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O. Introduction 

The representation theory of the symmetric groups Su - aside from being extremely 
elegant and interesting in its own right - can be used in a number of ways to obtain informa- 
tion about the representation theory of other classes of groups. This theory also turns out to 
have applications in such diverse areas of interest as atomic physics and quantum chemistry 
to graph isomorphism and PI algebras. 

Prior to the advent of the electronic computing devices, the computational aspect of the 
character theory of S n had to stay essentially at the level of examples. This is because of 
the formidable computational difficulties that arise in the resolution of various products 
defined on the irreducible characters of Sn • Following the introduction of the first electronic 
computing machines, there emerged a number of approaches and significant computational 
results in this area, mainly focused on the construction of the character tables of S n • 
Theoretical results of Frobenius [Frobl-Frob2], Murnaghan [Murn2], Nakayama [Naka], 
Yamanouchi [Yama] enabled Bivins et al [BiMSW] to calculate the characters of symmetric 
groups of degrees up to 16 in 1950's. This was followed by the results of Comet [Cornel- 
Come3}, Gabriel [Gabri] among others which extended and improved these considerably. In 
recent years, the classification theory of finite simple groups spawned comprehensive packages 
such as the Character Algorithm System (CAS) [CAS1-CAS3] for handling characters of 
arbitrary finite groups. 

The development of the special case of the operations on the characters of the symmetric 
groups was initiated by Young's fundamental series of monographs [Young] and the isomor- 
phism between the multiplicative properties of group characters and the algebra of Schur 
functions introduced by Littlewood [Littl-Litt4]. This approach lead to immense 
simplifications in the computational aspect of this theory. Furthermore, the combinatorial 
interpretation of Schur functions as the weight generating function of Weyl tableaux ~ of the 
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corresponding Young frame have opened up new avenues of combinatorial techniques for the 
understanding of the underlying structures. Recent developments in this area are too 
numerous to quote. Our purpose in undertaking this part icular  implementation of a compact 
interactive system for the resolution of various products of irreducible characters of S n , in 
part icular the computat ion of plethysms, has been to exploit this recent understanding and 
to make use of the efficient combinatorial algorithms tha t  i t  brought to the fore. 

In section 1, the basic operations under consideration on the characters of S n are 
presented. Section 2 covers the descriptions of the algorithms to be used and the extent of 
the experimental implementations realized so far. We briefly elaborate on each one of the 
operations, pointing out  the nature and the limitations of some of the algorithms tha t  were 
proposed to compile tables in the past. A summary of previous work concerning the computa- 
tion of characters of S n together with more recent and extensive packages such as the CAS 
system are also mentioned in this section. 

In section 3 some applications of plethysms and Kronecker products in physics are 
presented. The nature of the package in some detail  from the implementation point of view is 
discussed in section 4 . Finally, concluding remarks as a short summary are presented in sec- 
tion 5 .  

1. Basic Operations 

First  we remark tha t  the irreducible representations of S n are in one-to-one correspon- 
dence with the partitions of n : a sequence of nonnegative integers k -- (k  1 _~k2_~ - • - ~ k  n ) 

is a part i t ion of n if k I + )'2 -I- .. + )'n = n . The correspondence be tween the  irreducible 
representations and part i t ions is more than just  a count: it  is well known tha t  one can con- 
struct an irreducible S n - m o d u l e  for each part i t ion )' of n in a natural  way. ( Facts  of 
this nature about the representation theory of the symmetric groups as well as the interplay 
between this theory and combinatorics tha t  are not referenced explicitly here can be found in 
e.g. [JaKe], [MacD], [Isaac], [CuRe], {Felt], [Stan] ). 

Thus the basic high-level primitive operations that  form the building blocks of the char- 
acter theory of S n take parti t ions of n as their arguments. The following operations to be 
implemented on the irreducible characters are of part icular  importance: 

P L E T ( ) ' ; p )  : 

Returns the expansion of the outer plethysm {)'} ~ {#} of the irreducible representations 
of S n corresponding to the part i t ions )' and p .  

I N N E R  ( k ; p ) : 

Returns the expansion of the inner or the Kronecker product {)'} o {/~} of the 
corresponding irreducible representations of S n . 

O U T E R  ( k ; p ;  ... ; # )  : 

Returns the expansion of the outer product {)`}{p} • • • {p} of the irreducible represen- 
tations of Sn corresponding to the part i t ions )`, p , . . . ,  p .  



208 

EXPAN ( X ; # ) : 

Returns the expansion of the skew representation of Sn that corresponds to the skew- 
shape k / p .  This operation requires that the nodes of the Young frame of p be con- 
tained in those of k .  

COEF ( k ; arg ) : 

This primitive returns the coefficient or the multiplicity of the irreducible representation 
), in the expansion of the operation a rg .  Here arg can be a file name which has the 

common I/O format of the package or any one of the operations 
PLET, OUTER, INNER, E X P A N .  

CHAR (k ;# )  : 

Returns the value of the character 
type p .  

k at the eonjugaey class of permutations with cycle 

CCOL ( k ) :  

Generates the character values of all of the irreducible representations of S n at the con- 
jugacy class of cycle type X. 

Valid nested operations which involve computations on intermediate results are to be 
automatically interpreted, stacked and then executed. For example the compound operation 

INNER ( PLET (X;#);OUTER (p;~r)) 

would automatically generate the expansion of ( {X} (~) {#} ) o ( {P} {~r} ) ,  and 

COEFF ( v; INNER ( PLET ( k ; # );OUTER ( p ; lr ) ) ) 

would return the multiplicity of the representation {v} in the analysis of the compound 
representation ( {),} @ {p) ) o ( (p} {lr}). 

2.1 P l e thysms  

The term plethysm refers to an operation on the algebra of symmetric polynomials intro- 
duced by Littlewood [Littl-Litt4]. This operation can be defined loosely as follows: 

Suppose we are given two symmetric polynomials p and q with integer coefficients the 
latter having nonnegative coefficients only. We can then write the polynomial q as a sum of 
monomials 

q(x) = ml + ms + . .  + m, 

where these monomials are ordered in some fashion. Now expanding p as a polynomial in r 
variables lq ,  Y2, . . ,  Y, by means of the elementary symmetric functions, we set 

p[q] = p(rnl , m2, ..,m,) 

and refer to the resulting symmetric polynomial as the plethysm of p and q . 
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For example if we have 

first we express p in terms of the elementary symmetric functions a k in the form 
p ---- a2 + al .  Given this, we augment the number of variables to three and write 

p(v~,  v2, v3) = a~(v~, v~, y3) + a~(v~, v2, v3) • 

Now setting Yl = Y2 = z~ x~ z~ and Y3 = XIZ2Z3 gives 

piq] = ( x ~  4 4 4 2x~x~z~ (2z~ z~ x~ X2 ;~3 + ) +  + XlZ2Z3) 

We wilt use the notation p[q] for the plethysm of p and q as well as the more com- 
monly used notation q ~ p introduced by Littlewood. 

One of the fundamental problems in the theory of symmetric functions is to find an 
efficient way to calculate the coefficients ~'~ that arise in the plethysm {/~}~){k}, or 
equivalently the plethysm of the corresponding Schur symmetric functions: 

s [sJ = , 
V 

which corresponds to the resolution of the outer plethysm of the irreducible representations of 
S n carried by the partitions k and /~. 

In other words, it is desirable to have a construction analoguous to the Littlewood- 
Richardson (LR) rule [LiRic] by which the coefficients g ~  in the expansion of the ordinary 
(outer) product 

t~ 

can be found. 

A number of such algorithms have been proposed in the literature. Among these are 
several algorithms due to Littlewood [Litt2], and three further ones found in [Todd], [Robi] 
and [Foull-Foul2]. Murnaghan also proposed inductive algorithms for plethysms [Murnl]. 

These algorithms however, have not been very suitable for computer implementations for 
a number of reasons. Some of these algorithms, especially those of Littlewood, require human 
ingenuity and a certain amount of experimentation to carry through. On the other hand, 
Todd's algorithm requires an extravagant use of random access storage. These undesirable 
features render them quite inefficient to adapt to the limitations of an automatic process. 
Furthermore, other less sophisticated but equally important limitations must also be taken 
into account. For example, it turns out that efficiency has to be achieved by a deeper under- 
standing of the nature of the calculations than at the expense of storage. For instance, in the 
expansion of the totally symmetric plethysm 55[$7] the number of terms that can arise is 
potentially p(35) - 14883 terms, but actually only 901 Schur functions occur in the final 
expansion. Since the number of partitions p(n) of n grows quite rapidly with n , it is of 
utmost importance that the algorithm produces as few as possible dead partitions during the 
intermediate computations. By this we mean the partitions that do not occur in the final 
expansion. In particular, a reject-accept type of approach which requires the generation of a 
substantial fraction, if not all of the partitions in question is unacceptable. In other words, 
even a characterization of the 901 live partitions in the above expansion is not necessarily 
helpful if each one of the 14883 partitions of 35 has to be individually tested before being 
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rejected or accepted. Thus an efficient algorithm for plethysms needs to construct rather than 
recognize the live partitions to be practical. 

One such algorithm was developed in University of California, San Diego recently under 
the auspices of Prof. A.M. Garsia [ChGaRe] which will be referred as the SD algorithm here. 
Its basic ingredients are as follows: 

(i) Fast multiplication of Schur functions implementing an algorithmic modification of the 
LR rule, due to Remmel and Whitney [ReWhi]. 

(ii) The expansion 

sm(x.)  = s m ( ~  ,x~,..) = ~ ~ s~(~) 

where the summation is over all partitions ), of mp with void p-core. A result of 
Chen [Chenl is used to generate those partitions that appear in this expansion. This 
algorithm will be referred to as the SXP algorithm. 

(iii) The identity 

S.= J" ~ ¢p S._p 
n p ~ l  

where ep is the p-th power symmetric function, which yields the expansion 

s . [ s , . ]  : s.(=,)s._,ts.1 
p : l  

(iv) The Jacobi-Trudi [Jacob], [Trudi] identity S x - - d e t [ h x j + y _ i ]  which can be used to 

express a Schur function as a linear combination of homogeneous symmetric functions 
hp. This identity appears in a number of contexts in the literature: [JaKe], [MacD], 

[Ege3]. The algorithm to calculate Sx(x[, x~ .... ) by making use of the SXP algorithm 
and the Jacobi-Trudi identity will be referred to as the SkXP algorithm. 

(v) The fact that the Polya enumerator 

S ,  = P s  (¢1 ,  ¢2,.. . ,  ¢ ,  ) 

can be used to express the plethysm Sn[S~] as sums of products of expansions of the 
form S~(xp) : 

s.ls.] = Ps (S~ (~ ) , s~ (=~ )  . . . . .  s~ (~ . ) )  

A limited version of the SD algorithm was implemented in 1984 to generate tables of the 
symmetric and antisymmetric plethysms Sn[Sm] and SI.[S,~ ] by Egecioglu and Remmel 
[EgeRe]. 

We remark that we were able to carry out the calculations for these cases on a minicom- 
puter under UNIX for up to m n =  40. This compares very favorably with the tables of 
plethysms due to Butler and Wybourne [BuWybl] in which the general cases are tabulated 
for mn ~_ 16, the results of Ibrahim [Ibral-Ibra2] where the degrees of the underlying 
representations are bounded by 15, and Makar and Missiha's particular results [MaMis]. 
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2.2 Kronecker products 

Suppose a and /~ are two irreducible representations of a finite group G . Then the 
reduction of the Kronecker or inner product representation a o/~ is of general interest, with 
particular importance for G = S~ . 

For a subgroup H < G , denote by ~/H ~ G the representation of G induced by the 
representation ffH of H .  Similarly, given a representation /~G of G , denote by /~c $ H 
the representation of H obtained by restricting /~e to H .  

It is well known and easy to prove by Frobenius reciprocity that  

(1H 1" G)  O ~G ~'(f~G ~ H ) T  G [2.2.1] 

Robinson and Taulbee observed that  this identity in effect reduces the expansion of the 
Kronecker product {k} o {p} of S n to multiplication of Schur functions [RobTa]. 

In view of the Jacobi-Trudi identity and the distributivity of o over addition, it suffices 
to note that for any partition p =(pl<_p2< . . .<_p ,~)  of n , the inner product hpoS~,  
can be so decomposed where hp = hp~hp~ • • • hp~ is the homogeneous symmetric function 

corresponding to p .  

In view of [2.2.1], hp o S~ is a sum of products of Schur functions, each obtained by res- 
tricting the representation {/~} to the Young subgroup of S n corresponding to the partition 

P • 

For instance we have 

h2, o Sla = 828181 + 81~8~ 

Thus to compute the 
Jacobi-Trudi identity Sl~ 2 
metric functions 

hi h2 h4 
81~ 2 = det 1 h I h a 

0 1 h 2 

Kronecker product S l~  0 Sz3 we proceed as follows: by the 
can be expressed as a linear combination of homogeneous sym- 

=hl~ 2 + h  4 - h 1 3 - h 2 2  • 

8122 0 813 ---- 2 8 2 8 1 8 1  "Jr 8128181 + 813 - -  8381 --  81281 --  8 2 8 1 8 1  --  81282 

= Sz3 + $2~ + Sl~2 + Sz~ 

after the multiplication of the Schur functions and the arithmetic manipulations are carried 
out. 

Thus 

Next, for each hp that  appears in the expansion of the above determinant, we compute 
hp 0 Sz3 making use of the identity (2.2.1) : 

hi22 0 S13 = 2S28181 + 812S1SI 

h4 0 813 -- 813 

h13 0 81a = 8381 + 81281 

h220813 ---- 828181 + 81~82 
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We should remark at this point that  in certain instances the commutativity of the 
Kronecker product can be used to shorten the calculations involved considerably. For exam- 
ple, using the above algorithm to calculate Sis 2 0 $13 in the form Sl3 0 Sis2, the deter- 
minant that has to be evaluated is reduced to 2 X2 giving 

[ ' ' l  
$1=20S13=S130S1=2 = det 1 h 3 0 S122 

= h i 3 0  SI=2 -- h40  SI2 2 

This is one of the reduction rules to be used in the computation of INNER (k;p) .  Other 
reduction rules and short cuts such as conjugation relations that  simplify the construction of 
PLET (k;#) also turn out to be useful for Kronecker products. 

We also remark that  Frame [Frame] recently introduced a recursive method to deter- 
mine the Kronecker powers of a fixed irreducible character X that is less time consuming 
than Murnaghan's approach [Murn3] . It could be possible to incorporate Frame's algorithm 
as a part of INNER to be invoked in the case of the equality of the input arguments to 
increase efficiency. 

2.3 Outer P r o d u c t s  

It is well known that  the product of two Schur functions {k} and {#} of degrees n 
and m respectively, can be expressed as a nonnegative integral linear combination of Schur 
functions {p} of degree n + m : 

{k}{p} = ~ g:~,, {p} [2.3.]) 
p 

The correspondence [LiRic] between the construction of the outer product kXp of two 
irreducible representations ), and /~ of the symmetric group and the (outer) product of the 
Schur functions determined by these partitions gives the multiplicity of the irreducible consti- 
tuents of the representation k × #  once the expansion [2.3.1] is known. 

Similarly, the coefficient g~%L.,x' in the expansion 

{ kl} {k2} " " " { k '} = ~ g~',x',..,x' {P} [2.3.2) 
p 

of the Schur functions {kl}, {k2},.., {k r } gives the multiplicity of the corresponding irreduci- 
ble representation p in the analysis of k I X X 2 X ' ' '  X), r induced from the corresponding 
Young subgroup. 

The LR rule is a combinatorial algorithm to compute the coefficients g~,~ that occur in 
[2.3.1] [LiRic]. [Litt3] is a more complete reference on this result. 

We note that  the backbone of the algorithms for PLET (k; p ) and INNER (k; I~) con- 
sists of the resolution of products of the form [2.3.2]. Therefore it is of paramount importance 
to have an efficient procedure for this expansion. 

In [Egel], an algorithmic modification of the Littlewood-Richardson rule developed by 
Remmel-Whitney [ReWhi] was implemented to this end. The Remmel-Whitney result is 
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extremely suitable for computer implementation and it makes it possible to multiply an arbi- 
trary number of Sehur functions directly without excessive computational effort. A version of 
this particular implementation was also used as a subprocedure in the calculation of sym- 
metric and antisymmetric outer plethysms of Schur functions that  we have already mentioned 
[EgeRe]. 

We also remark that  with minor modifications, skew representations of S ,  can also be 
expanded with this algorithm. Thus OUTER (k;p; . . . ;p)  can actually be constructed by the 
primitive EXPAN using suitable input parameters. 

Algorithms to expand the outer products and skew representations of S n via Schur 
functions and the LR rule can be traced back to [HuWil] . Manipulations with symmetric 
functions and suitable representation schemes appear in [McKal], [BrMcK]. 

2.4 C h a r a c t e r  V a l u e s  

One of the well known ways of calculating the value of an irreducible character of the 
symmetric group S n at  a given conjugacy class is the recursive formulation due to Mur- 
naghan IMurn2]. This formula appears in a variety of forms in the literature [JaKe], [Litt3], 
[Ege2]. Calculation of all the entries in an arbitrary column of the character table of S ,  
(i.e. the values of all the irreducible characters at a fixed conjugacy class) can be realized by 
making use of the Frobenius formula [Frobl] : 

¢~ -- ~ X,(/~) S x [2.4.1] 
x 

in conjunction with Murnaghan's rule where p and k are partitions of n , Xx(/L) is the 

( k , p ) t h  entry in the character table of S n ,  ¢i, is the power symmetric function 
corresponding to the partition # and S x is the Schur function corresponding to ), .  A care- 
ful implementation of Murnaghan's rule provides a fast and compact algorithm for calculating 
the values of the irreducible characters of the symmetric groups in an efficient manner. This 
was done in [EgeCo] . 

For example, a Pascal routine for the computation of the character values 

X~23,~o~(24262) = - 2  X~78~s~(343792) = - 2 4  

implementing this rule took 17 and 266 milliseconds respectively, on a VAX-11/780 mini- 
computer. Considering the fact that  the underlying symmetric groups are of rather large 
degrees ( S22 and $40 respectively ), the performance of the algorithm and its implementa- 
tion are seen to be quite satisfactory. 

Of course the degree of the irreducible representation ), of S n can be calculated by cal- 
ling CHAR with the arguments k and 1" , though our algorithm here would essentially 
generate all Young tableaux of shape X. These degrees on the other hand, can be readily cal- 
culated by the celebrated hook formula of Frame, Robinson and Thrall [FrRoTh] . 

We should also remark that  the repeated application of a simple combinatorial rule - the 
slinky rule due to Rodriguez [Rodri] for the expansion of S x Cp in terms of Schur functions, 
yields the expansion in [2.4.1] without generating too many dead partitions. Thus the slinky 
rule can be used to generate the stream of character values of all irreducible representations 
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at a single conjugacy class. This forms the basis of the CCOL (X) operation° 

Machine computation of the character values and the construction of the character table 
of S ,  goes back to the beginning of 1950's. Bivins et al [BiMSW] computed the characters 
of $15 and $16 on MANIAC at Los Alamos in 1954, using a direct implementation of 
Murnaghan's recursion by removing cycles of various lengths. In this particular approach, 
preparation of all partitions befoEhand was necessary. 

One of the major problems of the time seems to be the unavailability of high level 
languages which are necessary for the symbolic methods of Young [Young] and Yamanouehi 
[Yama] . Nevertheless, improved results were obtained through that decade by Comet 
[Cornel-Come3] and by Gabriel [Gabri]. For example, Comet was able to compute the char- 
acter values for up to n -- 20 by using Nakayama's recursion [Naka] . Later works include 
[McKa2] . 

In very recent years, the classification problem of finite simple groups and general 
developments in the theory of finite groups produced a wealth of computational algorithms 
and results for the calculation of characters: for example [Dixon]( [McKa3-McKa4], INcubi, 
[SiFra], among many others. A number of further references can be found in [CAS3]. Furth- 
ermore, extensive packages for operations with the characters of large classes of finite groups 
were developed such as the CAS [CAS1-CAS3]. The CAS allows for extensive analysis of 
characters of an arbitrary finite group, given a partial knowledge of its structure. Operations 
such as induction and reduction among many other operations useful in a general setting are 
made possible. In particular the character tables for the symmetric groups can be constructed 
by decomposing the tensor powers of a faithful representation. The power and the general 
nature of the CAS necessarily requires some overhead in terms of the size of the package. For 
the particular case of the symmetric group, especially in physical applications that require the 
calculation of plethysms of representations, the symbolic-combinatorial nature of the SD 
algorithm has advantages in terms of speed and compactness. 

3. Some  Applicat ions 

The algebra of plethysms for Schur functions has proved to be an extremely useful tool in 
calculations of branching rule coefficients for various subgroups of the full linear group 
GL(n) and of resolutions of Kronecker products of irreducible representations. 

Knowledge of such branching rule coefficients and resolutions of Kronecker products has 
a number of applications in atomic, nuclear and particle physics and quantum chemistry. For 
example, in the I950s Elliot exploited the basic identification between plethysms 
{~}~{X}(=Sx[S~] ) and branching rule coefficients for the decomposition of 
U(N) ~ U(M) together with Ibrahim's tables of plethysms libra3] to establish the branch- 

ing rules for the decomposition U(N)~ U(3) which were then used in the study of the 
SU(3) shell model of nuclei [Elli]. 

In the late 1960s and early 1970s, several authors used plethysms to attack a number of 
problems in complex spectra. For example, Smith and Wybourne [SmWyb] gave applications 
of plethysms to the classification of the atomic states of n-electron configurations, the 
analysis and classification of the N-part icle operators that arise in the application of 
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perturbation theory to atomic problems, and the derivation of selection rules for matrix ele- 
ments of operators. Related work in this area during this period includes [Judd], [Gram], 
[Wyboi], [BuWyb2], [BuKin]. 

Work within the last ten years includes Men at al. [MeChMe], [MeMe], [MeVaMe], 
[MeLeMe], who have used and extended the applications of plethysms in nuclear theory and 
the study of the electron configuration of atoms; Sullivan [Sullll, [Sull2], who has used 
plethysms for applications to shell theory; and Dehuai and Wybourne [DeWyb], who have 
worked on plethysms for spin representations. More recent work includes [KiWyb], [Newm], 
[PaShal], [PaSha2], [SaJuBe]. 

Wybourne's book [Wybo2] furnishes further examples of the uses of the outer plethysm of 
Schur functions for calculating branching rule coefficients for the unitary U(N), orthogonal 
(O n),  and symplectic (Sp ,) groups and the resolution of Kronecker squares into symmetric 

and antisymmetric terms. A number of  applications of such calculations to various problems 
in atomic spectroscopy along with tables of expansions [Butle] are also included. 

4.1 Software Conmideration8 

In the existing implementations of OUTER (k, p .... , / ,)  and in the various utility pro- 
cedures required in the calculations of plethysms such as merging a large number of files, the 
use of AVL-trees turned out to be a sufficient data structure. For more general computations 
proposed here, the extent of the calculations and the number of intermediate partitions gen- 
erated demands a more careful consideration in this respect. To carry this out more 
efficiently on the computer, we can proceed as follows: each linear combination of Schur func- 
tions 

cxSx 
x 

is represented as a dictionary. We recall that  these are binary-tree-like structures with four 
fields: the first field gives the key, the second stores the information and the last two fields are 
pointers to left and right sons of the node. In our case each node represents a term of the form 
exSx, the key being the underlying partition ), and the information being the coefficient 
c×. As new partitions are generated by one of the algorithms these records are constantly 

kept arranged so that  when we read the dictionary in symmetric order the partitions gen- 
erated come out in lexicographic order. 

This given, as new partitions are generated, they are recorded in the dictionary by locat- 
ing the node with the proper key and updating the coefficient field. If the key is nonexistent, a 
new node is added in the appropriate location and the dictionary is updated to keep a suit- 
able balance. Of course the frequencies c x with which the various shapes appear are not 
known in advance, as these are the coefficients we are trying to determine. Efficiency of the 
updating procedure can be increased by making use of a recent updating procedure for dic- 
tionaries discovered by Sleator and Tarjan [SleTa]. 

The input-output files have a common format as follows. Each Schur function is 
represented by three fields: multiplicity, the number of parts and the parts themselves in 
ascending order of magnitude: 
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cx k ),~ X2 . . -  ), k 

For instance the file $2X3 which is generated by the SXP algorithm would look like 

1 1 6  
1 2 3 3  

- - 1 2 1 5  
- - 1 3 1 2 3  

1 3 2 2 2  
1 3 1 1 4  

codingtheexpansion 

S2(x 3) = 86 -~ 832 -- 515 -- 8123 "b S2a -b 8124 . 

The internal representation of partitions can be most economically realized by coding 
them as binary strings as in [Come4] : we simply scan the boundary of the Young frame ( = 
the Ferrers' diagram) of k from top to bottom, recording each horizontal step as a 1 and 
each vertical step as a 0 . For instance the partition (12426) would correspond to the 
binary word 1 0 1 0 1 1 0 0 1 1 0 .  

(Figure 1) 

For all practical purposes, two 32-bit words would suffice to represent a partition this 
way. We use the first two bits as special purpose flags, and the content of the next 6 bits 
point to the index of the last 0 in the representation of k ,  the offset being the ninth hit. 
This way we are left with 56 bits for the binary word of the partition. 

(Figure 2) 

Clearly, partitions of up to n = 56 can be represented with this scheme. 

The high-level dependencies between the primitives and internal utility routines are 
schematically described in (Figure 3) for the SD algorithm and the INNER operation. 

(Figure 3) 
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The core of the package has the following basic functions: 

a) Parsing the input expressions and controlling interprocess I/O, 

b) Generating symbolic expressions to be evaluated by the various primitives, such as the 
Jacobi-Trudi expansion and cycle-lndex polynomial generation, 

c) Generating sequential source code for the primitives to execute, 

d) Optimising algorithms by using the conjugaey relations, etc., before the computations are 
carried out. 

Also, for efficiency in speed, keeping short and frequently used data files on disk should be 
helpful. For instance 

a) 
h) 

c) 
d) 

SXP output for small n and p , 

Symbolic expansions for the cycle-index polynomials PS.  for small integers n , 

Symbolic expansions of determinants of small sizes, 

Totally symmetric and antisymmetric plethysms that have to be frequently recalculated. 

The extent of the speedup from such a lookup procedure remains to be experimentally 
determined. 

Another factor which effects speed is the choice of a language for implementation. Even 
though some of the existing applications were coded in Pascal, we feel that for the general 
case a better choice is the C-language in a UNIX environment. Various facilities of UNIX such 
as pipes and I /O redirection are time-savers for the generation of such a package. 

We feel that modularity is an essential aspect of this type of software development. Even 
though a certain number of shared procedures are necessary, the modification of the total 
package for particular applications and/or accommodation of new algorithms should be facili- 
tated with this approach. 

5. Summary 

Description of a comprehensive package of routines for the character theory of the sym- 
metric groups S n have been presented. The efficiency of these algorithms derives from the 
reduction of the expansions of plethysms and Kroneeker products to multiplication of Sehur 
functions. This in turn is done with minimal computational effort by making use of an algo- 
rithmic modification of the LR rule due to Remmel and Whitney. 

Existing implementations of a number of these algorithms turned out to be very efficient. 
The calculation of totally symmetric and antisymmetric plethysms for instance, could be car- 
ried out further than the existing tables in the literature. 

The package is centered around a core which coordinates the various primitives and 
sequentially invokes the necessary routines to carry out the required calculations. The com- 
mon features of the various algorithms implemented make it possible to construct this pack- 
age in a highly modular and compact form in a UNIX environment. 
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