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STATISTICS ON RESTRICTED FIBONACCI WORDS

ÖMER EĞECIOĞLU

Abstract. We study two foremost Mahonian statistics, the major index and the inversion number for

a class of binary words called restricted Fibonacci words. The language of restricted Fibonacci words

satisfies recurrences which allow for the calculation of the generating functions in two different ways.

These yield identities involving the q-binomial coefficients and provide non-standard q-analogues of the

Fibonacci numbers. The major index generating function for restricted Fibonacci words turns out to

be a q-power multiple of the inversion generating function.

1. Introduction and preliminaries

The major index maj (w) and the inversion number inv (w) of a word w = w1w2 · · ·wn over a linearly

ordered alphabet Σ = {a1, a2, . . . , ak} are defined as

maj (w) =
n−1∑
i=1

i χ(wi > wi+1),(1.1)

inv (w) =
∑

1≤i<j≤n

χ(wi > wj) .

Here for any statement S, χ(S) is 1 or 0 according to whether the S is true or false. The statistics maj

and inv are two of the four permutation statistics that MacMahon considered on words at the turn

of the 20th century. These were descents, excedances, inversions and the major index. MacMahon

showed algebraically that maj is equidistributed with inv on words over an alphabet with a given
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frequency of letters [13]. This is in the sense that restricted to the words with ni occurrences of the

letter ai for 1 ≤ i ≤ k, both are enumerated by q-multinomial coefficients:

(1.2)
∑
w

qmaj (w) =

[
n1 + n2 · · ·+ nk

n1, n2, . . . , nk

]
q

=
∑
w

qinv (w) ,

where [
n1 + n2 + · · ·+ nk

n1, n2, . . . , nk

]
q

=
(q)n1+n2+···+nk

(q)n1(q)n2 · · · (q)nk

with (q)n =
∏n

i=1(1− qi) for n > 0 and (q)0 = 1.

In his honor, statistics on permutations, or more generally on words, that are equidistributed with

inv are said to be Mahonian. Some of the bibliography on the rich existing literature and continuing

work on extensions of various Mahonian statistics can be found in [7, 14] and the references therein.

Such statistics interpolating between maj and inv appear in Kadell [12]. The connections with

hypergeometric series statistics on binary words can be found in [2].

Foata gave combinatorial proofs of MacMahon’s equidistribution results [8, 9]. Another combinato-

rial proof due to Carlitz, called the insertion method gives a recursive bijection that proves that inv

and maj are equidistributed [5]. We refer to Andrews [1] and Stanley [16] for more on these statistics,

and to Sagan and Savage [14] for a very readable account of Foata’s fundamental bijection.

In this paper we are particularly interested in the two Mahonian statistics for a class of restricted

words w over the binary alphabet {0, 1}. For the class of binary words that are a restricted version of

Fibonacci words, we find the generating functions of maj and inv in two different ways and obtain a

number of identities in the spirit of [2].

For unrestricted binary words w with n occurrences of 1 and m occurrences of 0, the common

generating function of these two Mahonian statistics is

(1.3)
∑
w

qmaj (w) =
∑
w

qinv (w) =

[
n+m

m

]
q

.

The q-binomial coefficients above satisfy the recursion

(1.4)

[
n

k

]
q

=

[
n− 1

k

]
q

+ qn−k

[
n− 1

k − 1

]
q

and the q-binomial theorem is [1, 16]

(1 + z)(1 + qz) · · · (1 + qn−1z) =

n∑
k=0

zkq
1
2k(k−1)

[
n

k

]
q

.

We also note that q-binomial coefficient in (1.3) is also the generating function by weight of integer

partitions whose Ferrers diagrams are included in the n×m rectangle.
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2. Fibonacci words

A Fibonacci word is a binary word with no two consecutive 1’s. The number of Fibonacci words

of length n is the Fibonacci number fn+2 where f0 = 0, f1 = 1 and fn = fn−1 + fn−2 for n ≥ 2. The

null word λ is a Fibonacci word of length zero. Fibonacci words are freely generated by the letters

Σ = {s0, s1, s2, . . .} where si = (10)i0 for i ≥ 0. In other words every nonnull Fibonacci word has a

unique factorization as a juxtaposition of letters from this alphabet. For example, using 0 for s0, we

have

00 10100 101010100 000 100 0 1010100 0 = 00 s2s4 000 s1 0 s3 0 .

The generating function of Σ by length is

t+ t3 + t5 + · · · = t

1− t2

so by unique factorization the generating function of the words over Σ (including the null word) by

length is
1

1− t
1−t2

=
1− t2

1− t− t2
= 1 + t+ t2 + 2t3 + 3t4 + 5t5 + · · ·

This gives the familiar generating function of the Fibonacci numbers as

1− t2

1− t− t2
− 1 =

t

1− t− t2
.

For a binary word w, inv (w) is the number of pairs of indices 1 ≤ i < j ≤ n with wi = 1 and wj = 0.

So for each 0 from left to right, we count the number of 1’s before it in w, and add these numbers. For

example for the Fibonacci word w = 10100 we have maj (w) = 1 + 3 = 4 and inv (w) = 1 + 2 + 2 = 5,

and for w = 10010100, we have maj (w) = 1+4+6 = 11 and inv (w) = 1+1+2+3+3 = 10. Further

examples can be found in Table 1.

3. Restricted Fibonacci words

Consider the alphabet

(3.1) P = {s1, s2, . . .} .

Let P∗ be the language of binary words (including the null word λ of length zero) that are generated

by P and let P+ = P∗ − {λ}. Note that

i) each word in P+ starts with 10,

ii) each 1 in P+ is followed by a 0 or a 00,

iii) the shortest word in P+ is s1 = 100.

Each w ∈ P∗ has a unique factorization as a word in the si, for example

10100 101010100 100 1010100 = s2s4s1s3 .

We can call P∗ “0-free” Fibonacci words or “positive” Fibonacci words, though neither term is

satisfactory. Instead, we will use the following terminology:
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Definition 3.1. The language P∗ of binary words generated by the alphabet P of (3.1) is called

restricted Fibonacci words.

It is clear that we have the identities

First identity: P+ = s1 + 10P+ + s1P+(3.2)

Second identity: P∗ = λ+ s1P∗ + s2P∗ + · · ·(3.3)

where “+” denotes disjoint union. (3.2) expresses the fact that words in P+ start with either 10 or

100 whereas (3.3) expresses the fact that a word in P∗ is either λ or begins with one of the si.

Denoting by |w|0 and |w|1 the number of 0’s and 1’s in a binary word w, we first define

(3.4) f(x, y) =
∑
w∈P∗

x|w|1y|w|0

and put f̃(x, y) = f(x, y)−1. f̃ is the generating function of words in P+. From (3.2) above we obtain

f̃(x, y) = xy2 + xyf̃(x, y) + xy2f̃(x, y)

and from (3.3) the equivalent identity

f(x, y) = 1 + xy2f(x, y) + x2y3f(x, y) + · · · = 1 +
xy2f(x, y)

1− x2y2

so that

(3.5) f(x, y) =
1− xy

1− xy − xy2
.

In particular the generating function P∗ by length is

(3.6) f(t, t) =
1− t2

1− t2 − t3
= 1 +

t3

1− t2 − t3
.

Lemma 3.2. Let P∗
n,m denote the number of restricted Fibonacci words w with |w|1 = n and |w|0 = m.

Its cardinality is given by ∣∣P∗
n,m

∣∣ = (
n− 1

m− n− 1

)
.

Proof. We can directly use the recursion (3.2) and induction, or use the series expansion

1

1− xy − xy2
=

∑
n,k≥0

xnyn+k

(
n

k

)
together with (3.5) and an elementary binomial identity. □

In particular
∣∣P∗

n,m

∣∣ = 0 unless n+ 1 ≤ m ≤ 2n.

Next we define the generating functions of inv and maj for P∗
n,m.

Definition 3.3.

Mn,m(q) =
∑

w∈P∗
n,m

qmaj (w) and In,m(q) =
∑

w∈P∗
n,m

qinv (w) .
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4. Consequences of the First identity

4.1. Major index. In restricted Fibonacci words there are no adjacent 1s, and therefore the major

index of w ∈ P∗ is simply the sum of the indices of the 1s in w. We augment f(x, y) of (3.4) to

f(x, y, q) by setting

(4.1) f(x, y, q) =
∑
w∈P∗

x|w|1y|w|0qmaj (w) .

We can consider f as a power series in x with coefficients that are polynomials in y and q, or as a

power series in y with coefficients that are polynomials in x and q. With this view we write (4.1) as

(4.2) f(x) = 1 +
∑
n≥1

an(y, q)x
n = 1 +

∑
m≥1

bm(x, q)ym = f(y) .

As before, we set f̃(x, y, q) = f(x, y, q)− 1. Next we determine the polynomials an and bm.

Theorem 4.1.

(1) a0 = 1 and for n ≥ 1,

(4.3) an(y, q) = yn+1qn
2
n−1∏
k=1

(1 + qky) ,

(2) b0 = 1, b1 = 0 and for m ≥ 2,

(4.4) bm(x, q) =

m−1∑
n=⌈m

2
⌉

xnqn
2+

1
2(m−n)(m−n−1)

[
n− 1

m− n− 1

]
q

.

Proof. We make use of the First identity (3.2). The contribution of s1 to f̃ is xy2q. If the contribution

of u ∈ P+ is xrysqt, then the contribution of 10u is xyq (xrysqt+2r), as the index of each 1 in u goes

up by 2. Similarly the contribution of 100u is xy2q (xrysq3r+t). It follows that

(4.5) f̃(x, y, q) = xy2q + xyq f̃(xq2, y, q) + xy2q f̃(xq3, y, q) ,

in other words

f̃(x) = xy2q + xyq f̃(xq2) + xy2q f̃(xq3) .

Therefore

an(y, q) = y an−1(y, q) · q · q2(n−2) + y2 an−1(y, q) · q · q3(n−1) .

Consequently

(4.6) an = y q2n−1(1 + yqn−1) an−1 .

and (4.3) follows by induction on n in (4.6).

To prove (4.4), we use the q-binomial theorem with z = yq to obtain the expansion

an(y, q) =

n−1∑
k=0

yn+1+kqn
2+

1
2k(k−1)+k

[
n− 1

k

]
q

,
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and the coefficient of ym here is

(4.7) Mn,m(q) = qn
2+

1
2(m−n)(m−n−1)

[
n− 1

m− n− 1

]
q

.

Adding up the contributions according to the number of 1’s proves (4.4). □

4.2. Inversions. To enumerate the inversions in restricted Fibonacci words, we set

(4.8) g(x, y, q) =
∑
w∈P∗

x|w|1y|w|0qinv (w)

with g̃(x, y, q) = g(x, y, q) − 1. In analogy with f(x, y, q), we can consider g as a power series in x

with coefficients that are polynomials in y and q, or as a power series in y with coefficients that are

polynomials in x and q. We write (4.8) as

(4.9) g(x) = 1 +
∑
n≥1

cn(y, q)x
n = 1 +

∑
m≥1

dm(x, q)ym = g(y) .

In other words the polynomials cn(y, q) and dm(x, q) are to the inversion statistic what an(y, q) and

bm(x, q) are to the major index statistic.

Theorem 4.2.

(1) c0 = 1, and for n ≥ 1,

(4.10) cn(y, q) = yn+1q
1
2n(n+3)

n−1∏
k=1

(1 + qky) ,

(2) d0 = 1, d1 = 0 and for m ≥ 2,

(4.11) dm(x, q) =

m−1∑
n=⌈m

2
⌉

xnq
1
2n(n+3)+

1
2 (m−n)(m−n−1)

[
n− 1

m− n− 1

]
q

.

Proof. We again make use of the First identity (3.2). The contribution of s1 to g̃ is xy2q2. If the

contribution of u ∈ P+ is xrysqt, then the contribution of 10u is xyq (xrysqt+s) as each 0 in u causes

an inversion with the initial 1. Similarly the contribution of 100u is xy2q2 (xrysqt+s). It follows that

g̃ satisfies

(4.12) g̃(x, y, q) = xy2q2 + xyq g̃(x, yq, q) + xy2q2 g̃(x, yq, q) .

Therefore c1(y, q) = y2q2 and for n ≥ 2,

cn(y, q) = yq cn−1(yq, q) + y2q2 cn−1(yq, q) = yq(1 + yq) cn−1(yq, q) .

Now (4.10) follows by induction on n.

To prove (4.11), we use the q-binomial theorem with z = yq to obtain the expansion

cn(y, q) =

n−1∑
k=0

yn+1+kq
1
2n(n+3)+

1
2k(k−1)+k

[
n− 1

k

]
q

,
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and the coefficient of ym here is

(4.13) In,m(q) = q
1
2n(n+3)+

1
2 (m−n)(m−n−1)

[
n− 1

m− n− 1

]
q

.

This proves (4.11). □

Table 1. Restricted Fibonacci words with 3 or fewer occurrences of 1 with their major

index and the number of inversions.

Restricted Fibonacci words w maj (w) inv (w)

|w|1 = 1 100 1 1 + 1 = 2

|w|1 = 2 100100 1 + 4 = 5 1 + 1 + 2 + 2 = 6

10100 1 + 3 = 4 1 + 2 + 2 = 5

|w|1 = 3 100100100 1 + 4 + 7 = 12 1 + 1 + 2 + 2 + 3 + 3 = 12

10010100 1 + 4 + 6 = 11 1 + 1 + 2 + 3 + 3 = 10

10100100 1 + 3 + 6 = 10 1 + 2 + 2 + 3 + 3 = 11

1010100 1 + 3 + 5 = 9 1 + 2 + 3 + 3 = 9

As a corollary of Theorem 4.2, we have the following.

Proposition 4.3. Let P∗
n,m denote the number of restricted Fibonacci words w with |w|1 = n and

|w|0 = m and let Mn,m(q), In,m(q) be the generating functions of maj and inv given in Definition

3.3. Then

(4.14) Mn,m(q) = q
1
2n(n−3) In,m(q) .

Proof. The expressions for the the generating function of restricted Fibonacci words in P∗
n,m by major

index and by inversions are as given in (4.7) and (4.13), respectively. □

5. q-Fibonacci numbers

If we set x = 1 in bm(x, q) in (4.4), we obtain the polynomial bm(q), which is the enumerator of

restricted Fibonacci words withm occurrences of 0 by major index. Similarly, if we set x = 1 in dm(x, q)

in (4.11), we obtain the polynomial dm(q), which is the enumerator of restricted Fibonacci words with

m occurrences of 0 by inversions. For q = 1, both bm(q) and dm(q) specialize to the Fibonacci number

fm−1. This is because the generating function (3.5) becomes the (shifted) generating function of

http://dx.doi.org/10.22108/toc.2020.123414.1733
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the Fibonacci numbers. Therefore both bm(q) and dm(q) are q-analogues of the Fibonacci numbers.

Consequently, from either of the expressions (4.4) or (4.11) with x = q = 1, we have for m ≥ 1,

fm−1 =

m−1∑
k=⌈m

2
⌉

(
k − 1

m− k − 1

)
.

There are various q-analogues of the Fibonacci numbers in the literature [3, 4, 6, 11, 15] and it is

natural to try and identify bm(q) and dm(q) in terms of one of these. Considering dm(q) first, from

(4.12) and (4.9) we have the recursion

(5.1) dm(x, q) = xqm dm−1(x, q) + xqm dm−2(x, q)

and therefore

(5.2) dm(q) = qm dm−1(q) + qm dm−2(q)

for m ≥ 2 with d0 = 1 and d1 = 0. From this recursion we can easily prove by induction that the

degree of the polynomial dm(q) is 1
2(m− 1)(m+ 2) for m ≥ 1.

Corollary 5.1. Define the polynomials pm(q) by the recursion

(5.3) pm(q) = pm−1(q) + qm−1 pm−2(q)

for m ≥ 2 with p0 = 1, p1 = 0. Then pm(1) = fm−1 and

(5.4) dm(q) = q
1
2m(m+1) pm(1q ) .

Proof. We simply verify that the right hand side of (5.4) satisfies the recurrence relation (5.2). □

Note that the q-analogue pm(q) of the Fibonacci numbers in (5.3) is different from the standard

one defined by

(5.5) Fm(q) = Fm−1(q) + qm−2Fm−2(q)

due to Schur, which was studied by Carlitz, Cigler and others in the literature [3, 4, 6], and also

different from

Fm(q) = q Fm−1(q) + Fm−2(q)

with F1 = 1 and F2 = q, which are commonly known as Fibonacci polynomials [11].

In the case of the bm(q), the recursion analogous to (5.2) is

(5.6) bm(x, q) = xq bm−1(xq
2, q) + xq bm−2(xq

3, q)

for m ≥ 2. This is a consequence of (4.5). However the recursion (5.6) is fundamentally different from

(5.2). It is not clear what plays role of pm(q) in (5.3) for the major index polynomials bm(q).

http://dx.doi.org/10.22108/toc.2020.123414.1733
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Using (4.4) with x = 1, after b0 = 1 and b1 = 0, the first few polynomials bm(q) are as follows:

b2(q) = q

b3(q) = q4

b4(q) = q5(1 + q4)

b5(q) = q10(1 + q + q6)

b6(q) = q12(1 + q5 + q6 + q7 + q13)

b7(q) = q19(1 + q + q2 + q7 + q8 + q9 + q10 + q17)

b8(q) = q22(1 + q6 + q7 + 2q8 + q9 + q10 + q15 + q16 + q17 + q18 + q19 + q27)

From (4.4) we calculate that the degree of bm(q) is (m − 1)2, and the lowest degree term which is

shown as factored above, has degree 1
8m(3m− 1) for m even and 1

8(3m
2 + 5) for m odd.

6. Consequences of the Second identity

Now we consider the consequences of the Second identity (3.3). It expresses the fact that a restricted

Fibonacci word w is either null, or starts with s1, or s2, and so on. First we consider the major index

statistic. If w = sku with u ∈ P∗, then the contribution of sk to maj (w) is

q1+3+5+···+(2k−1) = qk
2
.

The contribution to the major index that comes from u is increased by 2k + 1, the length of sk, for

every occurrence of 1 in u. It follows that the generating function (4.1) satisfies the functional identity

(6.1) f(x, y, q) = 1 + xy2q1 f(xq3, y, q) + x2y3q4 f(xq5, y, q) + x3y4q9 f(xq7, y, q) + · · ·

Writing it in the form f(x) as in (4.2) we have

(6.2) f(x) = 1 +
∑
m≥1

xmym+1qm
2
f(xq2m+1) .

Noting that

f(xq2m+1) = 1 +
∑
k≥1

ak(y, q)q
(2m+1)k xk ,

substituting in (6.2) and equating the coefficient of xn (n ≥ 1) on both sides find that the an = an(y, q)

of (4.3) is the solution to the recurrence relation

an =

n−1∑
k=0

yn+1−kqn
2−k(k−1)ak .

Considering the generating function in (4.1) and writing it in the form f(y) as in (4.2), and equating

the coefficient of ym (m ≥ 1) on both sides of (6.1) we find that the bm(x, q) as given in (4.4) is the

solution to the recurrence relation

(6.3) bm(x, q) =
m−2∑
k=0

xm−k−1q(m−k−1)2bk(xq
2m−2k−1, q) .
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For inversions, consider the generating function g(x, y, q) of (4.8). If a nonnull restricted Fibonacci

word w starts with sk, then w = sku with u ∈ P∗ and the contribution of sk itself to inv (w) is

q1+2+3+···+k+ k = q
1
2k(k+3) .

The contribution to the number of inversions that comes from u is increased by k, the number of 1’s

in sk, for every occurrence of 0 in u. It follows that g(x, y, q) satisfies the functional equation

g(x, y, q) = 1 + xy2q2g(x, yq, q) + x2y3q5g(x, yq2, q) + x3y4q9g(x, yq3, q) + · · ·(6.4)

= 1 +
∑
n≥1

xnyn+1q
1
2n(n+3)g(x, yqn, q) .

Comparing the coefficient of xn on both sides of (6.4) we obtain that cn(y, q) of (4.10) are the

solution to the recurrence relation

(6.5) cn(y, q) =
n−1∑
k=0

yn−k+1q
1
2 (n−k)(n−k+3)ck(yq

n−k, q)

with c0 = 1. For the analogous result with the dm(x, q)’s, we write with the notation of (4.9)

(6.6) g(y) = 1 +
∑
m≥1

ym+1q
1
2m(m+3)g(yqm) ,

use

g(yqm) = 1 +
∑
k≥1

dk(x, q)q
mkyk

in (6.6) and compare coefficients to find that the polynomials dm = dm(x, q) of (4.11) satisfy the

recurrence relation

(6.7) dm =

m−2∑
k=0

xm−k−1q
1
2 (m−k−1)(m+k+2)dk

for m ≥ 2 with d0 = 1, d1 = 0.

We remark that the recurrence relations (6.5) and (6.7) can be proved independently by grouping

terms and making use of the q-binomial identity (1.4).

Going back to the representation of restricted Fibonacci words as words over the alphabet of the

sk, we note that replacing a occurrence of sisj in a w ∈ P+ by si−1sj+1 increases the major index

by 1 and decreases the number of inversions by 1. Similarly replacing sisj by si+1sj−1 decreases the

major index by 1 and increases the number of inversions by 1. In the first case we need i ≥ 2 and in

the second, j ≥ 2.

In P∗
n,m there are two special words which no such shift is possible: when m = n + 1 and w = sn,

and when m = 2n and w = sn1 . Here n and m denote the number of 1’s and the number of 0’s in the

word, respectively with n+ 1 ≤ m ≤ 2n for restricted Fibonacci words in general.

We can easily calculate the two statistics for these two words as shown in Table 2:
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Table 2. Two extreme cases.

Restricted Fibonacci word Major index Inversions

sn n2 1
2n(n+ 3)

sn1
1
2n(3n− 1) n(n+ 1)

Aside from the two extreme cases ofm = n+1 andm = 2n, writingm = n+k+1 with 1 ≤ k ≤ n−2,

there are two special elements in P∗
n,m, which are sk1sn−k and sn−ks

k
1.

If a word u ∈ P∗ starts with letter sisj with i > 1, then using the shift si−1sj+1 repeatedly, we end

up with a word that starts with s1, and the major index goes up by i− 1. Summing the contributions

over i,

Mn,m(q) =
(
1 + 1

q + · · ·+ (1q )
n−k−1

) ∑
w∈P∗

n−1,m−2

qmaj (s1w)

=
1− (1q )

2n−m+1

1− 1
q

· q3n−2Mn−1,m−2(q)

=
1− q2n−m+1

1− q
· qn+m−2Mn−1,m−2(q).

Similarly,

In,m(q) =
1− q2n−m+1

1− q
· qm In−1,m−2(q) .

These give us again the closed form expressions (4.7) and (4.13). Also we calculate directly

Mn,m(q)

In,m(q)
= qn−2 Mn−1,m−2(q)

In−1,m−2(q)

and obtain (4.14) without actually computing each expression.

Remark 6.1. The generating function of P+ by length in (3.6) is identical to the generating function

of compositions π = (π1, π2, . . . , πr) (i.e. ordered partitions) of n where πi = 2 or 3 and πr = 3.

This last condition accounts for the t3 in the numerator in (3.6). Inversion statistics on compositions

themselves was studied in [10]. In our case the bijection simply maps a maximal length run of k 2’s

followed by a 3 in π to the letter sk+1. For instance the composition π = (2, 3, 2, 2, 2, 3, 3, 2, 2, 3) of

n = 24 corresponds to the restricted Fibonacci word s2s4s1s3 of length 24.
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