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We consider languages defined by signed grammars which are similar to context-free grammars
except productions with signs associated to them are allowed. As a consequence, the words generated
also have signs. We use the structure of the formal series of yields of all derivation trees over such a
grammar as a method of specifying a formal language and study properties of the resulting family of
languages.

1 Introduction

We consider properties of signed grammars, which are grammars obtained from context-free grammars
(CFGs) by allowing right hand sides of productions to have negative signs in front. The concept of
generation for such grammars is somewhat different from that of context-free grammars. A signed
grammar is said to generate a language L if the formal sum of the yields over all derivation trees over
the grammar corresponds to the list of words in L . For a signed grammar, the yields of derivation trees
may have negative signs attached to them, but the requirement is that when the arithmetic operations are
carried out in the formal sum, the only remaining words are those of L , each appearing with multiplicity
one.

The structure of context-free languages (CFLs) under a full commutation relation defined on the
terminal alphabet is the central principle behind Parikh’s theorem [24]. In partial commutation, the
order of letters of some pairs of the terminal alphabet is immaterial, that is, if they appear consecutively,
the word obtained by swapping their order is equivalent to the original one. These equivalence classes
are also called traces and studied intensively in connection to parallel processes [18, 12, 21, 4]. Our
motivation for this work is languages obtained by picking representatives of the equivalence classes in
Σ∗ under a partial commutativity relation, called Cartier-Foata languages [1]. In the description of these
languages with Kleene-closure type expansions, words appear with negative signs attached to them.
However such words are cancelled by those with positive signs, leaving only the sum of the words of the
language. An example of this is (a+b−ba)∗ which is more familiarly denoted by the regular expression
a∗b∗. The interesting aspect of Cartier-Foata languages is that the words with negative signs cancel out
automatically, leaving only the representative words, each appearing exactly once.

Motivated by these languages, we consider grammars which are obtained from context-free gram-
mars by allowing signed productions, i.e., normal productions (in the role of positive productions) and
productions of the form A→ −α (negative productions). In this way, a derivation results in a signed
word where the sign depends on the parity of the number of negative rules applied in the derivation. We
consider those derivations equivalent that belong to the same derivation tree, and actually, the derivation
tree itself defines the sign of the derived word. The language generated by such a grammar is obtained
by taking all possible derivation trees for a given word (both its positive and negative derivations) and
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requiring that the sum of the yields of all derivation trees over the grammar simply is a list of the words
in a language L . This means that the simplified formal sum is of the form ∑w∈L w, each word of the
language appearing with multiplicity one. (Without loss of generality, in this study, we restrict ourselves
to grammars having finitely many parse trees for each of the derived words.)

On one hand, the requirements in the specification of a language generated by a signed grammar may
seem too restrictive. But at the same time this class of languages includes all unambiguous context-free
languages and it is closed under complementation, and consequently can generate languages that are not
even context-free. Therefore it is of interest to consider the interplay between the restrictions and various
properties of languages generated by signed grammars.

2 Preliminaries

Given a language L over an alphabet Σ, we identify L with the formal sum of its words denoted by
f (L ):

f (L ) = ∑
w∈L

w . (1)

The sum in (1) is also referred to as the listing series of L . A weighted series of L is a formal series of
the form ∑w∈L nw w where nw are integers. Thus a weighted series of Σ∗

∑
w∈Σ∗

nw w

is the listing series of some language L over Σ iff

nw =

{
1 if w ∈L
0 if w 6∈L .

(2)

We are allowed ordinary arithmetic operations on weighted series in a natural way. The important thing
is that a weighted series is the listing series of a language L iff the coefficients of the words in L in
the weighted series are 1, and all the others are 0. So for example over Σ = {a,b,c}, the weighted series
a+ b+ c+ ba is the listing series of the finite language L = {a,b,c,ba}, whereas the weighted series
a+ b+ c− ba does not correspond to a language over Σ. This is because in the latter example nw does
not satisfy (2) for w = ba. As another example, the difference of the weighted series 2a+ 3b− c+ ba
and a+2b−2c+ba corresponds to the language L = {a,b,c}.

2.1 CFGs and degree of ambiguity

Next we look at the usual CFGs G = (V,Σ,P,S). Here the start symbol is S ∈ V . Let T be a parse
(derivation) tree over G with root label S and terminal letters as labels of the leaves of T . Let Y (T ) ∈ Σ∗

be the yield of T . Then the language generated by G is

L (G) = {Y (T ) | T is a parse tree over G} .

This is equivalent to L (G) = {w ∈ Σ∗ | S =⇒∗
G

w}. For a CFG G, we can define the formal weighted
sum

f (G) = ∑
T∈TG

Y (T ) = ∑
w∈Σ∗

nww (3)
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where TG denotes all parse trees over G. Various notions of ambiguity for CFLs can be interpreted as
the nature of the coefficients nw that appear in (3). Rewriting some of the definitions in Harrison [8, pp.
240-242] in terms of these coefficients, we have

1. Given k ≥ 1, G is ambiguous of degree k if nw ≤ k for all w ∈L (G).

2. L is inherently ambiguous of degree k ≥ 2 if L cannot be generated by any grammar that is
ambiguous of degree less than k but can be generated by by a grammar that is ambiguous of
degree k. In other words the degree of ambiguity of a CFL is the least upper bound for the number
of derivation trees which a word in the language can have.

3. L is finitely inherently ambiguous if there is some k and some G for L so that G is inherently
ambiguous of degree k.

4. A CFG G is infinitely ambiguous if for each i≥ 1, there exists a word in L (G) which has at least
i parse trees. A language L is infinitely inherently ambiguous if every grammar generating L is
infinitely ambiguous.

The CFL A = {aib jck | i = j or j = k} is inherently ambiguous of degree 2 [8, p. 240], A m is
inherently ambiguous of degree 2m [8, Theorem 7.3.1], and A ∗ is infinitely inherently ambiguous [8,
Theorem 7.3.3]. Another interesting CFL which is infinitely inherently ambiguous is Crestin’s language
[3] of double palindromes over a binary alphabet {w1w2 | w1,w2 ∈ {a,b}∗,w1 = wR

1 ,w2 = wR
2}. Further-

more, for every k ≥ 1, there exist inherently ambiguous CFLs of degree k. The behavior of the sequence
nw over all CFGs for a language was studied by Wich [25, 26].

3 Signed grammars

We consider signed grammars G which are like CFGs but with a sign associated with each production,
that is, apart from the usual (say positive) productions, we allow productions of the form A→−α . In
the derivation relation we use the signs as usual in a multiplicative manner: We start the derivation from
the sentence symbol (with + sign, but as usual we may not need to put it, as it is the default sign). The
derivation steps, as rewriting steps, occur as they are expected in a CFG, the only extension is that we
need to deal with also the sign. When a positive production is applied in a sentential form, its sign does
not change, while whenever a negative production is applied, this derivation step switches the sign of the
sentential form. Thus, in this case the yield of a parse tree of G is a word over Σ with a ± sign attached
to it. Furthermore, the sign of a derived word depends only on the parity of the number of negative
productions used during its derivation. Therefore, different derivation trees for the same word may lead
to the word with different signs attached to it. We note that, in fact, any CFG is a signed grammar. For a
signed grammar G, let f (G) be defined as in (3), where again TG denotes all parse trees over G. Without
loss of generality, we may assume that in the grammar G there are only finitely many parse trees for any
of the words generated by the grammar.
Definition 1 We say that a signed grammar G generates a language L iff the weighted series f (G) in
(3) is the listing series of L , i.e. f (G) = f (L ).

3.1 Examples of languages generated by signed grammars

Example 1 For the signed grammar G1 with start symbol A and productions A→−aA |λ , we have

f (G1) = ∑
i≥0

a2i−∑
i≥0

a2i+1 . (4)
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Therefore the signed grammar G with productions S→ A |B, A→ −aA |λ , B→ aaB |a generates the
regular language (aa)∗. As this is our first example, we provide details of the derivations in G:

• The empty word λ can be derived only in one way, by applying a positive production, thus it is in
the language.

• By applying a negative and a positive production, S⇒ A⇒−aA⇒−a yields−a, and S⇒ B⇒ a
yields +a. These two are the only derivations over G for ±a. This means that the word a is not in
the language.

• For the word aa, the only derivation is S⇒ A⇒−aA⇒ aaA⇒ aa. Consequently aa is in the
generated language.

• Finally, by induction, one can see that an even number of a-s can only be produced by starting
the derivation by S⇒ A. Following this positive production, each usage of A→−aA introduces
a negative sign. Therefore each word of the form a2i is generated once this way with a + sign.
On the other hand there are two possible ways to produce a string a2i+1 of an odd number of a-s.
One of these starts with A⇒−aA as before and produces−a2i+1 after an odd number of usages of
A→−aA; the other one starts with S⇒ B and produces a2i+1 after an even number of applications
of B→ aaB, followed by B→ a. Therefore odd length words cancel each other out and are not in
the language generated.

Another way to look at this is to note that for the (signed) grammar G2 with the start symbol B and
productions B→ aaB |a, we have

f (G2) = ∑
i≥0

a2i+1 , (5)

and the words generated by G are given by the formal sum of (4) and (5).

Example 2 The signed grammar with productions S→ aS |bS | −baS |λ generates the regular language
denoted by the regular expression a∗b∗. First few applications of the productions give

λ ;

a+b−ba;

a2 +ab−aba+ba+b2−b2a−ba2−bab+baba;

in which the only immediate cancellation is of −ba, though all words carrying negative signs will even-
tually cancel out. This is a special case of the Cartier-Foata result [1], [5, Section 8.4].

Example 3 Over the decimal (or the binary) alphabet we can construct an unambiguous regular grammar
G that generates all nonnegative even numbers, e.g., S→ 9S |8A |7S |6A |5S |4A |3S |2A |1S |0A and A→
9S |8A |7S |6A |5S |4A |3S |2A |1S |0A |λ . Let, further, a regular grammar G′ be generating the numbers
which are divisible by 6 (e.g., based on the deterministic finite automaton checking the sum of the digits
to be divisible by 3 and the last digit must be even, we need states/nonterminals to count the sum of
already read digits by mod 3 and take care to the last digit as we did for G).

Then L (G) consists of all even numbers and L (G′) consists of all numbers divisible by 6. Now,
from G′, we may make a signed grammar G′′ which allows us to derive every multiple of 6 with the sign
−. Then by combining the two grammars G and G′′, we can easily give a signed grammar that generates
all even numbers that are not divisible by 3 (i.e., even numbers not divisible by 6).
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Example 4 Over the alphabet {a,b} consider the signed grammar with productions S→ aSa |bSb |a |b.
This so far generates odd length palindromes. Let us add the productions S→−A, A→−abAba |a.

Then each odd length palindrome with the letter b in the middle has exactly one derivation tree with
a + sign. There are no cancellations for these and therefore all odd length palindromes with b in the
middle are in the language. If the middle of an odd length palindrome w is a but not ababa, then w is not
in L as it has also derivation tree with− sign. Similarly, if the middle of w is ababa but not ababababa,
w is in L . In general, if an odd length palindrome w has (ab)2k−1a(ba)2k−1 in the middle, but it does
not have (ab)2ka(ba)2k in its middle, then it is in L . Here the number of derivation trees for a word with
a + sign is either equal to the number of derivation trees with a − sign for the word, or it is exactly one
more.

Example 5 For the following signed grammar

S1→−aA |Ba |a
A→−aA |Ba |a
B→−aB |Ba | −a |aa

for n odd, there are 2n−1 parse trees for an and 2n−1−1 parse trees for−an. For n even, there are 2n−1−1
parse trees for an and 2n−1 parse trees for −an. In other words for the above grammar

f (G) = ∑
i≥0

22ia2i+1 +∑
i≥0

(22i−1)a2i−∑
i≥0

(22i−1)a2i+1−∑
i≥0

22ia2i

= ∑
i≥0

(−1)iai+1 .

If we add the productions S→ S1 |S2, S2 → aaS2 |aa then the resulting signed grammar generates
the regular language a(aa)∗. Even though the language generated is very simple we see that signed
grammars possess some interesting behavior.

4 Properties of languages generated by signed grammars

In this section our aim is twofold. On the one hand we give some closure properties of the class of
languages generated by our new approach and, on the other hand, we give hierarchy like results by
establishing where this family of languages is compared to various other classes.

We immediately observe that in the weighted sum (3) for a CFG G (i.e. a signed grammar G with
no signed productions), the coefficient nw is the number of parse trees for w over G, in other words the
degree of ambiguity of w.

Proposition 1 Any unambiguous CFL is generated by a signed grammar.

Proof An unambiguous CFL L is generated by the signed grammar G where G is any unambiguous
CFG for L . •

As the class of unambiguous CFLs contains all deterministic CFLs, LR(0) languages, regular lan-
guages, subsets of w∗1w∗2 [7, Theorem 7.1], all of these languages are generated by signed grammars.
Further, all these classes are proper subsets of the class of languages generated by signed grammars.

Now we present a closure property.

Proposition 2 Languages generated by signed grammars are closed under complementation.
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Proof Take an unambiguous CFG for Σ∗ with start symbol S1. If L is generated by a signed grammar
with start symbol S2 (and no common nonterminal in the two grammars), then the productions of the two
grammars together with S→ S1 | −S2 with a new start symbol S generates L . •

We continue the section comparing our new class of languages with other well-known language class,
the class of CFLs.

In 1966 Hibbard and Ullian constructed an unambiguous CFL whose complement is not a CFL
[9, Theorem 2]. Recently Martynova and Okhotin constructed an unambiguous linear language whose
complement is not context-free [14]. This shows that unambiguous linear CFLs are not closed under
complementation while providing another proof of Hibbard and Ullian’s result.

We know that languages generated by signed grammars are closed under complementation, and
also every unambiguous CFL is generated by a signed grammar. A consequence of this is that signed
grammars can generate languages that are not context-free.

Proposition 3 There is a language generated by a signed grammar that is not context-free.

Proof If L is the unambiguous CFL constructed by Hibbard and Ullian, then L and therefore L are
generated by signed grammars. But we know that L is not context-free. •

Actually, our last proposition shows that the generative power of signed grammars is surprisingly
large, it contains, e.g., all deterministic and unambiguous CFLs and their complements. Thus, one can
easily generate some languages that are not in the class of CFLs.

Continuing with closure properties, recall that disjoint union is an operation that is defined only on
disjoint sets which produces their union.

Proposition 4 Languages generated by signed grammars are closed under disjoint union ].

Proof Let L1 and L2 be two languages over an alphabet Σ such that L1∩L2 = /0. Let L1 be generated
by a signed grammar with start symbol S1 and L2 be generated by a signed grammar with start symbol
S2, such that the sets of nonterminals of these two grammars are disjoint. Then the productions of the
two grammars together with S→ S1 | S2 with a new start symbol S generates the disjoint union L1]L2.
•

Now, let us define the set theoretical operation “subset minus” (	), as follows: let A ⊆ B, then
B	A = B\A. This type of setminus operation is defined only for sets where the subset condition holds.

Proposition 5 Languages generated by signed grammars are closed under subset minus 	.

Proof Let L1 ⊆ L2 be two languages over a given alphabet Σ. Take the signed grammar for L1
with start symbol S1. If L2 is generated by a signed grammar with start symbol S2 (with no common
nonterminals of the two grammars), then the productions of the two grammars together with S→ S1 | −S2
with a new start symbol S generates the language of L2	L1. •

Let L1,L2 ⊆ Σ∗ be two languages and $ 6∈ Σ. The $-concatenation of L1 and L2 is the language
L1$L2 over the alphabet Σ∪{$}.

Proposition 6 Languages generated by signed grammars are closed under $-concatenation.

Proof The language L1$ has the prefix property (i.e. it is prefix-free) due to the special role of the
marker $. Let G1 and G3 be signed grammars with disjoint variables and start symbols S1 and S3 that
generate L1 and L2, respectively. Consider also the signed grammar G2 with the single production
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S2 → $. Then the signed grammar which have all the productions of G1,G2,G3 together with the pro-
duction S→ S1S2S3 where S is a new start symbol generates the language L1$L2. The proof follows
by observing that for u,u′ ∈L1 and v,v′ ∈L2, u$v = u′$v′ iff u = u′ and v = v′, so that each word that
appears in the expansion of (

∑
w∈L1

w

)
$

(
∑

w∈L2

w

)
has coefficient 1. •

In a similar manner, it can also be seen that we have a similar statement for languages over disjoint
alphabet, i.e., the class of languages generated by signed grammars is closed under “disjoint concatena-
tion” �.

Proposition 7 Let L1 ⊆ Σ∗1 and L2 ⊆ Σ∗2 be two languages that are generated by signed grammars,
where Σ1∩Σ2 = /0. Then, the language L1 �L2 = L1L2 can be generated by a signed grammar.

In the following proposition, f (L ) and f (G) are as defined in (1) and (3).

Proposition 8 Suppose L generated by a signed grammar. Then there are CFGs G1 and G2 such that
f (L ) = f (G1)− f (G2).

Proof Given a signed grammar over Σ, add an extra letter t to Σ and replace all productions of the form
A→−α by A→ tα . The words generated by this CFG over Σ∪{t} with an even number of occurrences
of t is a CFL since it is the intersection of CFL and the regular language, i.e. all words over Σ∪{t} with
an even number of occurrences of t. Similarly, the words generated with an odd number of occurrences
of t is a CFL. We can then take homomorphic images of these two languages generated by replacing t by
λ and obtain two CFLs generated by CFGs G1 and G2. The weighted series f (G) is then the difference
of two weighted series

f (G) = f (G1)− f (G2) = ∑
w∈Σ∗

nww − ∑
w∈Σ∗

n′ww . (6)

In (6), the coefficients nw and n′w are nonnegative integers for all w ∈ Σ∗ as they count the number of
derivation trees for w over G1 and G2, respectively. •

Remark 1 In Proposition 8, f (G1)− f (G2) is the listing series of L , and therefore nw− n′w = 1 or
nw−n′w = 0 for all w ∈ Σ∗. In the first case w ∈L , and in the second w 6∈L . Note that these conditions
do not imply that L = L (G1)\L (G2).

5 Partial commutativity

Addition of commutativity relations to CFGs was considered in [19]. Here we consider partial commuta-
tivity defined on Σ∗ where Σ = {x1,x2, . . . ,xm}. Given an m×m symmetric {0,1}-matrix A = [ai, j] with
1s down the diagonal, a pair of letters xi,x j is a commuting pair iff ai, j = 1. This defines an equivalence
relation and partitions Σ∗ into equivalence classes, also known as traces. Thinking about the element
of the alphabet as processes and traces as their scheduling, commuting processes are considered as in-
dependent from each other. In this way the theory of traces has been intensively studied in connection
to parallel processes [11, 12]. A (linearization of a) trace language is a union of some of these equiv-
alence classes. Trace languages based on regular, linear and context-free languages (adding a partial
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commutativity relation to the language) were studied and accepted by various types of automata with
translucent letters in [21, 23, 22], respectively. Traces and trajectories are also analyzed in various grids
[15, 16, 20]. On the other hand, the Cartier–Foata language LA corresponding to the matrix A of a
partial commutativity relation is constructed by picking a representative word from each equivalence
class.

Let us define a set F ⊆ Σ to be commuting if any pair of letters in F commute. Let C (A) denote the
collection of all nonempty commuting sets. Denote by w(F) the word obtained by juxtaposing the letters
of F . The order in which these letters are juxtaposed is immaterial since all arrangements are equivalent.

The central result is that the listing series f (LA) can be constructed directly from the matrix A:

f (LA) =

(
∑

F∈C (A)
(−1)#Fw(F)

)∗
= ∑

n≥0

(
∑

F∈C (A)
(−1)#Fw(F)

)n

, (7)

where #F denotes the number of elements of F .
Over Σ = {a,b} where a and b commute, the Cartier-Foata theorem gives LA as (a + b− ba)∗,

which is to be interpreted as the weighted series λ +(a+ b− ba)+ (a+ b− ba)2 + · · · In this case the
representatives of the equivalence classes are seen to be the words in a∗b∗. The essence of the theorem
is that this is a listing series, so there is exactly one representative word from each equivalence class that
remains after algebraic cancellations are carried out.

Similarly over Σ = {a,b,c} with a,b and a,c commuting pairs, the listing series is λ +(a+b+ c−
ba− ca)+(a+b+ c−ba− ca)2 + · · ·

The words in this second language are generated by the signed grammar

S→ λ |aS |bS |cS | −baS | − caS .

6 Conclusions and a conjecture

Proposition 8 provides an expression for the listing series of a language generated by a signed grammar
in terms of weighted listed series of two CFLs. However this result is short of a characterization in terms
of CFLs. It is also possible to change the way signed grammars generate languages by requiring nw ≥ 1
in (2) instead of equality. In this way, every signed grammar would generate a language, and obviously,
the class of generated languages would also change. However, our consideration in this paper to allow
only 0 and 1 to be the signed sum, gives a nice and immediate connection to Cartier-Foata languages in
the regular case by special regular like expressions.

Since by signed grammars, we generate languages based on counting the number of (signed) deriva-
tion trees, it is straightforward to see the connection between our grammars and unambiguous CFLs. On
the other hand, there may be more than one derivation tree for a given word w, with the proviso that the
algebraic sum of the yields of derivation trees for it has multiplicity nw ∈ {0,1}. Therefore signed gram-
mars may also generate ambiguous CFLs. In this sense, the bottom of the hierarchy, the unambiguous
CFLs are included in the class we have investigated. On the other hand, if there are multiple derivation
trees for a word generated by a grammar, by playing with their signs, we have a chance to somehow have
their signed sum to be in {0,1}. Thus, it may be possible to generate languages that are higher in the
hierarchy based on ambiguity. However, this is still an open problem.

We have shown that signed grammars can generate languages that are not context-free. It would be
of interest to use the fact that the languages generated by signed grammars are closed under comple-
mentation to show that signed grammars can generate inherently ambiguous CFLs. One way to do this
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would be to start with an unambiguous CFL whose complement is an inherently ambiguous CFL. The
standard examples of inherently ambiguous CFLs do not seem to have this property. By the Chomsky-
Schützenberger theorem [2] the generating function of an unambiguous CFL is algebraic. Using the
contrapositive and analytical methods, Flajolet [6] and later Koechlin [13] devised ingenious methods to
show the transcendence of the generating function of a given language to prove its inherent ambiguity.
However if the generating function of L is transcendental so is the generating function of its complement
L . This means that one needs to look among inherently ambiguous languages with algebraic generating
functions (e.g. {aib jck | i = j or j = k}, see [13, Proposition 14]) if the complement has any chance of
being unambiguous.

So it would be nice to have an answer to the following question: Is there an unambiguous CFL whose
complement is an inherently ambiguous CFL?

A related problem of showing the existence of an inherently ambiguous CFL whose complement is
also an inherently ambiguous CFL was settled by Maurer [17].
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