we will use LA, NLA and LA(�) instead ofLAÆ;�;L(a; b), NLAÆ;�;L(a; b), and LAÆ;�;L(�)(a; b), re-spetively.As we propose next, a parametri loal alignment prob-lem an be desribed in terms of loal alignment prob-lem.Proposition 1. For a parameter � (< 12 ), the opti-mum value LA�(�) of the parametri LA problem anbe formulated in terms of the optimum value LA� of anLA problem.Proof. The objetive of the parametri problem isLA�(�)= maxf(1� 2�)x� (Æ + 2�)y � (�+ �)z � �Lg= (1� 2�)maxnx� Æ+2�1�2�y � �+�1�2�zo� �L= (1� 2�)LA�Æ0;�0(a; b)� �Lwhere Æ0 = Æ+2�1�2� ; �0 = �+�1�2� :Thus, omputing LA�(�) involves solving the loal align-ment problem LAÆ0;�0 (a; b) , and performing some sim-ple arithmeti afterwards.Note that sine Æ, � and L are positive, for any align-ment vetor (x0; y0; z0), if � is its normalized sore then� = x0 � Æy0 � �z02x0 + 2y0 + z0 + L < 12Dinkelbah's algorithm [14℄ an be used to solve NLA .Dinkelbah has developed a general algorithm whih us-es the parametri method of an optimization tehnique



(0,0)

(n,m)
an

a2

a1

b  b 1 2 bm

(0,0) b  b 1 2 bm

(n,m)
an

a2

a1

an
(n,m)

(0,0) bmb  b 1 2
a1
a2

(ii)

100

100

100

100 100 100

100

10080

120

80

120

80

-40

80
120

300 300

300300

100

100

(i)

(iii)Figure 3: Mosai and shadow e�ets. (i)mosai e�et, (ii) shadow e�et (non-overlapping alignments),(iii) shadow e�et (overlapping alignments). The numbers written in itali are the sores of alignmentsidenti�ed by the orresponding retangles. The other numbers are the side lengths of the retangles.known as frational programming. The algorithm is ap-pliable to optimization problems whih involve a ratioof two funtions over the same domain where the fun-tion in the denominator is assumed to be positive. Thethesis of the parametri method applied to the ase ofalignment maximization problems implies that the op-timal solution to NLA an be ahieved via a series ofoptimal solutions of LA(�) for di�erent � . The entralresult is that � = NLA� i� LA�(�) = 0 :That is, an alignment vetor a has the optimum nor-malized sore � i� a is an optimal alignment vetor forthe parametri problem LA(�) whose optimum value iszero. A proof of this essential property of the paramet-ri method is given by Sniedovih, 1992 [28℄. Craven,1988 [13℄ and Sniedovih, 1992 [28℄ explain various oth-er interesting properties of Dinkelbah's algorithm andfrational programming.Dinkelbah algorithm for NLA problem is shown in Fig-ure 4. The algorithm starts with an initial value for� and repeatedly solves LA(�). At eah instane ofthe parametri problem, an optimal alignment vetor(x; y; z) of LA(�) yields a ratio (normalized sore) forNLA. This new ratio is either equal to �, in whih ase

it is optimum, or larger than � . If it is equal to �then the algorithm terminates. Note that in this aseLA�(�) = 0 sine the optimal alignment vetor of thelast iteration has the normalized sore � . Otherwise,the ratio is taken to be the new value of � and LA(�) issolved again. When ontinued in this fashion, onver-gene to NLA� is guaranteed. Another way to explainthe behavior of the algorithm is as follows. It iterativelymodi�es the sores in suh a way that the optimal non-normalized loal alignment under the set of onvergedsores is also the optimal normalized alignment underthe original sores.Algorithm DinkelbahPik an arbitrary alignment vetor (x; y; z) inAV (a; b) , ��  x�Æy��z2x+2y+z+LRepeat� ��Using Prop.1, solve LA(�) andobtain an optimal alignment vetor (x; y; z)��  x�Æy��z2x+2y+z+LUntil �� = �Return(��)Figure 4: Dinkelbah algorithm for NLA.



The parametri problem in this algorithm an be solvedusing the Smith-Waterman algorithm. An optimal align-ment vetor (or alternatively its sore and length values)needs to be omputed along with optimal sore for theparametri problem of the Dinkelbah algorithm. Posi-tion of an optimal alignment may also be desired. Thesean be done by extending the Smith-Waterman algorith-m to inlude, at eah entry of the sore matrix, infor-mation about the alignment vetor orresponding to anoptimal alignment path whih ends at that node, andthe starting node-position of the path. This addition-al information an be arried over and updated alongwith the optimal sore updates without an inrease inthe asymptoti spae and time omplexity. The result-ing spae omplexity of solving NLA by this algorithm isO(m). The resulting time omplexity is the produt ofthe number of iterations and, the time omplexity of theSmith-Waterman algorithm. Although experimental re-sults suggest that the number of iterations is small onaverage, no satisfatory theoretial average-ase/worst-ase bound for the growth of the number of iterationshas been established.We show next that a provably better time omplexi-ty result an be ahieved by using Megiddo's tehniquebased on an observation used in Arslan and E�geio�glu,2000 [8℄ for the omputation of normalized edit distane.Even though it does not seem feasible to preomputeandidate values for the optimum value of NLA, we anshow that an eÆient searh (a binary searh) for theoptimum value is still possible by using the fat that anytwo distint andidate values for NLA� are not arbitrar-ily lose to eah other if the sores are rational. Theresulting algorithm RationalNLA for the NLA problemwith rational penalties is given in Figure 5. The proper-ties of RationalNLA an be used to prove the followingtheorem whose proof is omitted.Theorem 1. If algorithm A omputes LA� and ob-tains an optimal alignment vetor with time omplexityT (n;m), then NLA� an be omputed in time O(T (n;m)log n) and using (asymptotially) the same spae requiredby algorithm A provided that Æ and � are rational.The Smith-Waterman algorithm an be used as algo-rithm A in RationalNLA to �nd the loal alignment ve-tors and hene to solve the parametri loal alignmentproblems invoked by RationalNLA. Therefore:Corollary 1. Normalized loal alignment of sequenesof length n and m an be omputed in O(nm log n) timeand O(m) spae.The ideas in the Dinkelbah algorithm or algorithmRationalNLA are not restrited to a partiular soringsheme. Under any given soring sheme, provided thatthe parametri LA problems in these algorithms an beformulated in terms of an LA problem, these algorithms

Algorithm RationalNLA�  1qs(m+n+L)2 where Æ = pq , and � = rs (This is thegap lower bound)[e; f ℄ [0; 12 qs(m+ n+ L)2℄While (e+ 1 < f) dok b(e+ f)=2Using Prop.1, solve LA(k�)and let v be the optimum sore obtainedif v = 0 then return(k�)else if v < 0 then f  kelse e kEnd fwhilegUsing Prop.1, solve LA(f�) and obtain an optimalalignment vetor (x; y; z)Return� x�Æy��z2x+2y+z+L�Figure 5: NLA algorithm RationalNLA for rationalsores.an be modi�ed so that they present a solution to NLAproblem. Furthermore, if sores/penalties are rational,and solving a parametri problem and obtaining an opti-mal solution (alignment vetor) take asymptotially thesame time as that of the underlying LA algorithm, thenthe omplexity results for RationalNLA of Theorem 1hold. We address two partiularly important ases ofsoring shemes : aÆne gap penalties, and arbitrary s-ore matries.Sometimes insertion or deletion of a blok of symbolsalled a gap is treated di�erently than a stream of single-symbol indels. AÆne gap penalty for a gap of length kis �+ �kwhere � is a gap open penalty and � is an indel penalty.In this ase, we may use a 4-tuple (x; y; z; g) to representan alignment vetor with whih the new omponent gis the number of gaps. For example, (3; 1; 4; 2) is thealignment vetor for the alignment path shown in Figure2. The alignment vetor has two gaps one of whih is asingle delete, and the other is a blok of three inserts.The de�nition of the length funtion LENGTHL doesnot hange under this soring sheme. The sore of analignment vetor an be rewritten asSCORE(x; y; z; g) = x� Æy � �z � �gIn some appliations, sore of a given operation variesdepending on the individual symbols involved in theoperation (e.g., protein sequene omparison). In thisase, we may deide to de�ne the alignment vetor suhthat it inludes as a omponent frequeny of eah oper-ation. Let i�, �i denote respetively the deletion andinsertion of the ith symbol, and ij denote the substi-



tution of the jth symbol for the ith symbol of the al-phabet � . For a given operation e, let se represent thesore, and fe represent the frequeny of this operation.If u = j�j then for a given alignment vetor a wherea = < f1�; f2�; : : : ; fu�;f�1; f�2; : : : ; f�u;f11; f12; : : : ; f1u; : : : ; fu1; fu2; : : : ; fuu > ;the sore and length funtions an be de�ned asSCORE(a) = Xij sijfij +Xi si�fi� +Xi s�if�iLENGTHL(a) = 2Xij fij +Xi fi� +Xi f�i + LOne an verify that in both of these ases, a parametriLA problem an easily be formulated in terms of an LAproblem under that partiular soring sheme, and ourresults hold.
3. IMPLEMENTATION AND TEST RE-

SULTSWe have hosen to implement the Dinkelbah algorith-m for NLA omputation (aÆne gap penalties) sine thisalgorithm has a good performane in pratie. We havemodi�ed the Smith-Waterman algorithm (for aÆne gap-s) to obtain and arry along the alignment informationthrough the nodes. In our implementation we have usedLENGTHL value of the alignment vetors as a tie break-er. We selet an alignment with the largest LENGTHLvalue in ase there are more than one optimal align-ments ending in the same node. That is, we favor thealignment with the largest LENGTHL value among thealignments with the same normalized sore sine for twoalignments with the same normalized sore, the one withlarger LENGTHL value has the higher (non-normalized)sore whih may be preferred over others (The programan be obtained by ontating A.N.A.). In our tests,the algorithm never required more than 9 invoationsof the Smith-Waterman algorithm, and in the majorityof ases it took 3� 5 invoations to solve a single NLAproblem.One optimal segments are found for one NLA prob-lem, one may want to ontinue with more NLA om-putations after masking these segments in the two se-quenes. For this purpose, we have developed algorith-m RepeatedDinkelbah. With eah alignment betweenai : : : ak and bj : : : bl, we store a pair whose �rst ompo-nent is the alignment vetor (x; y; z; g) and seond om-ponent is the alignment position (i; j; k; l) . We haveused a queue Q to store alignments generated by theiterations of the Dinkelbah NLA algorithm so that anew NLA omputation piks as the initial alignmen-t the last alignment in Q whih does not overlap withthe alignment reported in the last iteration. This waywe improve the average number of iterations per NLAomputation. RepeatedDinkelbah ontinues generat-ing alignments until no alignment whose normalized s-

ore is larger than a given threshold sore T an befound in unmasked regions of the sequenes. This ter-mination ondition is easy to implement sine the nor-malized sores are dereasing as they are reported. An-other alternative would be to let the algorithm run untilthere remains no more alignments with positive sore.We have also implemented a version of the algorithmwhih �rst masks a set of regions as a pre-proessingstep. This allows us to expliitly stop the NLA ompu-tations at any time we want, and resume the omputa-tion of alignments from where it (almost) left using theseond algorithm.We have tested our algorithms with various values ofL . We observe that if L is large we obtain alignmentswith high sores but low normalized sores, while if L issmall then the resulting alignments have high normal-ized sores but they may be short and less interestingbiologially. In other words, as the value of L inreas-es our algorithm �nds longer optimal alignments for apartiular instane of the problem. It is diÆult to de-termine a value for L whih performs well in (almost)every ase beause a proper value is data-dependent. Ifthe highest normalized sore (with respet to the urrentvalue of L) belongs to an alignment that is too short tobe biologially interesting then we need to inrease thevalue of L to favor the longer (biologially interesting)alignments. For example for the alignments in Figure3, L has to be at least 600 so that the longer alignmen-t wins over the shorter one. If alignments returned asoptimal do not have suÆiently high normalized soresthen a smaller values of L should be tried. One needsto experiment various values for L for a partiular in-stane of sequene alignment. Another way to get ridof unwanted short alignments an be to mask the orre-sponding regions and rerun the algorithm. If we deideto do so we need to be sure that these regions do nottake part in desired alignments. As a ommon pratiein sequene alignment, we �rst masked the repeats byRepeatMasker (http://ftp.genome.washington.edu/ R-M/RepeatMasker.html) before running our algorithm.These biologially uninteresting regions may have highnormalized sores. They may beome part of unwant-ed short alignments. Therefore hiding repeats may helpeliminate short alignments to be output as optimal byour algorithm. To visualize the di�erene among variousapproahes to sequene alignment, we represented everyarea of similarity as a retangle rather than as a diag-onal in onventional drawings of dot-matries. Retan-gles in the �gures show the segments involved in thealignments. In Figures 6 and 7 the alignment region-s returned by Smith-Waterman algorithm are shownusing dotted lines whereas those determined by post-proessing algorithm by Zhang et al., 1999 [33℄ are dis-tinguished by dashed lines. Retangles with thik linesare the ones obtained by our algorithm. We have inlud-ed perent mathes (number of mathes divided by theaverage length of the segments) for the alignments wehave found. Our algorithm aptures the regions found



by these algorithms but provides more \granularity" inrepresenting the most similar fragments of the alignedregions. To ahieve even higher level of granularity onean either redue the threshold T for reported align-ments or vary L at di�erent iterations of the algorithm.As expeted, the regions not inluded in found normal-ized loal alignments show little similarity: the degreeof similarity \outside" the boxes in Figures 6 and 7 isusually below 35%.
4. CONCLUSIONSThe arrival of long genomi sequenes raises new hal-lenges in sequene omparison. In partiular, the tradi-tional tools for omputing and representing alignmentsmay not be suitable for genomi-sale sequene om-parison. These hallenges were reently addressed byShwartz et al, 2000 [24℄ who introdued the PerentIdentity Plots or PIPs. PIPs are ompat and onve-nient substitutes for dot-matries that, in addition torevealing similar segments, reet the perent of similar-ity between di�erent segments of ompared sequenes.Our normalized loal approah is oneptually similarto this approah in an attempt to �nd the regions withthe highest perent of similarity.The undesirable properties of linear soring in sequenealignment were �rst revealed by Altshul and Erikson,1986 [3℄ who proposed di�erent non-linear soring fun-tions. They also notied that alignments with non-linearsoring funtions are diÆult to ompute in pratie.The de�ieny of linear soring funtions are well-knownin other appliation domains of dynami programming.In partiular, non-linear soring funtions lead to betterpratial algorithms for speeh reognition and reogni-tion of hand-written texts (Vidal et al., 1995 [29℄).Some sequene omparison pratitioners have been us-ing a few runs of the Smith-Waterman algorithm withvaried gap penalties to arrive to a biologially adequatealignment. However, the hoie of gap penalties in suhsearhes remained largely heuristi. Our algorithm fornormalized sequene alignment mimis this approahbut provides a rigorous justi�ation for hoosing param-eters in di�erent runs of the Smith-Waterman algorith-m.Pearson, 1995 [23℄, Shpaer et al., 1996 [26℄ and Brenneret al.,1998 Brenner98 made the omparative analysisof FASTA, BLAST and the Smith-Waterman algorith-m for funtional protein lassi�ation. Abdueva et al.2001 [1℄ used their test framework to study the e�etof alignment length on sensitivity of database searh.The preliminary results of this work demonstrate thatnormalization improves the funtional protein lassi�-ation.Although the normalized loal alignment approah provedto be suessful in our preliminary tests, a number ofquestions remain unsolved. Most importantly, the s-tatistis of normalized loal alignment is poorly under-

stood. The statistial questions assoiated with thelassial loal alignment are so omplex (Arratia et al.,1990 [6℄, Waterman and Vingron, 1994 [31℄) that we didnot even dare to try estimating statistial signi�aneof normalized loal alignment. Another problem is thatthe rules governing the optimal hoie of the parameterL are not yet well understood.
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