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ABSTRACTThe Smith-Waterman algorithm for lo
al sequen
e align-ment is one of the most important te
hniques in 
om-putational mole
ular biology. This ingenious dynami
programming approa
h was designed to reveal the high-ly 
onserved fragments by dis
arding poorly 
onservedinitial and terminal segments. However, the existingnotion of lo
al similarity has a serious 
aw: it does notdis
ard poorly 
onserved intermediate segments. TheSmith-Waterman algorithm �nds the lo
al alignmentwith maximal s
ore but it is unable to �nd lo
al align-ment with maximum degree of similarity (e.g., maximalper
ent of mat
hes). Moreover, there is still no eÆ
ientalgorithm that answers the following natural question:do two sequen
es share a (suÆ
iently long) fragmen-t with more than 70% of similarity? As a result, thelo
al alignment sometimes produ
es a mosai
 of well-
onserved fragments arti�
ially 
onne
ted by poorly-
onserved or even unrelated fragments. This may leadto problems in 
omparison of long genomi
 sequen
esand 
omparative gene predi
tion as re
ently pointed outby Zhang et al., 1999 [33℄. In this paper we propose anew sequen
e 
omparison algorithm (normalized lo
alalignment) that reports the regions with maximum de-gree of similarity. The algorithm is based on fra
tionalprogramming and its running time is O(n2 log n). Inpra
ti
e, normalized lo
al alignment is only 3-5 timesslower than the standard Smith-Waterman algorithm.�Supported in part by a UCSB{COR grant.ySupported in part by NSF Grant No. CCR{9821038.

1. BACKGROUNDGene predi
tion in human genome often amounts tousing related proteins from other spe
ies as 
lues for�nding exon-intron stru
tures (Gelfand et al., 1996 [16℄,Birney et al., 1996 [11℄, Pa
hter et al., 1999 [22℄). Re-
ently, a related paradigm, motivated by availabilityof 
omplete genomes, has emerged (Batzoglou et al.,2000 [10℄, Bafna and Huson, 2000 [9℄). In this new ap-proa
h, human genes are predi
ted based on other (e.g.,mouse) un-annotated genomi
 sequen
es. The idea ofthis method is that similarity between nu
leotide se-quen
es of related human and mouse exons is 85% onaverage, while similarity between introns is 35% on av-erage. This observation motivates the following sim-ple approa
h: use lo
al alignment algorithm (Smith andWaterman, 1981 [27℄) to �nd the most similar segmentsin human and mouse genomi
 sequen
es and use thesefragments as potential exons at the further stages.Unfortunately, this approa
h fa
es serious diÆ
ulties.Smith-Waterman algorithm was developed 20 years agofor a di�erent problem and it is not well suitable forsequen
e 
omparison at genomi
 s
ale. Surprisingly e-nough, we still don't have an eÆ
ient algorithm that�nds the lo
al alignment with the best degree of se-quen
e similarity. The following example illustrates thispoint.It is well-known that the statisti
al signi�
an
e of thelo
al alignment depends on both its s
ore and length(Alts
hul and Eri
son, 1986 [3℄, 1988 [4℄). However,the s
ore of a lo
al alignment is not normalized over thelength of the mat
hing region. As a result, a lo
al align-ment with s
ore 1,000 and length 10,000 (long alignmen-t) will be 
hosen over a lo
al alignment with s
ore 998and length 1,000 (short alignment), although the lat-ter one is probably more important biologi
ally. More-over, if the 
orresponding alignment paths overlap, themore biologi
ally important \short" alignment won't bedete
ted even by suboptimal sequen
e alignment algo-



rithm (shadow e�e
t). Another unfortunate property ofthe Smith-Waterman algorithm is that it was designedto ex
lude non-similar initial and terminal fragments insequen
e alignment but it was not designed to ex
ludenon-similar internal fragments. This 
aw with Smith-Waterman lo
al similarity approa
h (Figure 1) leads toin
lusion of arbitrarily poor internal fragments (mosai
e�e
t). As a result, appli
ations of the Smith-Watermanalgorithm to 
omparison of related genomes (parti
ular-ly with short introns as C. elegans and C. briggsae) maylead to problems (Zhang et al., 1999 [33℄).The attempts to �x the problem of mosai
 e�e
t under-taken by Goad and Kanehisa, 1982 [17℄ (who introdu
edalignment with minimal mismat
h density) and Seller-s, 1984 [25℄ did not lead to su

essful algorithms andwere later abandoned. The mosai
 e�e
t was �rst an-alyzed by Webb Miller (personal 
ommuni
ation) andled to some studies trying to �x this problem at thepost-pro
essing stage (Huang et al., 1994 [18℄, Zhanget al., 1999 [33℄). Zhang et al., 1999 [33℄ proposed tode
ompose a lo
al alignment into sub-alignments thatavoid the mosai
 e�e
t. However, the post-pro
essingapproa
h may miss the alignments with the best degreeof similarity if the Smith-Waterman algorithm missedthem. As a result, highly similar fragments may beignored if they are not parts of larger alignments dom-inating other lo
al similarities. Another approa
h to�xing the problems with the Smith-Waterman algorith-m is based on the notion of X-drop, a region withinan alignment that s
ores below X. The alignmentsthat 
ontain no X-drops are 
alled X-alignments. Al-though X-alignments are expensive to 
ompute in pra
-ti
e, Alts
hul et al., 1997 [5℄ and Zhang et al., 1998 [32℄used some heuristi
s for sear
hing databases with thisapproa
h. Other attempts to �x the problem of mo-sai
 e�e
t involve modi�
ations of the lo
al alignmentalgorithm that allow insertions of very long gaps.Another de�
ien
y of the lo
al alignment was re
entlyrevealed by Alexandrov and Solovyev, 1998 [2℄. Theyasked if the Smith-Waterman algorithm 
orre
tly �ndsthe most biologi
ally adequate relative in a ben
hmarksample of di�erent protein families. The answer to thisquestion was negative, and Alexandrov and Solovyev,1998 [2℄ \blamed" it on the fa
t that the Smith-Watermanalgorithm does not take into a

ount the length of thealignment. They proposed to normalize the alignments
ore by its length and demonstrated that this new ap-proa
h leads to better protein 
lassi�
ation. However,
omputing normalized s
ores in alignments may be veryexpensive when there is a 
onstraint on length.The idea of normalization has been studied in the 
on-text of edit distan
es where the obje
tive is a minimiza-tion de�ned over the set of sequen
e of edit operationstrans
ribing one string to the other of the two givenstrings. We may think of adapting similar solutions tonormalized lo
al alignment problem where the obje
tive

is to reveal lo
al similarities by maximizing the s
oresamong the substrings of the original strings. The algo-rithm developed by Marzal and Vidal, 1993 [19℄ 
om-putes the normalized edit distan
e between two givenstrings. The normalized edit distan
e problem seeks fora sequen
e of edit operations with minimum amortizedweight, i.e. the total weight divided by the number ofedit operations. The algorithm in [19℄ uses dynami
programming to 
ompute the minimum edit distan
esfor all lengths. Similarly, we 
an modify the Smith-Waterman lo
al alignment algorithm ([27℄) to 
onsiderlo
al s
ores of all lengths whi
h requires 
ubi
 time andquadrati
 spa
e, very high 
omplexities for pra
ti
al ap-pli
ations. Various parallel algorithms for normalizededit distan
e problem were developed by E�ge
io�glu andIbel, 1996 [15℄. In this paper, we only 
onsider serial
omputations. The algorithms by Oommen and Zhang,1996 [21℄, Vidal et al., 1995 [29℄, Arslan and E�ge
io�glu,1999 [7℄, 2000 [8℄ do not aim to satisfy a 
onstraint onthe length, therefore they 
annot dire
tly be adapted tothe 
omputation of normalized s
ores when lengths arerestri
ted.In this paper, we propose a new pra
ti
al algorithm thatprodu
es lo
al alignment with maximum degree of sim-ilarity by extending the ideas presented in [7℄ and [8℄.To re
e
t the length of the lo
al alignment in s
oring,the s
ore s(I; J) of lo
al alignment involving substringsI and J may be adjusted by dividing s(I; J) by thetotal length of the aligned regions: s(I; J)=(jIj + jJ j).The normalized lo
al alignment problem is to �nd sub-strings I and J that maximize s(I; J)=(jIj+ jJ j) amongall substrings I and J with jIj+ jJ j � T , where T is athreshold for the minimal overall length of I and J . Forthe same problem with no restri
tion on overall length,the answer would be short substrings that are not bi-ologi
ally meaningful (in this 
ase normalized s
ore ismaximized by a single mat
h). We use a slightly dif-ferent obje
tive to normalized alignment. We aim tomaximize s(I; J)=(jIj + jJ j + L) for a given parameterL . Our purpose is to provide a way of 
ontrol over thedegree of normalization by varying L, and at the sametime still being able to use fra
tional programming te
h-nique for fast 
omputation.
2. NORMALIZED LOCAL ALIGNMEN-

T ALGORITHMSLet a = a1a2 � � � an and b = b1b2 � � � bm be two sequen
esof symbols over an alphabet � with n � m . The Align-ment Graph Ga;b (Edit Graph in the 
ontext of stringediting) is used to represent all possible alignments (Wa-terman, 1995 [30℄) between a and b . It is a dire
teda
y
li
 graph having (n+1)(m+1) latti
e points (u; v)for 0 � u � n, and 0 � v � m as verti
es (Figure2). The diagonal ar
s are either mat
hing (au = bv), ormismat
hing (au 6= bv).Consider a dire
ted path p between two verti
es (i �1; j � 1) and (k; l) on Ga;b where i � k and j � l .
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Sequence 2

Sequence 1

SCORE > XSCORE > X SCORE = - XFigure 1: The in
lusion of an arbitrarily poor region in an alignment (Zhang et al., 1999). If a region ofnegative s
ore �X is sandwi
hed between two regions s
oring more than X, then the Smith-Watermanalgorithm will join the three regions into a single alignment that may not be biologi
ally adequate.
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a nFigure 2: The alignment graph Ga;b where ai � � � ak = ATTGT and bj � � � bl = AGGACAT . Mat
hingdiagonal ar
s are drawn as solid lines while mismat
hing diagonal ar
s are shown by dashed lines.Dotted lines used for horizontal and verti
al ar
s 
orrespond to indels. An example alignment pathis shown. Only the weights of the ar
s in this path are in
luded.We 
all ea
h su
h path an alignment path sin
e tra
-ing the ar
s of p, and performing the 
orresponding editoperations in ai � � � ak, we obtain the segment bj � � � blas follows : for a horizontal ar
 ((u; v � 1); (u; v)), in-sert bv immediately before au; for a verti
al ar
 ((u �1; v); (u; v)) delete au; for a mismat
hing diagonal ar
((u� 1; v � 1); (u; v)), substitute bv for au. In the 
on-text of sequen
e alignment, insertions (horizontal ar
s)and deletions (verti
al ar
s) are both 
alled indels, andthe names mat
h, and mismat
h, are used to refer tomat
hing diagonal, and mismat
hing diagonal ar
s.The obje
tive of sequen
e alignment is to quantify thesimilarity between two strings. There are various s-
oring s
hemes for this purpose. In one simple su
hmethod, the ar
s of Ga;b have weights determined bypositive reals Æ (mismat
h penalty) and � (indel or gappenalty) as shown in Figure 2. We assume that a mat
hhas a s
ore of 1, a mismat
h penalty is Æ, and an indelhas a penalty of �. Existen
e of an alignment path witha large total weight between the verti
es (i�1; j�1) and(k; l) indi
ates a high similarity between the segmentsai � � � ak and bj � � � bl.For 
larity of exposition, we assume this simple s
orings
heme in setting up the de�nitions. We address theissue of extending the results to more 
omplex s
oring

s
hemes in the next se
tion.We say that (x; y; z) is an alignment ve
tor for ai � � � akand bj � � � bl , if there is an alignment path between theverti
es (i� 1; j � 1) and (k; l) in Ga;b with x mat
hes,y mismat
hes, and z indels. In Figure 2, (3; 1; 4) is analignment ve
tor 
orresponding to the path shown in the�gure. Let AV i;j;k;l(a; b) denote the set of all su
h align-ment ve
tors, i.e. AV i;j;k;l(a; b) = f(x; y; z) j (x; y; z) isan alignment ve
tor for ai � � � ak and bj � � � blg :Similarly we 
all (x; y; z) an alignment ve
tor if it is analignment ve
tor for some pair ai � � � ak and bj � � � bl .We de�ne AV (a; b) as the set of all alignment ve
tors,over all i � k and j � l. An alignment ve
tor (x; y; z)has a s
ore de�ned by Æ, and � :SCORE(x; y; z) = x� Æy � �z (1)The maximum s
ore between segments ai � � � ak andbj � � � bl is the s
ore of an alignment ve
tor whose s
ore isthe maximum among all the alignment ve
tors betweenthese two sequen
es.SÆ;�(ai � � � ak; bj � � � bk) =maxfSCORE(x; y; z) j (x; y; z) 2 AV i;j;k;l(a; b)g (2)



In this paper, we denote by P� the optimum value ofproblem P . Lo
al Alignment (LA) problem seeks fortwo segments with the highest similarity s
ore:LA�Æ;�(a; b) = maxi � k;j � l fSÆ;�(ai � � � ak; bj � � � bk)g (3)Let LENGTHL(ai � � � ak; bj � � � bl) = (k � i + 1) + (l �j+1)+L where L is a positive 
onstant. A normalizeds
ore NSL of two segments ai � � � ak, bj � � � bl is thenNSÆ;�;L(ai � � � ak; bj � � � bl) =SÆ;�(ai���ak;bj ���bl)LENGTHL(ai���ak;bj ���bl) (4)Normalized Lo
al Alignment (NLA) problem seeks fortwo segments ai � � � ak and bj � � � bl for whi
h the nor-malized s
ore is the highest among all possible pairs ofsegments as expressed below:NLA�Æ;�;L(a; b) = maxi � k;j � l fNSÆ;�;L(ai � � � ak; bj � � � bl)gObserve that if (x; y; z) is an alignment ve
tor for ai : : : akand bj : : : bl then (k� i+1)+ (l� j+1) = 2x+2y+ z.Using this relation, we see that the fun
tion LENGTHL
an be given on the set of alignment ve
tors (x; y; z) 2AV (a; b) by the expressionLENGTHL(x; y; z) = 2x+ 2y + z + L (5)By using the de�nition of AV (a; b) with (1), (2), (4),and (5) we express the obje
tive of the NLA problem inthe domain of alignment ve
tors asNLA�Æ;�;L(a; b) =maxn SCORE(x;y;z)LENGTHL(x;y;z) j (x; y; z) 2 AV (a; b)o (6)Figure 3 shows some possible problem 
ases for LAfor whi
h NLA dis
riminates an alignment with higherper
ent mat
hes from the one determined by the LAproblem. Part (i) in
ludes an example for the mosa-i
 e�e
t, and parts (ii), and (iii) have examples withnon-overlapping and overlapping alignments respe
tive-ly. For L < 600 , in ea
h 
ase, the shorter alignmen-t(s) with a s
ore of 80 has a larger normalized s
ore( 80200+L ) than the longer alignment whi
h has a s
ore of120 (whose normalized s
ore is 120600+L ) .The lo
al and normalized alignment problems we havede�ned by stating their obje
tives are 
learly optimiza-tion problems of linear fun
tions over the same domain.In other words, using equations (1) and (5), and de�-nitions (3) and (6) we 
an rewrite LA and NLA as thefollowing maximization problems :

LAÆ;�(a; b) : maximize x� Æy � �zs.t.(x; y; z) 2 AV (a; b)NLAÆ;�;L(a; b) : maximize x�Æy��z2x+2y+z+Ls.t.(x; y; z) 2 AV (a; b)For a given �, we de�ne a problem whi
h we 
all theparametri
 lo
al alignment problemLAÆ;�;L(�)(a; b) :maximize x� Æy � �z � �(2x+ 2y + z + L)s.t. (x; y; z) 2 AV (a; b)In order not to repeat the formal parameters in theproblem des
riptions when they are the same, in the restof the paper we will use LA, NLA and LA(�) instead ofLAÆ;�;L(a; b), NLAÆ;�;L(a; b), and LAÆ;�;L(�)(a; b), re-spe
tively.As we propose next, a parametri
 lo
al alignment prob-lem 
an be des
ribed in terms of lo
al alignment prob-lem.Proposition 1. For a parameter � (< 12 ), the opti-mum value LA�(�) of the parametri
 LA problem 
anbe formulated in terms of the optimum value LA� of anLA problem.Proof. The obje
tive of the parametri
 problem isLA�(�)= maxf(1� 2�)x� (Æ + 2�)y � (�+ �)z � �Lg= (1� 2�)maxnx� Æ+2�1�2�y � �+�1�2�zo� �L= (1� 2�)LA�Æ0;�0(a; b)� �Lwhere Æ0 = Æ+2�1�2� ; �0 = �+�1�2� :Thus, 
omputing LA�(�) involves solving the lo
al align-ment problem LAÆ0;�0 (a; b) , and performing some sim-ple arithmeti
 afterwards.Note that sin
e Æ, � and L are positive, for any align-ment ve
tor (x0; y0; z0), if � is its normalized s
ore then� = x0 � Æy0 � �z02x0 + 2y0 + z0 + L < 12Dinkelba
h's algorithm [14℄ 
an be used to solve NLA .Dinkelba
h has developed a general algorithm whi
h us-es the parametri
 method of an optimization te
hnique
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(iii)Figure 3: Mosai
 and shadow e�e
ts. (i)mosai
 e�e
t, (ii) shadow e�e
t (non-overlapping alignments),(iii) shadow e�e
t (overlapping alignments). The numbers written in itali
 are the s
ores of alignmentsidenti�ed by the 
orresponding re
tangles. The other numbers are the side lengths of the re
tangles.known as fra
tional programming. The algorithm is ap-pli
able to optimization problems whi
h involve a ratioof two fun
tions over the same domain where the fun
-tion in the denominator is assumed to be positive. Thethesis of the parametri
 method applied to the 
ase ofalignment maximization problems implies that the op-timal solution to NLA 
an be a
hieved via a series ofoptimal solutions of LA(�) for di�erent � . The 
entralresult is that � = NLA� i� LA�(�) = 0 :That is, an alignment ve
tor a has the optimum nor-malized s
ore � i� a is an optimal alignment ve
tor forthe parametri
 problem LA(�) whose optimum value iszero. A proof of this essential property of the paramet-ri
 method is given by Sniedovi
h, 1992 [28℄. Craven,1988 [13℄ and Sniedovi
h, 1992 [28℄ explain various oth-er interesting properties of Dinkelba
h's algorithm andfra
tional programming.Dinkelba
h algorithm for NLA problem is shown in Fig-ure 4. The algorithm starts with an initial value for� and repeatedly solves LA(�). At ea
h instan
e ofthe parametri
 problem, an optimal alignment ve
tor(x; y; z) of LA(�) yields a ratio (normalized s
ore) forNLA. This new ratio is either equal to �, in whi
h 
ase

it is optimum, or larger than � . If it is equal to �then the algorithm terminates. Note that in this 
aseLA�(�) = 0 sin
e the optimal alignment ve
tor of thelast iteration has the normalized s
ore � . Otherwise,the ratio is taken to be the new value of � and LA(�) issolved again. When 
ontinued in this fashion, 
onver-gen
e to NLA� is guaranteed. Another way to explainthe behavior of the algorithm is as follows. It iterativelymodi�es the s
ores in su
h a way that the optimal non-normalized lo
al alignment under the set of 
onvergeds
ores is also the optimal normalized alignment underthe original s
ores.Algorithm Dinkelba
hPi
k an arbitrary alignment ve
tor (x; y; z) inAV (a; b) , ��  x�Æy��z2x+2y+z+LRepeat� ��Using Prop.1, solve LA(�) andobtain an optimal alignment ve
tor (x; y; z)��  x�Æy��z2x+2y+z+LUntil �� = �Return(��)Figure 4: Dinkelba
h algorithm for NLA.



The parametri
 problem in this algorithm 
an be solvedusing the Smith-Waterman algorithm. An optimal align-ment ve
tor (or alternatively its s
ore and length values)needs to be 
omputed along with optimal s
ore for theparametri
 problem of the Dinkelba
h algorithm. Posi-tion of an optimal alignment may also be desired. These
an be done by extending the Smith-Waterman algorith-m to in
lude, at ea
h entry of the s
ore matrix, infor-mation about the alignment ve
tor 
orresponding to anoptimal alignment path whi
h ends at that node, andthe starting node-position of the path. This addition-al information 
an be 
arried over and updated alongwith the optimal s
ore updates without an in
rease inthe asymptoti
 spa
e and time 
omplexity. The result-ing spa
e 
omplexity of solving NLA by this algorithm isO(m). The resulting time 
omplexity is the produ
t ofthe number of iterations and, the time 
omplexity of theSmith-Waterman algorithm. Although experimental re-sults suggest that the number of iterations is small onaverage, no satisfa
tory theoreti
al average-
ase/worst-
ase bound for the growth of the number of iterationshas been established.We show next that a provably better time 
omplexi-ty result 
an be a
hieved by using Megiddo's te
hniquebased on an observation used in Arslan and E�ge
io�glu,2000 [8℄ for the 
omputation of normalized edit distan
e.Even though it does not seem feasible to pre
ompute
andidate values for the optimum value of NLA, we 
anshow that an eÆ
ient sear
h (a binary sear
h) for theoptimum value is still possible by using the fa
t that anytwo distin
t 
andidate values for NLA� are not arbitrar-ily 
lose to ea
h other if the s
ores are rational. Theresulting algorithm RationalNLA for the NLA problemwith rational penalties is given in Figure 5. The proper-ties of RationalNLA 
an be used to prove the followingtheorem whose proof is omitted.Theorem 1. If algorithm A 
omputes LA� and ob-tains an optimal alignment ve
tor with time 
omplexityT (n;m), then NLA� 
an be 
omputed in time O(T (n;m)log n) and using (asymptoti
ally) the same spa
e requiredby algorithm A provided that Æ and � are rational.The Smith-Waterman algorithm 
an be used as algo-rithm A in RationalNLA to �nd the lo
al alignment ve
-tors and hen
e to solve the parametri
 lo
al alignmentproblems invoked by RationalNLA. Therefore:Corollary 1. Normalized lo
al alignment of sequen
esof length n and m 
an be 
omputed in O(nm log n) timeand O(m) spa
e.The ideas in the Dinkelba
h algorithm or algorithmRationalNLA are not restri
ted to a parti
ular s
orings
heme. Under any given s
oring s
heme, provided thatthe parametri
 LA problems in these algorithms 
an beformulated in terms of an LA problem, these algorithms

Algorithm RationalNLA�  1qs(m+n+L)2 where Æ = pq , and � = rs (This is thegap lower bound)[e; f ℄ [0; 12 qs(m+ n+ L)2℄While (e+ 1 < f) dok b(e+ f)=2
Using Prop.1, solve LA(k�)and let v be the optimum s
ore obtainedif v = 0 then return(k�)else if v < 0 then f  kelse e kEnd fwhilegUsing Prop.1, solve LA(f�) and obtain an optimalalignment ve
tor (x; y; z)Return� x�Æy��z2x+2y+z+L�Figure 5: NLA algorithm RationalNLA for rationals
ores.
an be modi�ed so that they present a solution to NLAproblem. Furthermore, if s
ores/penalties are rational,and solving a parametri
 problem and obtaining an opti-mal solution (alignment ve
tor) take asymptoti
ally thesame time as that of the underlying LA algorithm, thenthe 
omplexity results for RationalNLA of Theorem 1hold. We address two parti
ularly important 
ases ofs
oring s
hemes : aÆne gap penalties, and arbitrary s-
ore matri
es.Sometimes insertion or deletion of a blo
k of symbols
alled a gap is treated di�erently than a stream of single-symbol indels. AÆne gap penalty for a gap of length kis �+ �kwhere � is a gap open penalty and � is an indel penalty.In this 
ase, we may use a 4-tuple (x; y; z; g) to representan alignment ve
tor with whi
h the new 
omponent gis the number of gaps. For example, (3; 1; 4; 2) is thealignment ve
tor for the alignment path shown in Figure2. The alignment ve
tor has two gaps one of whi
h is asingle delete, and the other is a blo
k of three inserts.The de�nition of the length fun
tion LENGTHL doesnot 
hange under this s
oring s
heme. The s
ore of analignment ve
tor 
an be rewritten asSCORE(x; y; z; g) = x� Æy � �z � �gIn some appli
ations, s
ore of a given operation variesdepending on the individual symbols involved in theoperation (e.g., protein sequen
e 
omparison). In this
ase, we may de
ide to de�ne the alignment ve
tor su
hthat it in
ludes as a 
omponent frequen
y of ea
h oper-ation. Let i�, �i denote respe
tively the deletion andinsertion of the ith symbol, and ij denote the substi-



tution of the jth symbol for the ith symbol of the al-phabet � . For a given operation e, let se represent thes
ore, and fe represent the frequen
y of this operation.If u = j�j then for a given alignment ve
tor a wherea = < f1�; f2�; : : : ; fu�;f�1; f�2; : : : ; f�u;f11; f12; : : : ; f1u; : : : ; fu1; fu2; : : : ; fuu > ;the s
ore and length fun
tions 
an be de�ned asSCORE(a) = Xij sijfij +Xi si�fi� +Xi s�if�iLENGTHL(a) = 2Xij fij +Xi fi� +Xi f�i + LOne 
an verify that in both of these 
ases, a parametri
LA problem 
an easily be formulated in terms of an LAproblem under that parti
ular s
oring s
heme, and ourresults hold.
3. IMPLEMENTATION AND TEST RE-

SULTSWe have 
hosen to implement the Dinkelba
h algorith-m for NLA 
omputation (aÆne gap penalties) sin
e thisalgorithm has a good performan
e in pra
ti
e. We havemodi�ed the Smith-Waterman algorithm (for aÆne gap-s) to obtain and 
arry along the alignment informationthrough the nodes. In our implementation we have usedLENGTHL value of the alignment ve
tors as a tie break-er. We sele
t an alignment with the largest LENGTHLvalue in 
ase there are more than one optimal align-ments ending in the same node. That is, we favor thealignment with the largest LENGTHL value among thealignments with the same normalized s
ore sin
e for twoalignments with the same normalized s
ore, the one withlarger LENGTHL value has the higher (non-normalized)s
ore whi
h may be preferred over others (The program
an be obtained by 
onta
ting A.N.A.). In our tests,the algorithm never required more than 9 invo
ationsof the Smith-Waterman algorithm, and in the majorityof 
ases it took 3� 5 invo
ations to solve a single NLAproblem.On
e optimal segments are found for one NLA prob-lem, one may want to 
ontinue with more NLA 
om-putations after masking these segments in the two se-quen
es. For this purpose, we have developed algorith-m RepeatedDinkelba
h. With ea
h alignment betweenai : : : ak and bj : : : bl, we store a pair whose �rst 
ompo-nent is the alignment ve
tor (x; y; z; g) and se
ond 
om-ponent is the alignment position (i; j; k; l) . We haveused a queue Q to store alignments generated by theiterations of the Dinkelba
h NLA algorithm so that anew NLA 
omputation pi
ks as the initial alignmen-t the last alignment in Q whi
h does not overlap withthe alignment reported in the last iteration. This waywe improve the average number of iterations per NLA
omputation. RepeatedDinkelba
h 
ontinues generat-ing alignments until no alignment whose normalized s-


ore is larger than a given threshold s
ore T 
an befound in unmasked regions of the sequen
es. This ter-mination 
ondition is easy to implement sin
e the nor-malized s
ores are de
reasing as they are reported. An-other alternative would be to let the algorithm run untilthere remains no more alignments with positive s
ore.We have also implemented a version of the algorithmwhi
h �rst masks a set of regions as a pre-pro
essingstep. This allows us to expli
itly stop the NLA 
ompu-tations at any time we want, and resume the 
omputa-tion of alignments from where it (almost) left using these
ond algorithm.We have tested our algorithms with various values ofL . We observe that if L is large we obtain alignmentswith high s
ores but low normalized s
ores, while if L issmall then the resulting alignments have high normal-ized s
ores but they may be short and less interestingbiologi
ally. In other words, as the value of L in
reas-es our algorithm �nds longer optimal alignments for aparti
ular instan
e of the problem. It is diÆ
ult to de-termine a value for L whi
h performs well in (almost)every 
ase be
ause a proper value is data-dependent. Ifthe highest normalized s
ore (with respe
t to the 
urrentvalue of L) belongs to an alignment that is too short tobe biologi
ally interesting then we need to in
rease thevalue of L to favor the longer (biologi
ally interesting)alignments. For example for the alignments in Figure3, L has to be at least 600 so that the longer alignmen-t wins over the shorter one. If alignments returned asoptimal do not have suÆ
iently high normalized s
oresthen a smaller values of L should be tried. One needsto experiment various values for L for a parti
ular in-stan
e of sequen
e alignment. Another way to get ridof unwanted short alignments 
an be to mask the 
orre-sponding regions and rerun the algorithm. If we de
ideto do so we need to be sure that these regions do nottake part in desired alignments. As a 
ommon pra
ti
ein sequen
e alignment, we �rst masked the repeats byRepeatMasker (http://ftp.genome.washington.edu/ R-M/RepeatMasker.html) before running our algorithm.These biologi
ally uninteresting regions may have highnormalized s
ores. They may be
ome part of unwant-ed short alignments. Therefore hiding repeats may helpeliminate short alignments to be output as optimal byour algorithm. To visualize the di�eren
e among variousapproa
hes to sequen
e alignment, we represented everyarea of similarity as a re
tangle rather than as a diag-onal in 
onventional drawings of dot-matri
es. Re
tan-gles in the �gures show the segments involved in thealignments. In Figures 6 and 7 the alignment region-s returned by Smith-Waterman algorithm are shownusing dotted lines whereas those determined by post-pro
essing algorithm by Zhang et al., 1999 [33℄ are dis-tinguished by dashed lines. Re
tangles with thi
k linesare the ones obtained by our algorithm. We have in
lud-ed per
ent mat
hes (number of mat
hes divided by theaverage length of the segments) for the alignments wehave found. Our algorithm 
aptures the regions found



by these algorithms but provides more \granularity" inrepresenting the most similar fragments of the alignedregions. To a
hieve even higher level of granularity one
an either redu
e the threshold T for reported align-ments or vary L at di�erent iterations of the algorithm.As expe
ted, the regions not in
luded in found normal-ized lo
al alignments show little similarity: the degreeof similarity \outside" the boxes in Figures 6 and 7 isusually below 35%.
4. CONCLUSIONSThe arrival of long genomi
 sequen
es raises new 
hal-lenges in sequen
e 
omparison. In parti
ular, the tradi-tional tools for 
omputing and representing alignmentsmay not be suitable for genomi
-s
ale sequen
e 
om-parison. These 
hallenges were re
ently addressed byS
hwartz et al, 2000 [24℄ who introdu
ed the Per
entIdentity Plots or PIPs. PIPs are 
ompa
t and 
onve-nient substitutes for dot-matri
es that, in addition torevealing similar segments, re
e
t the per
ent of similar-ity between di�erent segments of 
ompared sequen
es.Our normalized lo
al approa
h is 
on
eptually similarto this approa
h in an attempt to �nd the regions withthe highest per
ent of similarity.The undesirable properties of linear s
oring in sequen
ealignment were �rst revealed by Alts
hul and Eri
kson,1986 [3℄ who proposed di�erent non-linear s
oring fun
-tions. They also noti
ed that alignments with non-linears
oring fun
tions are diÆ
ult to 
ompute in pra
ti
e.The de�
ien
y of linear s
oring fun
tions are well-knownin other appli
ation domains of dynami
 programming.In parti
ular, non-linear s
oring fun
tions lead to betterpra
ti
al algorithms for spee
h re
ognition and re
ogni-tion of hand-written texts (Vidal et al., 1995 [29℄).Some sequen
e 
omparison pra
titioners have been us-ing a few runs of the Smith-Waterman algorithm withvaried gap penalties to arrive to a biologi
ally adequatealignment. However, the 
hoi
e of gap penalties in su
hsear
hes remained largely heuristi
. Our algorithm fornormalized sequen
e alignment mimi
s this approa
hbut provides a rigorous justi�
ation for 
hoosing param-eters in di�erent runs of the Smith-Waterman algorith-m.Pearson, 1995 [23℄, Shpaer et al., 1996 [26℄ and Brenneret al.,1998 Brenner98 made the 
omparative analysisof FASTA, BLAST and the Smith-Waterman algorith-m for fun
tional protein 
lassi�
ation. Abdueva et al.2001 [1℄ used their test framework to study the e�e
tof alignment length on sensitivity of database sear
h.The preliminary results of this work demonstrate thatnormalization improves the fun
tional protein 
lassi�-
ation.Although the normalized lo
al alignment approa
h provedto be su

essful in our preliminary tests, a number ofquestions remain unsolved. Most importantly, the s-tatisti
s of normalized lo
al alignment is poorly under-

stood. The statisti
al questions asso
iated with the
lassi
al lo
al alignment are so 
omplex (Arratia et al.,1990 [6℄, Waterman and Vingron, 1994 [31℄) that we didnot even dare to try estimating statisti
al signi�
an
eof normalized lo
al alignment. Another problem is thatthe rules governing the optimal 
hoi
e of the parameterL are not yet well understood.
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